Detection for Different Adulterants of Ziziphi Spinosae Semen Based on Near Infrared Spectroscopy
-
摘要: 本文采用近红外光谱技术对酸枣仁及其三种常见伪品理枣仁、枳椇子和兵豆进行定性定量检测研究。分别制备不同伪品掺杂质量分数为1%~90%的单种掺杂物实验样品,以及多种伪品同时掺杂的样品,采集800~2500 nm范围的近红外光谱数据。首先利用主成分分析(principal component analysis,PCA)对酸枣仁及三种伪品进行初步定性鉴别。对于单一掺假物样品,采用五种不同预处理方法对光谱数据进行去噪。利用偏最小二乘回归(partial least squares regression,PLS)方法,建立PLS1模型定量预测掺假物含量,并采用连续投影算法(successive projection algorithm,SPA)挑选最优波长,优化定量模型。结果表明,理枣仁掺假建立的3波长检测模型的预测集决定系数R2p为0.9659,均方根误差(root mean square error,RMSEP)为6.1910%。枳椇子掺假建立的8波长检测模型的预测集决定系数R2p为0.9491,均方根误差(RMSEP)为7.6232%。兵豆掺假建立的5波长检测模型的预测集决定系数R2p为0.9666,均方根误差(RMSEP)为6.1437%。对于多掺杂物样品,建立了PLS2模型同时对不同成分进行定量预测,酸枣仁效果最好,R2p≥0.7115,枳椇子预测效果最差,R2p≥0.2007。研究表明,利用近红外光谱技术可以实现酸枣仁不同伪品掺假的快速无损检测。所建方法为后续酸枣仁及其他种子类中药材便携式无损检测仪器的开发提供了理论基础与参考依据,对保证中药材质量安全具有重要社会意义。Abstract: In this paper, near infrared spectroscopy technology was used to study the qualitative and quantitative detection of Ziziphi Spinosae Semen and its three kinds of counterfeits, Ziziphus mauritiana lam, Hovenia dulcis Thunb. and Lens culinaris. Different single-adulterant samples were prepared with adulterant concentration in range of 1%~90%. Multiple-adulterants samples were also prepared by adding the three kinds of counterfeits simultaneously. Near-infrared spectroscopy data in the range of 800~2500 nm were acquired. Principal component analysis (PCA) was used firstly to qualitatively identify Ziziphi Spinosae Semen and three kinds of counterfeits. For single-adulterant samples, five different pretreatment methods were applied to denoising. Partial least squares regression was used to establish PLS1 models to quantitatively predict concentrations of the adulterants. Successive projection algorithm (SPA) was used to select the optimal wavelength to optimize the PLS1 models. Three-wavelength prediction model for the adulteration detection of Ziziphus mauritiana Lam was established, with determination coefficient R2p for prediction set of 0.9659 and root mean square error (RMSEP) of 6.1910%. Eight-wavelength prediction model for the adulteration detection of Hovenia dulcis Thunb. was established, with R2p of 0.9491 and RMSEP of 7.6232%. Five-wavelength prediction model for the Lens culinaris adulteration detection was established, with R2p of 0.9666 and RMSEP of 6.1437%. For the multiple-adulterants samples, PLS2 models were established to determine concentrations of the different counterfeits simultaneously. The prediction results for Ziziphi Spinosae Semen were the best with R2p≥0.7115, while the results for Hovenia dulcis Thunb. were the worst with R2p≥0.2007. The results showed that the near infrared spectroscopy could be used to inspect different counterfeits adulterated in Ziziphi Spinosae Semen. The established method provided a theoretical basis for the subsequent development of portable detection equipment for authenticity of Ziziphi Spinosae Semen. It was also as a reference for other studies on quality inspection for seed Chinese medicinal materials. The method was of an important social significance for ensuring quality and safety of Chinese medicinal materials.
