Effects of Different Storage Conditions on Shelf Quality of Flat Green Tea
-
摘要: 针对绿茶贮藏环节易氧化、陈变的行业难点问题,以温度、湿度、含氧量、干茶含水量为控制变量,研究差异化调控对绿茶贮藏品质稳定性的影响,以期获得最大限度保持绿茶品质风味和营养价值的贮藏条件。通过均匀设计,结合主成分分析、回归分析优化建立了扁形绿茶的贮藏品质控制参数。结果表明,随着贮藏时间延长,茶多酚和儿茶素含量呈下降趋势,酯型/非酯型儿茶素在贮藏6个月后增加幅度明显,咖啡碱含量变化不显著。优化获得绿茶贮藏协同品控参数:干茶含水量4.5%,温度25 ℃、相对湿度55%、内包装含氧量0.2%,在该条件下绿茶贮藏感官风味和化学物质保留率最为稳定,其中茶多酚、儿茶素和感官评分的综合评分分别为1.28、1.10、2.09。本研究可为绿茶贮藏流通、保鲜控制规程的制定提供技术支撑和参考依据。Abstract: According to the common industry difficulties that green tea was easily aging and deterioration during storage, the conditions of temperature, humidity, oxygen and moisture were used as control variables to investigate the storage quality stability of green tea. Based on the above, the optimal storage conditions that including the quality, flavor and nutritional value of green tea could be obtained. The storage quality control parameters of green tea were optimized through uniform design experiment combined with PCA (principal component analysis) and regression analysis. The results showed that the content of tea polyphenols and catechins decreased with the storage time, the ration of ester catechins and non ester catechins increased obviously after 6 months. However, the content of caffeine changed insignificantly. The optimal collaborative quality control parameters of green tea were temperature of 25 ℃, relative humidity of 55%, oxygen content of inner package of 0.2%, and the moisture content of 4.5%. Under these conditions, the sensory flavor and phytochemicals were most stable. In addition, the comprehensive scores of tea polyphenols, catechins and sensory scores were 1.28, 1.10 and 2.09, respectively. This study provides technical support and reference for the formulation of green tea storage, circulation and preservation control regulations.
-
Keywords:
- green tea /
- storage conditions /
- shelf quality /
- uniform design experiment
-
茶是世界上消费量仅次于水的植物饮料,也是有益于人体健康的最佳饮品[1-2]。绿茶是我国优势茶叶品类,含有茶多酚、儿茶素、氨基酸等生物活性物质,具有抗氧化[3-4]、抗癌[5-6]、降血脂[7-8]、减肥[9-10]等多种功效,被联合国卫生组织推荐为六大健康饮品之首。近年来,我国绿茶产量不断增长,据统计,2020年绿茶产量达184.27万吨,同比增长3.94%,年销量为127.9万吨,同比增长5.35%,在带动茶产业经济快速发展中有着举足轻重的作用[11]。然而,绿茶作为不发酵茶,耐贮性相对较差,尤其在贮藏流通、货架销售等环节中易受温度、湿度和光照等环境因子的多重影响,导致色泽变暗、滋味失鲜,直接影响其消费体验、营养价值和经济价值[12]。因此,绿茶产后保鲜与贮藏保质一直是行业亟需解决的重要问题和热点难题。