-
酸枣仁为鼠李科植物酸枣Ziziphus jujube Mill. var. spinosa(Bunge)Hu ex H. F. Chou的干燥成熟种子[1]。酸枣仁主要含有黄酮、皂苷、生物碱等物质[2],具有镇静催眠、抗焦虑[3]、抗抑郁、降血糖[4]、抗痴呆、增强免疫系统等药用功效[5]。酸枣仁主要分布于我国东北、华北、西北以及南方等部分地区。其中河北邢台所产的邢枣仁量大质优,为全国闻名的道地药材。酸枣仁作为我国传统常用中药材,应用历史悠久,远销海内外。然而由于酸枣仁的形似易混淆品较多,不法商贩为牟取暴利掺入混伪品,使得市售酸枣仁价格与质量参差不齐,掺杂掺假现象严重。掺伪酸枣仁药材直接影响药用效果及消费者和药材厂商的经济利益,含毒或相悖药性伪品甚至危及生命健康,因此开展酸枣仁伪品的快速检测技术具有重要意义。
常用的中药材真伪检测技术有薄层色谱法[6]、气相色谱法[7]、液相色谱法[8]等。以上方法虽然检测精度较高,但实验过程繁复,需要专业操作人员,仪器成本高,检测耗时长,不利于实际中的市场推广应用。近红外光谱技术基于被测物质中含氢基团的振动吸收光谱特征,具有无损、快速和环境友好的优点,便于在现代化高通量加工生产环境中实现在线监测。目前已广泛应用于粮油[9-10]、果蔬[11-12]、肉类[13-14]和乳制品[15-16]等多种农产品和食品的质量检测中。Li等[17]基于近红外光谱结合偏最小二乘判别分析(partial least squares-discriminant analysis,PLS-DA)和偏最小二乘回归(partial least squares regression,PLSR)算法,成功地对两种外观相似的藏红花混伪品(莲花雄蕊和玉米柱头)进行了快速鉴别和定量分析。Chen等[18]采用近红外光谱技术结合数据驱动(soft independent modeling of class analogy,SIMCA)类建模方法和基于浮雕的变量选择方法,实现了三七粉掺假(苦参粉和玉米粉)的非目标鉴别。以上研究表明近红外光谱技术可以用于中药材真伪鉴别和掺假检测。
目前,有关酸枣仁掺伪检测的研究较少。申晨曦等[19]基于氢核磁共振与偏最小二乘法对酸枣仁及其掺伪品进行了鉴别。刘红玉和张悦[20]综述了鉴别酸枣仁与伪品理枣仁的十种检测方法,包括性状鉴别、显微鉴别、理化鉴别、薄层色谱、紫外光谱、红外光谱、高效液相色谱(high performance liquid chromatography,HPLC)、高效毛细管电泳法、超高效液相色谱-飞行时间质谱法(high performance liquid chromatography-tandem quadrupole-time of flight-mass spectrometry,UPLC-Q-TOF/MS)鉴别和DNA指纹图谱鉴别。基于近红外光谱技术检测酸枣仁真伪的研究尚未见报道。综上所述,本文针对酸枣仁掺假质量问题,具体选取了其市场上常见的不同伪品理枣仁、枳椇子和兵豆,利用近红外光谱技术开发一种酸枣仁掺伪的快速检测方法,为后续便携式或在线检测仪器开发提供理论基础。
1. 材料与方法
1.1 材料与仪器
酸枣仁及伪品理枣仁、枳椇子和兵豆 购买于河北安国中药材市场远光药业有限公司。
MPA型傅里叶变换近红外光谱仪 德国布鲁克公司。
1.2 实验方法
1.2.1 样品的制备
使用一号筛(10目)去除样品颗粒中的杂质以及不完整颗粒;分别制备掺入单种伪品的酸枣仁掺假样品,掺入的伪品质量分数为1%、10%、20%、30%、40%、50%、60%、70%、80%、90%。对掺假样品进行充分搅拌,使酸枣仁和伪品混合均匀。共制备酸枣仁掺假样品30种(3类伪品×10个掺假质量分数),以及酸枣仁和3类伪品纯样品4种。同时掺入理枣仁、枳椇子和兵豆制备含有多种掺杂物的酸枣仁样品,其质量分数配比见表1。
表 1 包含多种掺假物的酸枣仁样品的配比Table 1. The proportioning of Ziziphi Spinosae Semen with multiple adulterants种类 酸枣仁(%) 理枣仁(%) 枳椇子(%) 兵豆(%) 1 85 0 10 5 2 70 20 0 10 3 60 25 15 0 4 55 20 10 15 5 50 30 10 10 1.2.2 光谱采集
实验采用MPA型傅里叶变换近红外光谱仪,使用积分球漫反射模式采集光谱数据。室温下,每次测量时取20 g样品放入样品杯中。设置光谱采集范围为12500~4000 cm−1(800~2500 nm),光谱分辨率为16 cm−1,扫描次数为64次。每种类型样品采集20条光谱,共获得680条(20条光谱×34种掺假样品)光谱数据。
1.2.3 主成分分析
主成分分析(principal component analysis,PCA)是光谱分析中常用到的无监督数据降维算法。通过正交变换降维处理将具有线性相关性的多个光谱数据转换为一组数量较少的新变量,可以在不丢失重要光谱信息的情况下,分离具有特征差异的数据[21]。为了对酸枣仁和三种伪品之间的差异性进行初步分析,对4种纯样品的光谱数据应用了PCA变换。
1.2.4 光谱预处理
为了消除基线漂移和噪声,提高模型预测性能,采用了归一化(normalize,NOR)、标准正态变量(standard normal variate,SNV)[22]、移动平均平滑(moving average smoothing,MAS)、SG平滑(Savitzky-Golay smoothing,SGS)和SG一阶导数(Savitzky-Golay first-order derivative,SGD1)[23]五种预处理方法,并进行了对比分析。
1.2.5 偏最小二乘回归模型建立与评价
偏最小二乘回归方法(partial least squares regression,PLSR)是一种应用广泛的线性光谱数据定量分析建模方法,综合了主成分分析、典型相关分析和多元线性回归3种方法的优点,可以有效解决建模时变量间的多重相关性等问题[24]。偏最小二乘回归中有两种建模方法,分别是PLS1和PLS2。PLS1方法单独校准开发每一个属性的预测模型,PLS2建立一个同时校准所有属性的模型[25]。在本文中,PLS1和PLS2分别用于建立单掺杂样品和多掺杂样品的定量模型。
根据决定系数(R2)、校正均方根误差(RMSEC)、交叉验证均方根误差(RMSECV)、预测均方根误差(RMSEP)和偏差(Bias)来评价所建模型的性能。R2数值越大且越趋于1,RMSE数值越小且趋于0,则模型效果越好。基于不同预处理后的数据,建立偏最小二乘回归模型。每种类型样品的20条光谱按照随机划分原则,14条光谱组成校正集,6条光谱组成预测集。
1.2.6 连续投影算法
连续投影算法(successive projection algorithm,SPA)是一种迭代正向选择方法,常用于多变量建模中的特征变量选择。它采用选择共线性最小变量的投影运算以从复杂的光谱数据中提取有效信息,可以大大减少建模所需变量数,提高建模效率[26]。为了进一步优化预测模型,提高模型实用性和鲁棒性,本文采用SPA算法挑选建模最优波长变量。
1.3 数据处理
光谱采集由OPUS软件实现,光谱数据预处理及PLS建模在The Unscrambler X 9.7中进行,其余算法在Matlab R2013b中实现。图片采用Origin 2018绘制。
2. 结果与分析
2.1 原始光谱分析
观察获得的原始吸收光谱曲线,发现800~1062 nm波长范围内谱线数据存在较大噪声,且整体吸光度值较低,无明显吸收峰,因此截取1063~2503 nm波长范围数据用于后续的处理与分析。酸枣仁及其掺假样品波长截取后的原始光谱如图1所示。从原始光谱曲线上无法直接对酸枣仁及伪品进行鉴别区分,需要借助化学计量学方法作进一步分析处理。
酸枣仁及伪品理枣仁、枳椇子和兵豆的平均吸收光谱及误差带如图2所示。由图可知,酸枣仁及3种伪品的原始吸收光谱曲线整体轮廓形状相似,吸光度值及其变化程度存在差异。酸枣仁及三种伪品在1063~2503 nm波长范围内均具有4个明显的吸收峰,其波段范围分别为1111~1265 nm、1370~1556 nm、1854~1984 nm和2022~2200 nm。在1111~1265 nm范围内,理枣仁在1200 nm处有一个单独的波峰,可能与脂肪或油中长链脂肪酸部分的CH2基团的第二泛音有关[27]。酸枣仁、枳椇子和兵豆均在1210 nm处有一个吸收峰,且在1167 nm有一处小凸起,查阅相关文献Woodcock等[28]在橄榄油样品的光谱分析中指出1211 nm和1168 nm 分别与CH2和CH3基团中C-H键伸缩振动的第二泛音有关。此外,同样地Tigabu和Odén[29]在火炬松种子近红外光谱分析中指出1206 nm附近吸收峰与1170 nm附近的小凸起与CH2,CH3和CH=CH中C-H键的伸缩振动的第二泛音有关,附近波长1180 nm也反映了含有顺式双键纯脂肪酸(如油酸)中基本C-H键吸收的第二泛音。以上表明,1111~1265 nm内吸收峰与酸枣仁及伪品内的脂肪成分有关。在1370~1556 nm范围内,4种样品在1460 nm处表现出一个主要的吸收峰,文献表明该吸收峰与水有关[30]。在1854~1984 nm范围内的1926 nm主要吸收峰与C=O键伸缩第二泛音,O-H伸缩和HOH变形的合频,以及O-H键弯曲振动第二泛音有关,主要反映蛋白质、水和淀粉的吸收特性[31]。在2022~2200 nm范围内,主要吸收峰位于2132 nm处,与氨基酸中NH和C=O键的伸缩振动有关[32]。以上表明,光谱数据中的主要吸收峰反映了样品中脂肪、水、蛋白质和淀粉等主要成分信息。然而目前谱线数据中存在基线漂移等噪声,难以直接从数值大小上对酸枣仁及伪品进行鉴别区分,需要对数据进行后续进一步处理。
2.2 PCA定性分析
为了初步判断酸枣仁与三种伪品基于近红外光谱数据的可分性,首先采用无监督分类方法PCA对酸枣仁及3种伪品纯样品的光谱数据进行鉴别分析。酸枣仁及3种伪品在前2个主成分中的散点图如图3所示。第一主成分(PC1)和第二主成分(PC2)的方差贡献率分别为84.6%和15.0%。酸枣仁、理枣仁、枳椇子和兵豆数据点置信椭圆间没有重叠区域,基于近红外光谱数据可以较好地实现酸枣仁与理枣仁、枳椇子和兵豆的鉴别区分。
2.3 光谱预处理及PLS1全波长模型
采用5种预处理方法对波段截取后的光谱进行去噪处理,并建立相应的PLS1模型,结果如表2所示。表2方法中NON表示光谱数据未经预处理,用于不同预处理方法去噪效果的对比分析。三种掺假物不同预处理方法对应的PLS1模型的决定系数均在0.94以上,其中理枣仁掺假样品模型预测性能最佳,兵豆次之,枳椇子最差。然而从外形与纹理观察,理枣仁与酸枣仁最相似,枳椇子次之,兵豆差别最大。造成以上成因可能是由于相比于酸枣仁,枳椇子与兵豆的密度较大,混合样品制备时伪品分布较不均匀。理枣仁掺假样品中,SGD1对应模型的R2c最大,且R2cv和R2p相对较大,故选为最优预处理方法;枳椇子掺假样品中,SGS对应模型的R2p数值最大,且R2c和R2cv相对较大,故选其为最优预处理方法;兵豆掺假样品中,SNV对应模型的R2c最大,且R2cv和R2p相对较大,故选为最优预处理方法。三种掺假样品基于最优预处理方法的全波长PLS1模型的预测集结果如图4所示,理枣仁掺假样品对应模型的R2p为0.9778,RMSEP为4.9891%,枳椇子掺假样品对应模型的R2p为0.9585,RMSEP为6.8281%,兵豆掺假样品对应模型的R2p为0.9722,RMSEP为5.8852%。图5所示为经过最佳预处理后酸枣仁与3种伪品纯样品的平均光谱曲线。
表 2 基于不同预处理方法的全光谱PLS1模型结果Table 2. PLS1 models based on full spectral data using different pretreatment methods种类 方法 LVs 校正集 交叉验证集 预测集 R2c RMSEC(%) Biasc(%) R2cv RMSECV(%) Biascv(%) R2p RMSEP(%) Biasp(%) 酸枣仁+
理枣仁NON
MAS
NOR
SNV
SGS
SGD115
12
15
10
12
120.9866
0.9841
0.9892
0.9833
0.9836
0.99063.8383
4.1818
3.4507
4.2825
4.2515
3.2123−0.0000
0.0000
0.0000
−0.0000
0.0000
0.00000.9763
0.9785
0.9780
0.9778
0.9781
0.97835.1065
4.8658
4.8072
4.9493
4.9139
4.8881−0.0764
0.0355
−0.0625
0.0688
0.0310
0.10620.9702
0.9783
0.9787
0.9777
0.9776
0.97785.7818
4.9116
4.8727
4.9885
5.0047
4.98910.6244
−0.4804
0.5298
−0.4854
0.6553
0.5417酸枣仁+
枳椇子NON
MAS
NOR
SNV
SGS
SGD115
15
12
11
15
80.9730
0.9708
0.9672
0.9685
0.9714
0.96255.4492
5.6698
6.0049
5.8840
5.6074
6.4228−6.8801
0.0000
0.0000
0.0000
−2.0568
−0.00000.9598
0.9556
0.9556
0.9559
0.9584
0.94796.6452
6.9908
6.9958
6.9601
6.7674
7.5640−0.0126
−0.0732
0.0423
0.0156
−0.1445
0.25190.9524
0.9553
0.9556
0.9561
0.9585
0.94807.2794
7.0535
7.0189
7.2656