目前,国内外现有的绿茶贮藏保鲜技术措施有干燥保藏、低温冷藏、除氧充氮、抽真空等[13-15],其中低温冷藏技术应用最为广泛。同时有研究者还开展了生物保鲜剂、特定包材、辐照保鲜、急冷处理等[16-20]保鲜技术在茶叶保质方面的研究,但尚未实现产业化应用。绿茶产后贮藏保鲜技术对绿茶货架期内品质的稳态保持发挥了重要作用但全链保鲜的意识尚未树立,如不同贮藏环节温度“胁迫”对绿茶品质稳定性的影响尚未引起企业广泛关注,且生产环节水分含量的控制对货架期绿茶品质变化的影响也鲜有报道。随着我国碳中和、碳达峰目标的提出,对生产、流通领域的能耗限额、产品设备能效提出了技术性节能的新要求,基于不同产品类型的适温、常温保鲜技术有望成为行业升级发展的研究热点,从茶叶生产、流通的供给侧多环节控制点优化实现节能降耗,同时满足市场对绿茶消费的高品质需求。
本实验以浙江主产的扁形绿茶(大佛龙井)为研究对象,考察了温度、湿度、氧气、干茶含水量等贮藏因子对大佛龙井贮藏品质稳定性的影响,采用均匀设计、结合回归分析和主成分分析,优化提出了其品质稳态化的贮藏条件参数,以期提高绿茶仓储流通中的品质稳定性,延长绿茶消费期,为生产经营企业、货架仓储和下游客户群开发针对绿茶的低碳贮藏保鲜技术提供参考借鉴。
1. 材料与方法
1.1 材料与仪器
大佛龙井(品种:龙井43,产品等级:一级) 浙江省新昌县群星茶业有限公司;乙腈 色谱纯,天津市康科德科技有限公司;福林酚、碳酸钠、甲醇等 均为分析纯,国药集团化学试剂有限公司。
SHH-SDT综合药品稳定性实验箱 重庆永生仪器有限公司;Waters1525 高效液相色谱仪 美国Waters 科技(上海);5804R 高速离心机 德国Eppendorf公司;DK-S24 电热恒温水浴锅 上海精宏实验设备有限公司;AL204 电子天平 梅特勒托利仪器有限公司。
1.2 实验方法
1.2.1 样品处理
供试绿茶样品采用PET/铝/PE复合包装材料进行预包装,每包装50 g,采用均匀设计实验设定实验条件,开展为期12个月的贮藏实验,分别于第0、1、2、3、4、5、6、10和12月定期取样,用于感官审评和理化指标的测定分析。
1.2.2 均匀设计实验
以温度、湿度、含氧量、干茶含水量为自变量,以感官评分、茶多酚、儿茶素含量及酯型/非酯型儿茶素为响应指标,进行四因素五水平U5(54)实验方案的均匀设计实验,具体设计方案见表1。
表 1 均匀设计实验方案U5 (54)Table 1. Experimental scheme of inuniform design U5 (54)实验号 X1温度(℃) X2湿度(%) X3含氧量(%) X4干茶含水量(%) AL 4 35 1.0 3.5 BL 10 65 0.6 5.5 CL 15 45 0.4 2.0 DL 25 55 0.2 4.5 EL 30 75 2.1 7.0 1.2.3 主要理化指标测定
水分含量测定参照GB 5009.3-2016[21];茶多酚、儿茶素和咖啡碱含量测定参照GB/T 8313-2018[22]。
1.2.4 感官审评方法
感官审评参照GB/T 23776-2018[23],按照外形、香气、汤色、滋味、叶底感官因子由5位专业审评人员密码审评,结果取平均值±标准偏差。
1.3 数据处理
所有数据均为3组平行实验所得数据的平均值±标准偏差,采用SPSS19.0软件和DPS 7等软件,对数据进行方差分析、主成分分析、回归分析等多元统计分析。
2. 结果与分析
2.1 不同贮藏条件下扁形绿茶的贮藏品质变化分析
以温度、相对湿度、内包装含氧量、干茶含水量为控制变量,采用均匀设计方案U5(54)进行实验,研究各因素与茶多酚、儿茶素含量、酯型/非酯型儿茶素、咖啡碱含量之间的关系,结果见图1。由图1可知,随着贮藏时间延长,茶多酚和儿茶素含量呈下降趋势,表明多酚类物质在绿茶贮藏中更易氧化降解,是因为多酚类结构中存在酚性羟基,都极易发生氧化、聚合等化学反应,这与Mirasoli等[24]和 Ananingsih等[25]的研究结果相似。酯型与非酯型儿茶素含量的比值在贮藏前期变化较小,贮藏6个月后呈增加趋势,这是因为绿茶中酯型儿茶素含量高于非酯型儿茶素,非酯型儿茶素下降幅度更大;而咖啡碱含量变化幅度较小,与肖文军等[26]和Friedman等[27]的研究结果一致。在AL、BL、CL、DL、EL条件下,贮藏12个月后,茶多酚含量分别降低了4.77%、5.18%、4.51%、3.95%、10.43%。儿茶素含量分别下降6.37%、5.85%、4.45%、3.55%、8.56%。EL组条件下,茶多酚含量下降显著(P<0.05),表明EL组条件下绿茶品质成分更易氧化降解。AL、BL、CL和DL组在贮藏前期差异较小,贮藏6个月后,CL和DL组较其它两组的品质成分保留更高。