6.8281
8.02250.3018
0.6406
−0.3132
−1.3660
−0.9629
2.6690酸枣仁+
兵豆NON
MAS
NOR
SNV
SGS
SGD110
13
11
12
13
70.9774
0.9804
0.9782
0.9815
0.9805
0.97654.9857
4.6388
4.8947
4.5078
4.6303
5.0873−0.0000
0.0000
0.0000
−0.0000
−4.3937
0.00000.9705
0.9730
0.9707
0.9723
0.9730
0.96895.6919
5.4485
5.6709
5.5208
5.4501
5.84770.0835
0.0677
-0.0312
-0.0510
0.0687
0.03480.9664
0.9728
0.9708
0.9722
0.9729
0.96876.1267
5.4979
5.7237
5.8852
5.4928
5.9324−0.6262
0.5620
0.1453
−1.8190
0.5626
0.40782.4 最优波长选择与PLS1多光谱模型
为了进一步优化预测模型,减少输入变量,降低模型复杂度,节省计算时间,提高模型综合性能。本文对最优预处理后的光谱数据应用SPA算法挑选最优建模波长。基于最优波长建立的多光谱PLS1模型的预测结果如表3所示。通过对比建立的多光谱模型的R2p知,兵豆掺假样品所建模型的预测效果最好,理枣仁掺假样品次之,枳椇子掺假样品效果较差,且三种模型R2p≥0.9491,RMSEP≤7.6232%,Biasp的绝对值≤1.4168%。三个模型预测集结果如图6所示,模型均表现出了良好的预测能力。与全光谱模型相比,多光谱模型预测性能稍差,但输入波长变量个数大大降低。实际生活中,不法分子为了牟取较高利润,掺假含量一般较高。因此,所建模型具有较好的实际应用价值与意义。
表 3 基于 SPA算法所选最优波长建立的多光谱模型的预测结果Table 3. The prediction result of the multispectral model based on the optimal wavelength selected by the SPA algorithm种类 LVs 校正集 交叉验证集 预测集 R2c RMSEC(%) Biasc(%) R2cv RMSECV(%) Biascv(%) R2p RMSEP(%) Biasp(%) 酸枣仁+理枣仁 3 0.9696 5.7862 0.0000 0.9690 5.8327 −0.0008 0.9659 6.1910 −0.8569 酸枣仁+枳椇子 8 0.9536 7.1422 0.0000 0.9500 7.4130 −0.0677 0.9491 7.6232 −1.4168 酸枣仁+兵豆 5 0.9723 5.5159 0.0000 0.9708 5.6675 −0.0494 0.9666 6.1437 0.9101 对于理枣仁掺假样品,选取了1137、1857 nm和2054 nm 3个最优波长。对于枳椇子掺假样品,选取了1067、1106、1145、1273、1330、1915、1961和2503 nm共8个最优波长。对于兵豆掺假样品,选取了5个最优波长,分别为1170、1198、1271、1345和1362 nm。理枣仁掺假样品最优波长的分布较分散,枳椇子和兵豆掺假样品的大部分最优波长分布在1200 nm吸收峰附近,结合2.1节分析内容,该吸收峰附近波长主要反映脂肪相关成分。研究表明,与酸枣仁相比,枳椇子和兵豆中的脂肪油成分含量较少(酸枣仁中脂肪油含量约为23.17%~29.25%[33],枳椇子中粗脂肪含量约为9.45%[34],兵豆脂肪含量约为1.1%)。理枣仁与酸枣仁具有相似的化学成分构成[35]。由于酸枣仁与伪品中成分含量不同,导致所采集的光谱产生差异,根据此特点利用近红外光谱技术实现酸枣仁与其伪品的区分。
酸枣仁及其掺假样品多光谱模型的预测集决定系数R2p≥0.9491,表明所建立的回归方程具有较好的拟合度。三种伪品掺假样品多光谱PLS1模型回归方程如下所示。
理枣仁掺假样品的回归方程如下:
Y理枣仁=18.28+20145.86X1137 nm−68381.98X1857 nm+20305.47X2054 nm 式(1)
枳椇子掺假样品的回归方程如下:
Y枳椇子=216.40+4262.90X1067 nm−3818.43X1106 nm−3428.17X1145 nm+13086.96X1273 nm−10016.86X1330 nm+827.91X1915 nm−601.45X1961 nm−336.45X2503 nm 式(2)
兵豆掺假样品的回归方程如下:
Y兵豆=463.59−1526.43X1170 nm+1286.12X1198 nm+1641.57X1271 nm−1208.03X1345 nm+243.64X1362 nm 式(3)
2.5 多种掺杂物的PLS2全波长模型
表4为不同预处理方法下的PLS2全波长模型预测结果。对比不同预处理方法,SGD1预处理后模型对四种成分预测的交叉验证决定系数R2cv最大,故SGD1为最优预处理方法。对比SGD1对应的模型对不同成分的预测效果,酸枣仁掺假样品的R2p为0.7840,RMSEP为5.7677%,理枣仁掺假样品的R2p为0.7784,RMSEP为4.8009%,枳椇子掺假样品的R2p为0.2007,RMSEP为4.3800%,兵豆掺假样品的R2p为0.4503,RMSEP为3.7806%。酸枣仁的定量预测效果最好,理枣仁和兵豆次之,枳椇子的预测效果最差。其原因可能是多种掺假物建模样品中兵豆和枳椇子的含量相对较低,且枳椇子不同掺杂质量分数类型较少,导致建模样品代表性较差。
表 4 不同预处理方法下多掺杂物样品的全光谱PLS2模型结果Table 4. Performance of the PLS2 models for multiple-adulterants samples using different pretreatment methods based on the full spectral range方法 种类 LVs 校正集 交叉验证集 预测集 R2c RMSEC(%) Biasc(%) R2cv RMSECV(%) Biascv(%) R2p RMSEP(%) Biasp(%) NON 酸枣仁
理枣仁
枳椇子
兵豆8
8
8
80.8157
0.8051
0.4692
0.68285.3272
4.5025
3.5691
2.8720−0.0000
0.0000
0.0000
0.00000.7359
0.7448
0.3457
0.58586.3870
5.1594
3.9684
3.28630.1375
−0.1213
0.0170
−0.03320.7425
0.6432
0.3027
0.67616.2973
6.0917
4.0909
2.90210.3661
−0.1348
0.4367
−0.6680MAS 酸枣仁
理枣仁
枳椇子
兵豆7
7
7
70.8079
0.7918
0.4667
0.69875.4384
4.6535
3.5576
2.7987−0.0000
0.0000
0.0000
−0.00000.7455
0.7287
0.2581
0.59116.2697
5.3193
4.2257
3.26520.1193
−0.1508
−0.0343
0.06580.7490
0.7586
0.4141
0.54606.2178
5.0103
3.7500
3.4359−0.1271
−0.4209
0.0005
0.5476NOR 酸枣仁
理枣仁
枳椇子
兵豆6
6
6
60.7875
0.7780
0.4765
0.69835.7201
4.8048
3.5444
2.8001−0.0000
0.0000
−0.0000
0.00000.7482
0.7391
0.2966
0.60926.2352
5.2163
4.1147
3.19230.0096
0.0079
0.0214
-0.03900.7268
0.7461
0.4164
0.57966.2443
5.1325
3.7426
3.3062−0.3607
−0.2844
−0.0226
0.6677SNV 酸枣仁
理枣仁
枳椇子
兵豆4
4
4
40.7676
0.7410
0.4652
0.62595.9828
5.1904
3.5827
3.11870.0000
−0.0000
−0.0000
0.00000.7360
0.7120
0.3707
0.57226.3856
5.4809
3.8917
3.3397−0.0355
−0.0120
0.0304
0.01710.7115
0.7372
0.4132
0.49396.6651
5.2277
3.7527
3.62740.0309
0.1370
−0.1376
−0.0303SGS 酸枣仁
理枣仁
枳椇子
兵豆7
7
7
70.8088
0.7922
0.4661
0.69905.4263
4.6483
3.5796
2.79770.0000
0.0000
0.0000
−0.00000.7458
0.7288
0.2592
0.59356.2655
5.3182
4.2227
3.25570.1194
−0.1507
−0.0369
0.06820.7498
0.7584
0.4169
0.54556.2078
5.0124
3.7411
3.4374−0.1211
−0.4294
−0.0011
0.5516SGD1 酸枣仁
理枣仁
枳椇子
兵豆5
5
5
50.8613
0.8320
0.5122
0.75654.6223
4.1793
3.4216
2.5162−0.0000
0.0000
0.0000
−0.00000.8176
0.7891
0.4556
0.71345.3070
4.6904
3.6198
2.7338−0.0181
−0.0219
0.0162
0.02380.7840
0.7784
0.2007
0.45035.7677
4.8009
4.3800
3.78062.0054
−1.2933
−0.4257
−0.28633. 结论
本文利用近红外光谱技术研究了酸枣仁中常见3种伪品理枣仁、枳椇子和兵豆掺假的定性定量检测方法。PCA定性分析表明酸枣仁、理枣仁、枳椇子和兵豆的近红外光谱表现出不同的吸收特征,数据具有良好的可分性。分别对3种伪品掺假样品建立了全波长PLS1模型进行定量分析,预测集的决定系数R2p≥0.9480,RMSEP≤8.0225%,Biasp的绝对值≤2.6690%。采用SPA算法挑选最优波长对模型进行优化。对于理枣仁掺假样品、枳椇子掺假样品和兵豆掺假样品分别优选了3个、8个和5个最优波长,分别建立了对应的多光谱PLS1模型。3类多光谱模型的预测集决定系数R2p≥0.9491,RMSEP≤7.6232%,Biasp的绝对值≤1.4168%。多光谱模型大大降低了建模输入变量个数,有利于缩短计算时间,降低仪器开发成本。PLS1模型均表现出良好的预测性能,具有实际检测应用价值与意义。对于多掺杂物样品的PLS2模型,酸枣仁的预测效果最好,R2p≥0.7115,枳椇子预测效果最差,R2p≥0.2007。在未来的研究中,多种掺杂物的定量检测模型有待进一步优化。综上,本文所研究方法为后续酸枣仁质量在线或便携式检测仪器开发提供理论基础,也为种子类中药材质量的光学无损快检方法研究提供参考依据。
-
表 1 包含多种掺假物的酸枣仁样品的配比
Table 1 The proportioning of Ziziphi Spinosae Semen with multiple adulterants
种类 酸枣仁(%) 理枣仁(%) 枳椇子(%) 兵豆(%) 1 85 0 10 5 2 70 20 0 10 3 60 25 15 0 4 55 20 10 15 5 50 30 10 10 表 2 基于不同预处理方法的全光谱PLS1模型结果
Table 2 PLS1 models based on full spectral data using different pretreatment methods
种类 方法 LVs 校正集 交叉验证集 预测集 R2c RMSEC(%) Biasc(%) R2cv RMSECV(%) Biascv(%) R2p RMSEP(%) Biasp(%) 酸枣仁+
理枣仁NON
MAS
NOR
SNV
SGS
SGD115
12
15
10
12
120.9866
0.9841
0.9892
0.9833
0.9836
0.99063.8383
4.1818
3.4507
4.2825
4.2515
3.2123−0.0000
0.0000
0.0000
−0.0000
0.0000
0.00000.9763
0.9785
0.9780
0.9778
0.9781
0.97835.1065
4.8658
4.8072
4.9493
4.9139
4.8881−0.0764
0.0355
−0.0625
0.0688
0.0310
0.10620.9702
0.9783
0.9787
0.9777
0.9776
0.97785.7818
4.9116
4.8727
4.9885
5.0047
4.98910.6244
−0.4804
0.5298
−0.4854
0.6553
0.5417酸枣仁+
枳椇子NON
MAS
NOR
SNV
SGS
SGD115
15
12
11
15
80.9730
0.9708
0.9672
0.9685
0.9714
0.96255.4492
5.6698
6.0049
5.8840
5.6074
6.4228−6.8801
0.0000
0.0000
0.0000
−2.0568
−0.00000.9598
0.9556
0.9556
0.9559
0.9584
0.94796.6452
6.9908
6.9958
6.9601
6.7674
7.5640−0.0126
−0.0732
0.0423
0.0156
−0.1445
0.25190.9524
0.9553
0.9556
0.9561