图 1 不同贮藏条件扁形绿茶贮藏期理化品质的变化注:AL~EL分别对应表1中的贮藏条件。Figure 1. Changes of physicochemical components of flat green tea under different storage conditions感官评分变化结果见图2。由图2可知,随着贮藏时间延长,绿茶感官评分呈下降趋势。贮藏12个月后,感官评分由高到低依次为:DL>CL>BL>AL>EL,EL组条件下绿茶感官品质下降明显,第12月感官评分比第0月下降22%,DL组和CL组贮藏12月后,感官评分比第0月分别下降4%和5%,表明DL组和CL组对绿茶品质的保持具有稳定性。
2.2 基于扁形绿茶贮藏品质因子变化的主成分分析
对各实验组样品的茶多酚含量变化进行PCA主成分提取,并采用归一化处理,结果见表2。由表2可知,所提取的3个主成分累计贡献率达到83.80%,即提取的3个主成分可以解释全部指标83.80%的信息。基于茶多酚的主成分分析和评分结果见表3。由表3可知,贮藏期内不同处理组的扁形绿茶,基于茶多酚含量的综合评分由高到低依次为:DL>CL>AL>BL>EL,DL组综合评分最高为1.28,即干茶含水率4.5%,温度25 ℃、相对湿度55%、内包装含氧量0.2%的贮藏条件下,供试样品贮藏中的茶多酚含量稳定性较其它组高。
表 2 基于茶多酚的主成分特征值结果Table 2. Results of principal component eigenvalues for tea polyphenols主成分 方差来源 贡献率(%) 累积贡献率(%) 1 3.22 40.24 40.24 2 2.14 26.68 66.92 3 1.35 16.85 83.80 4 0.97 12.08 95.85 5 0.33 4.15 100.00 表 3 基于茶多酚的主成分分析和评分结果Table 3. Principal component analysis and score for tea polyphenols贮藏时间(月) 系数 归一化值 F1 F2 F3 AL组 BL组 CL组 DL组 EL组 1 0.12 0.66 −0.07 −1.35 0.38 0.57 1.11 −1.14 2 −0.53 0.05 0.25 −0.67 0.64 0.98 −0.77 1.04 3 0.12 0.66 −0.07 −1.35 0.38 0.57 1.11 −1.14 4 −0.02 0.03 0.70 −0.03 −1.03 1.82 −0.72 −0.26 5 0.49 −0.18 0.23 1.38 −0.98 −0.09 0.18 −1.24 6 −0.06 −0.31 −0.39 −0.51 −0.44 −0.60 −0.97 1.04 10 0.40 −0.10 0.41 0.85 −1.66 0.08 1.18 −0.32 12 −0.53 0.05 0.26 −0.67 0.63 0.99 −0.77 1.04 F1总分 1.42 −1.68 −0.91 1.72 −2.19 F2总分 −2.01 1.01 1.09 1.51 −1.46 F3总分 0.67 −1.17 1.95 −0.14 −0.33 综合评分 0.18 −0.72 0.30 1.28 −1.58 对各实验组样品的儿茶素进行PCA分析,结果见表4,表5。由表4、表5可知,扁形绿茶贮藏期内不同处理组样品中,基于儿茶素含量的综合评分依次为:DL>AL>CL>BL>EL,DL组综合评分最高(1.10)。
表 4 基于儿茶素的主成分特征值结果Table 4. Results of principal component eigenvalues for catechins主成分 方差来源 贡献率(%) 累积贡献率(%) 1 3.99 49.85 49.85 2 2.20 27.52 77.37 3 1.17 14.56 91.93 4 0.59 7.39 99.32 5 0.05 0.68 100.00 表 5 基于儿茶素的主成分分析和评分结果Table 5. Principal component analysis and score for catechins贮藏时间