0.9585
0.94807.2794
7.0535
7.0189
7.2656
6.8281
8.02250.3018
0.6406
−0.3132
−1.3660
−0.9629
2.6690酸枣仁+
兵豆NON
MAS
NOR
SNV
SGS
SGD110
13
11
12
13
70.9774
0.9804
0.9782
0.9815
0.9805
0.97654.9857
4.6388
4.8947
4.5078
4.6303
5.0873−0.0000
0.0000
0.0000
−0.0000
−4.3937
0.00000.9705
0.9730
0.9707
0.9723
0.9730
0.96895.6919
5.4485
5.6709
5.5208
5.4501
5.84770.0835
0.0677
-0.0312
-0.0510
0.0687
0.03480.9664
0.9728
0.9708
0.9722
0.9729
0.96876.1267
5.4979
5.7237
5.8852
5.4928
5.9324−0.6262
0.5620
0.1453
−1.8190
0.5626
0.4078表 3 基于 SPA算法所选最优波长建立的多光谱模型的预测结果
Table 3 The prediction result of the multispectral model based on the optimal wavelength selected by the SPA algorithm
种类 LVs 校正集 交叉验证集 预测集 R2c RMSEC(%) Biasc(%) R2cv RMSECV(%) Biascv(%) R2p RMSEP(%) Biasp(%) 酸枣仁+理枣仁 3 0.9696 5.7862 0.0000 0.9690 5.8327 −0.0008 0.9659 6.1910 −0.8569 酸枣仁+枳椇子 8 0.9536 7.1422 0.0000 0.9500 7.4130 −0.0677 0.9491 7.6232 −1.4168 酸枣仁+兵豆 5 0.9723 5.5159 0.0000 0.9708 5.6675 −0.0494 0.9666 6.1437 0.9101 表 4 不同预处理方法下多掺杂物样品的全光谱PLS2模型结果
Table 4 Performance of the PLS2 models for multiple-adulterants samples using different pretreatment methods based on the full spectral range
方法 种类 LVs 校正集 交叉验证集 预测集 R2c RMSEC(%) Biasc(%) R2cv RMSECV(%) Biascv(%) R2p RMSEP(%) Biasp(%) NON 酸枣仁
理枣仁
枳椇子
兵豆8
8
8
80.8157
0.8051
0.4692
0.68285.3272
4.5025
3.5691
2.8720−0.0000
0.0000
0.0000
0.00000.7359
0.7448
0.3457
0.58586.3870
5.1594
3.9684
3.28630.1375
−0.1213
0.0170
−0.03320.7425
0.6432
0.3027
0.67616.2973
6.0917
4.0909
2.90210.3661
−0.1348
0.4367
−0.6680MAS 酸枣仁
理枣仁
枳椇子
兵豆7
7
7
70.8079
0.7918
0.4667
0.69875.4384
4.6535
3.5576
2.7987−0.0000
0.0000
0.0000
−0.00000.7455
0.7287
0.2581
0.59116.2697
5.3193
4.2257
3.26520.1193
−0.1508
−0.0343
0.06580.7490
0.7586
0.4141
0.54606.2178
5.0103
3.7500
3.4359−0.1271
−0.4209
0.0005
0.5476NOR 酸枣仁
理枣仁
枳椇子
兵豆6
6
6
60.7875
0.7780
0.4765
0.69835.7201
4.8048
3.5444
2.8001−0.0000
0.0000
−0.0000
0.00000.7482
0.7391
0.2966
0.60926.2352
5.2163
4.1147
3.19230.0096
0.0079
0.0214
-0.03900.7268
0.7461
0.4164
0.57966.2443
5.1325
3.7426
3.3062−0.3607
−0.2844
−0.0226
0.6677SNV 酸枣仁
理枣仁
枳椇子
兵豆4
4
4
40.7676
0.7410
0.4652
0.62595.9828
5.1904
3.5827
3.11870.0000
−0.0000
−0.0000
0.00000.7360
0.7120
0.3707
0.57226.3856
5.4809
3.8917
3.3397−0.0355
−0.0120
0.0304
0.01710.7115
0.7372
0.4132
0.49396.6651
5.2277
3.7527
3.62740.0309
0.1370
−0.1376
−0.0303SGS 酸枣仁
理枣仁
枳椇子
兵豆7
7
7
70.8088
0.7922
0.4661
0.69905.4263
4.6483
3.5796
2.79770.0000
0.0000
0.0000
−0.00000.7458
0.7288
0.2592
0.59356.2655
5.3182
4.2227
3.25570.1194
−0.1507
−0.0369
0.06820.7498
0.7584
0.4169
0.54556.2078
5.0124
3.7411
3.4374−0.1211
−0.4294
−0.0011
0.5516SGD1 酸枣仁
理枣仁
枳椇子
兵豆5
5
5
50.8613
0.8320
0.5122
0.75654.6223
4.1793
3.4216
2.5162−0.0000
0.0000
0.0000
−0.00000.8176
0.7891
0.4556
0.71345.3070
4.6904
3.6198
2.7338−0.0181
−0.0219
0.0162
0.02380.7840
0.7784
0.2007
0.45035.7677
4.8009
4.3800
3.78062.0054
−1.2933
−0.4257
−0.2863 -
[1] 国家药典委员会. 中华人民共和国药典, (一部)[S]. 2020, 382 State Pharmacopoeia Committee. Pharmacopoeia of the People's Republic of China (Part I)[S]. 2020, 382.
[2] HONG L, SHENG J, YAN W, et al. Revealing the sedative-hypnotic effect of the extracts of herb pair Semen Ziziphis Pinosae and Radix Polygalae and related mechanisms through experiments and metabolomics approach[J]. BMC Complementary Medicine and Therapies,2020,20(1):206. doi: 10.1186/s12906-020-03000-8
[3] YANG Y, QIAO W, LIU J S, et al. Study on compatibility of antidepressant active components in Semen Ziziphi Spinosae[J]. Lishizhen Med Mater Med Res,2012,23(1):7−8.
[4] SI Q, NIU X, LI J, et al. Effect of jujuboside A on glomerular cell apoptosis in diabetic model rats[J]. Chinese Journal of Pharmacology and Toxicology,2017,31(5):399−404.
[5] YOU J, PENG M, SHI J, et al. Evaluation of anxiolytic activity of compound Valeriana jatamansi Jones in mice[J]. BMC Complementary Altern Med,2012,12(1):223. doi: 10.1186/1472-6882-12-223
[6] 王瑞忠, 鲁静. 薄层色谱和高效液相色谱法鉴别真伪蜂蜜的方法研究[J]. 药物分析杂志,2014,34(4):737−741. [WANG R Z, LU J. Method study for the determination of adulteration honey by TLC and HPLC[J]. Chinese Journal of Pharmaceutical Analysis,2014,34(4):737−741. [7] 胡丹, 尹明, 曹红, 等. 中药成方制剂参苏丸挥发性成分的气相色谱指纹图谱[J]. 国际药学研究杂志,2019,46(4):311−314. [HU D, YIN M, CAO H, et al. GC fingerprint of volatile components of Shensu Wan, a formula preparation of traditional Chinese medicine[J]. Journal of International Pharmaceutical Research,2019,46(4):311−314. [8] 田芳, 何小芳, 谭梓君, 等. 枳壳HPLC特征图谱及6个黄酮苷类成分含量测定[J]. 药物分析杂志,2020,40(6):1090−1096. [TIAN F, HE X F, TAN Z J, et al. Study on characteristic chromatogram and quantitation method of six components in Aurantii fructus[J]. Chinese Journal of Pharmaceutical Analysis,2020,40(6):1090−1096. [9] JOEL B J. An overview of near-infrared spectroscopy (NIRS) for the detection of insect pests in stored grains[J]. Journal of Stored Products Research,2020,86:101558. doi: 10.1016/j.jspr.2019.101558
[10] 吕慧, 张正竹, 王胜鹏, 等. 基于近红外光谱技术的大米品质分析与种类鉴别[J]. 食品工业科技,2012,33(3):322−325. [LÜ H, ZHANG Z Z, WANG S P, et al. Quality analysis and category identification of rice based on the near infrared spectroscopy (NIRS)[J]. Science and Technology of Food Industry,2012,33(3):322−325. [11] PANMANAS S. NIR spectroscopy for quality evaluation of fruits and vegetables[J]. Materials Today: Proceedings,2018,5(10):22481−22486. doi: 10.1016/j.matpr.2018.06.619
[12] 肖慧, 孙柯, 屠康, 等. 便携式葡萄专用可见-近红外光谱检测仪器开发与实验[J]. 食品科学,2019,40(8):300−305. [XIAO H, SUN K, TU K, et al. Development and application of a specialized portable visible and near-infrared instrument for grape qua-lity detection[J]. Food Science,2019,40(8):300−305. doi: 10.7506/spkx1002-6630-20171124-305 [13] 王彩霞, 王松磊, 贺晓光, 等. 基于可见/近红外高光谱成像技术的牛肉品种鉴别[J]. 食品工业科技,2019,40(12):241−247. [WANG C X, WANG S L, HE X G, et al. Identification of beef breeds based on the Vis/NIR hyperspectral imaging technique[J]. Science and Technology of Food Industry,2019,40(12):241−247. [14] BALAGE J M, E SILVA S L, GOMIDE C A, et al. Predicting pork quality using Vis/NIR spectroscopy[J]. Meat Science,2015,108:37−43. doi: 10.1016/j.meatsci.2015.04.018
[15] 乔春艳, 张雪茹, 郑卫民, 等. 基于近红外光谱技术对市售羊奶粉品质指标独立模型与通用模型探究[J]. 食品工业科技,2021,42(22):297−305. [QIAO C Y, ZHANG X R, ZHENG W M, et al. Research on the independent model and general quantitative model of commercial goat milk powder quality index based on near infrared spectroscopy technology[J]. Science and Technology of Food Industry,2021,42(22):297−305. [16] DOS SANTOS PEREIRA E V, DE SOUSA FERNANDES D D, DE ARAUJO M C U, et al. Simultaneous determination of goat milk adulteration with cow milk and their fat and protein contents using NIR spectroscopy and PLS algorithms[J]. LWT,2020,127:109427. doi: 10.1016/j.lwt.2020.109427
[17] LI S L, XING B C, LIN D, et al. Rapid detection of saffron (Crocus sativus L.) adulterated with lotus stamens and corn stigmas by near-infrared spectroscopy and chemometrics[J]. Industrial Crops and Products,2020,152(5):112539.