(月)指标系数 归一化值 F1 F2 AL组 BL组 CL组 DL组 EL组 1 0.38 0.33 0.19 −0.51 0.34 1.46 −1.57 2 −0.45 0.27 −1.03 −0.88 −0.15 −0.39 1.22 3 0.38 0.33 0.19 −0.51 0.34 1.46 −1.57 4 −0.12 0.59 −0.96 −0.32 0.46 −0.27 −0.70 5 0.40 −0.06 −0.01 1.34 0.16 0.55 −1.64 6 0.34 0.07 1.68 −0.63 0.70 −0.26 −0.99 10 0.11 0.53 0.93 −0.84 0.24 −0.55 −1.12 12 −0.45 0.27 −1.03 −0.88 −0.14 −0.39 1.21 F1总分 1.87 0.67 0.67 1.57 −3.32 F2总分 −0.38 −1.58 0.58 0.27 −1.37 综合评分 1.07 −0.13 0.64 1.10 −2.63 进一步采用PCA主成分降维结合归一化处理对贮藏期各组样品的感官评分进行分析,结果见表6。提取1个主成分时累计贡献率达到92.66%。基于感官评分的主成分分析和评分结果见表7。由表7可知,基于感官审评得分的综合评分由高到低依次为:DL>BL>CL>AL>EL,DL组综合评分最高为2.09,即干茶含水率4.5%,温度25 ℃、相对湿度55%、内包装含氧量0.2%贮藏条件下,贮藏期样品的感官品质能够保持相对稳定。
表 6 基于感官评分的主成分特征值结果Table 6. Results of principal component eigenvalues for sensory quality score主成分 方差来源 贡献率(%) 累积贡献率(%) 1 7.41 92.66 92.66 2 0.50 6.28 98.94 3 0.05 0.59 99.54 4 0.03 0.34 99.88 表 7 基于感官评分的主成分分析和评分结果Table 7. Principal component analysis and score for sensory quality score贮藏时间
(月)系数 归一化值 F AL组 BL组 CL组 DL组 EL组 1 0.28 0.46 0.15 0.91 −0.61 −1.71 2 0.36 0.15 0.42 0.04 0.99 −1.93 3 0.36 −0.32 0.42 0.29 1.00 −1.85 4 0.36 −0.09 0.19 0.51 0.94 −1.92 5 0.37 0.06 0.32 0.45 0.78 −1.99 6 0.37 0.22 0.18 0.36 0.88 −1.98 10 0.37 0.09 0.27 0.17 0.81 −1.96 12 0.37 0.15 0.22 0.31 0.80 −1.98 综合评分 0.22 1.03 0.77 2.09 −5.41 2.3 均匀设计分析与模型建立
以温度、湿度,含氧量、干茶含水量为主要影响因素,采用混水平均匀设计方案U5(54)进行贮藏实验,研究了各因素与感官评分(Y1)、茶多酚含量(Y2)和儿茶素含量(Y3),酯型与非酯型儿茶素比值(Y4)的关系,结果见表8。由表8可知,各组样品间感官评分、茶多酚含量、酯型/非酯型儿茶素比值的误差较小,说明3个指标的一致性较好,然而儿茶素含量的误差相对较大。
表 8 均匀设计实验结果Table 8. Uniform design experimental results实验号 Y1感官评
分(分)Y2茶多酚
含量(%)Y3儿茶素
含量(%)Y4酯型/非酯
型儿茶素AL 84±0.35 20.21±0.21 13.64±0.32 8.74±0.33 BL 87±0.46 20.14±0.37 13.65±0.53 8.30±0.06 CL 88±0.44 20.26±0.45 13.95±1.6 8.24±0.39 DL 90±0.15 20.37±0.23 14.09±0.32 7.95±0.18 EL 80±0.29 19.14±0.29 13.39±0.4 9.06±0.35 对各品质指标进行回归分析,建立了多重线性回归模型,结果见表9。由表9可知,感官评分(Y1)、茶多酚含量(Y2)、儿茶素含量(Y3)和酯型与非酯型儿茶素比值(Y4)在一次回归时方程模型达到显著水平(P<0.05),且相关系数R2较大,方程模型具有较好拟合度。其中,影响扁形绿茶贮藏过程感官总分的主要因素为温度和含氧量,影响茶多酚含量的主要因素为包装内的含氧量,说明茶多酚类物质易受氧离子影响,发生非酶促氧化降解反应[28]。温度、湿度和含氧量对扁形绿茶贮藏中儿茶素含量(Y3)、酯型/非酯型儿茶素(Y4)的影响更显著。以感官评分(Y1)为指标建立的回归方程模型,达到极显著水平(P<0.01),方程对实验拟合度好,作为贮藏最佳条件预测模型。感官评分取最大值时,结合PCA分析,根据模型预测绿茶贮藏最佳条件:温度25 ℃、含氧量0.2%时,感官总分为92.33分。选用该参数进行验证实验,贮藏12月后的绿茶感官总分为89.05±0.25分,与理论预测值基本吻合,说明优化贮藏条件参数较为准确,可用于指导扁形绿茶的贮藏保质。
表 9 模型参数概况Table 9. Summary of the model parameters指标 模型 调整R2 F值 P值 感官评分 Y1=88.54+0.171X1−1.045X3 0.996 535.66 0.002 茶多酚含量 Y2=20.582−0.943X3 0.852 23.970 0.016 儿茶素含量 Y3=14.192+0.588X1−0.429X2−0.899X3 0.998 588.58 0.03 酯型与非酯型儿茶素 Y4=8.254−0.185X1−0.155X2+1.099X3 0.996 377.49 0.04 3. 结论与讨论
贮藏保鲜是攸关绿茶货架品质和经济价值实现的关键一环,国内外学者对绿茶贮藏期品质变化规律及其影响因素开展了大量研究,结果显示湿度、温度、氧气等是造成绿茶品质陈化和劣变的主要环境因素[29-31]。本研究表明,扁形绿茶中以多酚类为主物质在贮藏中易被氧化降解,影响绿茶风味[32-33]。酯型儿茶素与非酯型儿茶素比值随着贮藏时间延长比值增加,也可能是绿茶贮藏中出现苦味、麻味的主要因素。温度、氧气对扁形绿茶贮藏中品质影响较大,是应予重点控制的主要因子。本文结合团队前期对绿茶贮藏品质及机制的研究,建立了以茶多酚、咖啡碱、儿茶素含量,酯型与非酯型儿茶素比值为考核因子的扁炒青贮藏品质方程模型。获得扁形绿茶贮藏协同品控技术品控参数:干茶含水量4.5%,温度25 ℃、相对湿度55%、内包装含氧量0.2%,创新了我国绿茶长期以来依赖冷链贮藏的技术策略,节约了茶叶生产、流通等领域的能源,推进茶叶产后的转型升级,符合我国“碳达峰”、“碳中和”的发展理念,也为其它类型茶叶保鲜技术的研究提供了新思路。然而绿茶风味特性是挥发性和非挥发性物质共同作用的结果,对贮藏中是否存在风味物质异构体转化以及风味物质的互作关系等还有待进一步深入研究。
-
图 1 不同贮藏条件扁形绿茶贮藏期理化品质的变化
注:AL~EL分别对应表1中的贮藏条件。
Figure 1. Changes of physicochemical components of flat green tea under different storage conditions
表 1 均匀设计实验方案U5 (54)
Table 1 Experimental scheme of inuniform design U5 (54)
实验号 X1温度(℃) X2湿度(%) X3含氧量(%) X4干茶含水量(%) AL 4 35 1.0 3.5 BL 10 65 0.6 5.5 CL 15 45 0.4 2.0 DL 25 55 0.2 4.5 EL 30 75 2.1 7.0 表 2 基于茶多酚的主成分特征值结果
Table 2 Results of principal component eigenvalues for tea polyphenols
主成分 方差来源 贡献率(%) 累积贡献率(%) 1 3.22 40.24 40.24 2 2.14 26.68 66.92 3 1.35 16.85 83.80 4 0.97 12.08 95.85 5 0.33 4.15 100.00 表 3 基于茶多酚的主成分分析和评分结果
Table 3 Principal component analysis and score for tea polyphenols
贮藏时间(月) 系数 归一化值 F1 F2 F3 AL组 BL组 CL组 DL组 EL组 1 0.12 0.66 −0.07 −1.35 0.38 0.57 1.11 −1.14 2 −0.53 0.05 0.25 −0.67 0.64 0.98 −0.77 1.04 3 0.12 0.66 −0.07 −1.35 0.38 0.57 1.11 −1.14 4 −0.02 0.03 0.70 −0.03 −1.03 1.82 −0.72 −0.26 5 0.49 −0.18 0.23 1.38 −0.98 −0.09 0.18 −1.24 6 −0.06 −0.31 −0.39 −0.51 −0.44 −0.60 −0.97 1.04 10 0.40 −0.10 0.41 0.85 −1.66 0.08 1.18 −0.32 12 −0.53 0.05 0.26 −0.67 0.63 0.99 −0.77 1.04 F1总分 1.42 −1.68 −0.91 1.72 −2.19 F2总分 −2.01 1.01 1.09 1.51 −1.46 F3总分 0.67 −1.17 1.95 −0.14 −0.33 综合评分 0.18 −0.72 0.30 1.28 −1.58 表 4 基于儿茶素的主成分特征值结果
Table 4 Results of principal component eigenvalues for catechins