[18] CHEN H, TAN C, LI H J. Untargeted identification of adulterated San Qi powder by near-infrared spectroscopy and one-class model[J]. Journal of Food Composition and Analysis,2020,88:103450. doi: 10.1016/j.jfca.2020.103450
[19] 申晨曦, 杜晨晖, 李震宇, 等. 基于氢核磁共振与偏最小二乘法对酸枣仁及其掺伪品的鉴别[J]. 食品科学,2020,41(8):275−281. [SHEN C X, DU C H, LI Z Y, et al. Differentiation between authentic and adulterated Ziziphi Spinosae Semen by 1H NMR spectroscopy combined with partial least squares[J]. Food Science,2020,41(8):275−281. doi: 10.7506/spkx1002-6630-20190314-180 [20] 刘红玉, 张悦. 酸枣仁及其伪品滇枣仁的鉴别研究[J]. 首都食品与医药,2016,23(6):72−73. [LIU H Y, ZHANG Y. Study on the identification of Suanzaoren and its adulterant Dianzaoren[J]. Capital Food Medicine,2016,23(6):72−73. [21] ZHAO X, WANG W, CHU X, et al. Early detection of Aspergillus parasiticus infection in maize kernels using near-infrared hyperspectral imaging and multivariate data analysis[J]. Applied Sciences,2017,7(1):90. doi: 10.3390/app7010090
[22] BARNES R J, DHANOA M S, LISTER S J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra[J]. Applied Spectroscopy,1989,43(5):772−777. doi: 10.1366/0003702894202201
[23] 第五鹏瑶, 卞希慧, 王姿方, 等. 光谱预处理方法选择研究[J]. 光谱学与光谱分析,2019,39(9):2800−2806. [DIWU P Y, BIAN X H, WANG Z F, et al. Study on the selection of spectral preprocessing methods[J]. Spectroscopy and Spectral Analysis,2019,39(9):2800−2806. [24] WANG C, SUN Y Y, ZHOU Y Y, et al. Dynamic monitoring oxidation process of nut oils through Raman technology combined with PLSR and RF-PLSR model[J]. LWT-Food Science and Technology,2021,146(5):111290.
[25] PEDROD A M, FERREIRA M M. Simultaneously calibrating solids, sugars and acidity of tomato products using PLS2 and NIR spectroscopy[J]. Anal Chim Acta,2007,595:221−227.
[26] 何娟, 赵艳茹, 何勇. 近红外光谱结合偏最小二乘判别对硫熏浙贝母的无损鉴别[J]. 光谱学与光谱分析,2017,37(10):3070−3073. [HE J, ZHAO Y R, HE Y. Discrimination of Fritillariae thunbergii Bulbus treated by sulfur fumigation based on NIR coupled with PLS-DA[J]. Spectroscopy and Spectral Analysis,2017,37(10):3070−3073. [27] OSBORNE BG, FEARN T, HINDLE P H. Practical NIR spectroscopy: With applications in food and beverage analysis[M]. 2nd Ed. Harlow, UK: Longman Scientific and Technical, 1993: 227.
[28] WOODCOCK T, DOWNEY G, CP O’DONNELL. Confirmation of declared provenance of European extra virgin olive oil samples by NIR spectroscopy[J]. J Agric Food Chem,2008,56(23):11520−11525. doi: 10.1021/jf802792d
[29] TIGABU M, ODÉN P C. Discrimination of viable and empty seeds of Pinus patula Schiede & Deppe with near-infrared spectroscopy[J]. New Forests,2003,25(3):163−176. doi: 10.1023/A:1022916615477
[30] YANG X H, GUANG P W, XU G Z, et al. Manuka honey adulteration detection based on near-infrared spectroscopy combined with aquaphotomics[J]. LWT-Food Science and Technology,2020,132:109837. doi: 10.1016/j.lwt.2020.109837
[31] SHENK J S, WORKMAN J J, WESTERHAUS M O. Application of NIR spectroscopy to agricultural products[J]. Research Gate,1992:419−474.
[32] OSBORNE BG, FEARN T. Near infrared spectroscopy in food analysis[M]. New York: Wiley, 1986.
[33] 马东来, 李新蕊, 司明东, 等. GC-MS测定不同采收期酸枣仁中脂肪油成分[J]. 食品研究与开发,2021,42(4):161−164. [MA D L, LI X R, SI M D, et al. Analysis of fatty oil of different harvesting stage in Ziziphi Spinosae Semen by GC-MS[J]. Food Research and Development,2021,42(4):161−164. [34] 王彦平, 袁贵英, 陈月英, 等. 枳椇子营养成分和总黄酮含量分析及评价[J]. 食品研究与开发,2016,37(24):21−24. [WANG Y P, YUAN G Y, CHEN Y Y, et al. Analysis and evaluation of nutrition composition and total flavonoids on Hovenia seed[J]. Food Research and Development,2016,37(24):21−24. doi: 10.3969/j.issn.1005-6521.2016.24.005 [35] 申晨曦. 酸枣仁和理枣仁化学成分系统表征及对比研究[D]. 太原: 山西大学, 2020 SHEN C X. Comprehensive chemical characterization and comparison of Ziziphi Spinosae Semen and Ziziphi Mauritianae Semen[D]. Taiyuan: Shanxi University, 2020.
-
期刊类型引用(5)
1. 潘冠均,段淋渊,赵嘉科,帅平,戴国礼,田维素,王金源,黄佳鹏,闭晓彤,林恩照,秦垦,郝志龙,张波. 摊放程度对枸杞芽叶茶风味品质的影响. 食品工业科技. 2025(04): 117-126 . 本站查看
2. 吴宗杰,欧晓西,林宏政,余欣茹,程守悦,吴晴阳,李鑫磊,孙云. 武夷肉桂加工中挥发性成分糖苷结合物和香气品质形成研究. 茶叶科学. 2024(01): 84-100 . 百度学术
3. 潘冠均,封娇,段淋渊,张炫鹂,戴国礼,帅平,秦垦,郝志龙,张波. 不同单株枸杞芽叶茶风味品质分析. 食品工业科技. 2024(15): 264-273 . 本站查看
4. 徐晓俞,李程勋,李爱萍,郑开斌,潘键,侯明香. 肉桂茶纯露挥发性成分分析. 福建农业科技. 2024(06): 49-55 . 百度学术
5. 占鑫怡,杨云,陈彬,黄慧清,赵梦莹,李鑫磊,孙云. 不同摇青程度春闺闽北乌龙茶品质差异分析. 食品工业科技. 2023(11): 271-279 . 本站查看
其他类型引用(2)