主成分 方差来源 贡献率(%) 累积贡献率(%) 1 3.99 49.85 49.85 2 2.20 27.52 77.37 3 1.17 14.56 91.93 4 0.59 7.39 99.32 5 0.05 0.68 100.00 表 5 基于儿茶素的主成分分析和评分结果
Table 5 Principal component analysis and score for catechins
贮藏时间
(月)指标系数 归一化值 F1 F2 AL组 BL组 CL组 DL组 EL组 1 0.38 0.33 0.19 −0.51 0.34 1.46 −1.57 2 −0.45 0.27 −1.03 −0.88 −0.15 −0.39 1.22 3 0.38 0.33 0.19 −0.51 0.34 1.46 −1.57 4 −0.12 0.59 −0.96 −0.32 0.46 −0.27 −0.70 5 0.40 −0.06 −0.01 1.34 0.16 0.55 −1.64 6 0.34 0.07 1.68 −0.63 0.70 −0.26 −0.99 10 0.11 0.53 0.93 −0.84 0.24 −0.55 −1.12 12 −0.45 0.27 −1.03 −0.88 −0.14 −0.39 1.21 F1总分 1.87 0.67 0.67 1.57 −3.32 F2总分 −0.38 −1.58 0.58 0.27 −1.37 综合评分 1.07 −0.13 0.64 1.10 −2.63 表 6 基于感官评分的主成分特征值结果
Table 6 Results of principal component eigenvalues for sensory quality score
主成分 方差来源 贡献率(%) 累积贡献率(%) 1 7.41 92.66 92.66 2 0.50 6.28 98.94 3 0.05 0.59 99.54 4 0.03 0.34 99.88 表 7 基于感官评分的主成分分析和评分结果
Table 7 Principal component analysis and score for sensory quality score
贮藏时间
(月)系数 归一化值 F AL组 BL组 CL组 DL组 EL组 1 0.28 0.46 0.15 0.91 −0.61 −1.71 2 0.36 0.15 0.42 0.04 0.99 −1.93 3 0.36 −0.32 0.42 0.29 1.00 −1.85 4 0.36 −0.09 0.19 0.51 0.94 −1.92 5 0.37 0.06 0.32 0.45 0.78 −1.99 6 0.37 0.22 0.18 0.36 0.88 −1.98 10 0.37 0.09 0.27 0.17 0.81 −1.96 12 0.37 0.15 0.22 0.31 0.80 −1.98 综合评分 0.22 1.03 0.77 2.09 −5.41 表 8 均匀设计实验结果
Table 8 Uniform design experimental results
实验号 Y1感官评
分(分)Y2茶多酚
含量(%)Y3儿茶素
含量(%)Y4酯型/非酯
型儿茶素AL 84±0.35 20.21±0.21 13.64±0.32 8.74±0.33 BL 87±0.46 20.14±0.37 13.65±0.53 8.30±0.06 CL 88±0.44 20.26±0.45 13.95±1.6 8.24±0.39 DL 90±0.15 20.37±0.23 14.09±0.32 7.95±0.18 EL 80±0.29 19.14±0.29 13.39±0.4 9.06±0.35 表 9 模型参数概况
Table 9 Summary of the model parameters
指标 模型 调整R2 F值 P值 感官评分 Y1=88.54+0.171X1−1.045X3 0.996 535.66 0.002 茶多酚含量 Y2=20.582−0.943X3 0.852 23.970 0.016 儿茶素含量 Y3=14.192+0.588X1−0.429X2−0.899X3 0.998 588.58 0.03 酯型与非酯型儿茶素 Y4=8.254−0.185X1−0.155X2+1.099X3 0.996 377.49 0.04 -
[1] SIRICHAIWETCHAKOON K, LOWE G M, EUMKEB G. The free radical scavenging and anti-isolated human LDL oxidation activities of Pluchea indica L. Less. tea compared to green tea (Camellia sinensis)[J]. Biomed Research International,2020,2020:12.
[2] MA H, HU Y Z, ZHANG B W, et al. Tea polyphenol-gut microbiota interactions: Hints on improving the metabolic syndrome in a multi-element and multi-target manner[J]. Food Science and Human Wellness,2022,11(1):11−21. doi: 10.1016/j.fshw.2021.07.002
[3] LIU Y, LUO L Y, LIAO C X, et al. Effects of brewing conditions on the phytochemical composition, sensory qualities and antioxidant activity of green tea infusion: A study using response surface methodology[J]. Food Chemistry,2018,269:24−34. doi: 10.1016/j.foodchem.2018.06.130
[4] DI LORENZO A, NABAVI S F, SUREDA A, et al. Antidepressive-like effects and antioxidant activity of green tea and GABA green tea in a mouse model of post-stroke depression[J]. Molecular Nutrition & Food Research,2016,60(3):566−579.
[5] ZHANG H Y, YI Z, SUN Z, et al. Functional nanoparticles of tea polyphenols for doxorubicin delivery in cancer treatment[J]. Journal of Materials Chemistry, B. Materials for Biology and Medicine,2017,5(36):7622−761. doi: 10.1039/C7TB01323J
[6] ULLAH N, AHMAD M, ASLAM H, et al. Green tea phytocompounds as anticancer: A review[J]. Asian Pacific Journal of Tropical Disease,2016,6(4):330−336. doi: 10.1016/S2222-1808(15)61040-4
[7] CHENG H, XU N, ZHAO W, et al. (-)-Epicatechin regulates blood lipids and attenuates hepatic steatosis in rats fed high-fat diet[J]. Molecular Nutrition and Food Research,2017,61(11):1700303. doi: 10.1002/mnfr.201700303
[8] LIU Z H, XIAO M C, DU Z F, et al. Dietary supplementation of Huangshan Maofeng green tea preventing hypertension of older C57BL/6 mice induced by desoxycorticosterone acetate and salt[J]. The Journal of Nutritional Biochemistry,2021,88:11.
[9] WANG L, ZENG B H, ZHANG X J, et al. The effect of green tea polyphenols on gut microbial diversity and fat deposition in C57BL/6J HFA mice[J]. Food & Function,2016,7(12):4956−4966.
[10] RAZAVI B M, LOOKIAN F, HOSSEINZADEH H. Protective effects of green tea on olanzapine-induced-metabolic syndrome in rats[J]. Biomed Pharmacother,2017,92:726−731. doi: 10.1016/j.biopha.2017.05.113
[11] 赵熙, 黄怀生, 粟本文, 等. 绿茶贮藏保鲜技术研究进展[J]. 茶叶通讯,2015,42(1):11−16. [ZHAO Xi, HANG Huaisheng, SU Benwen, et al. Research progress on the fresh-keeping storage technology of green tea[J]. Journal of Tea Communication,2015,42(1):11−16. doi: 10.3969/j.issn.1009-525X.2015.01.003 ZHAO Xi, HANG Huaisheng, SU Benwen, et al. Research progress on the fresh-keeping storage technology of green tea[J]. Journal of Tea Communication, 2015, 42(1): 11-16. doi: 10.3969/j.issn.1009-525X.2015.01.003
[12] 马圣洲. 绿茶保鲜机理研究[D]. 杭州: 浙江大学, 2008. Ma Shengzhou. Study on preservation mechanism of green tea[D]. Hangzhou: Zhejiang University, 2008.
[13] 施林佐, 石琳, 赵玉香, 等. 茶及相关制品贮藏保鲜文献计量学分析与评价[J]. 中国茶叶加工,2020(4):5−12,33. [SHI Linzuo, SHI Lin, ZHAO Yuxiang, et al. Assessment and analysis of tea products storage and preservation bibliometrics[J]. China Tea Processing,2020(4):5−12,33. doi: 10.15905/j.cnki.33-1157/ts.2020.04.001 SHI Linzuo, SHI Lin, ZHAO Yuxiang, et al. Assessment and analysis of tea products storage and preservation bibliometrics[J]. China Tea Processing, 2020(4): 5-12, 33 doi: 10.15905/j.cnki.33-1157/ts.2020.04.001
[14] 吴桂玲, 罗德尉. 茶叶的品质影响因素及贮藏保鲜技术研究进展[J]. 广州化工,2015,43(16):19−20, 78. [WU Guiling, LUO Dewei. Research on factors affecting of quality and preservation techniques of tea[J]. Guangzhou Chemical Industry,2015,43(16):19−20, 78. doi: 10.3969/j.issn.1001-9677.2015.16.006 WU GuiLing, LUO Dewei. Research on factors affecting of quality and preservation techniques of tea[J]. Guangzhou Chemical Industry, 2015, 43(16): 19-20, 78. doi: 10.3969/j.issn.1001-9677.2015.16.006
[15] 蒋陈凯. 绿茶质变影响因素及保鲜技术研究进展[J]. 广东茶业,2014(6):12−15. [JIANG Chenkai. Research progress on influencing factors of green tea quality change and preservation technology[J]. Guangdong Tea Industry,2014(6):12−15. doi: 10.3969/j.issn.1672-7398.2014.06.004 JIANG Chenkai. Research progress on influencing factors of green tea quality change and preservation technology[J]. Guangdong Tea Industry, 2014(6): 12-15. doi: 10.3969/j.issn.1672-7398.2014.06.004
[16] 李铁汉, 方仕茂, 王玉洁, 等. 绿茶贮藏保鲜技术研究进展[J]. 中国茶叶加工,2019(2):27−32,39. [LI Tiehan, FANG Shimao, WANG Yujie, et al. Research progress on the fresh-keeping storage technology of green tea[J]. Chinese Tea Processing,2019(2):27−32,39. doi: 10.15905/j.cnki.33-1157/ts.2019.02.006 LI Tiehan, FANG Shimao, WANG YuJie, et al. Research progress on the fresh-keeping storage technology of green tea[J]. Chinese Tea Processing, 2019(2): 27-32, 39. doi: 10.15905/j.cnki.33-1157/ts.2019.02.006
[17] 刘学良, 李胜. 一种绿茶保鲜方法[P]. 河南: CN103584250A, 2014-02-19 LIU Xueliang, LI Sheng. A method of green tea preservation[P]. Henan: CN103584250A, 2014-02-19.
[18] 梁远雄, 赖学庆. 一种新鲜绿茶的保鲜方法[P]. 广西: CN106172915A, 2016-12-07 LIANG Yuanxiong, LAI Xueqing. A method of fresh green tea preservation[P]. Guangxi: CN106172915A, 2016-12-07.
[19] 楚银凤, 包承润, 张璐, 等. 普鲁兰-明胶可食用保鲜膜配比优化及在绿茶储藏中的应用[J]. 常熟理工学院学报,2019,33(5):114−120. [CHU Yinfeng, BAO Chengrun, ZHANG Lu, et al. The optimization of composition proportion for gelatin-pullulan based edible film preparation and its application in green-tea preservation[J]. Journal of Changshu Institute of Technology,2019,33(5):114−120. doi: 10.16101/j.cnki.cn32-1749/z.2019.05.027 CHU Yinfeng, BAO Chengrun, ZHANG Lu, et al. The optimization of composition proportion for gelatin-pullulan based edible film preparation and its application in green-tea preservation[J]. Journal of Changshu Institute of Technology, 2019, 33(5): 114-120. doi: 10.16101/j.cnki.cn32-1749/z.2019.05.027
[20] 赵昊, 杜先锋. 纤维素膜对绿茶保鲜的影响[J]. 安徽农业大学学报,2018,45(5):832−835. [ZHAO Hao, DU Xianfeng. Influence of cellulose film on refreshment of green tea[J]. Journal of Anhui Agricultural University,2018,45(5):832−835. doi: 10.13610/j.cnki.1672-352x.20181023.024 ZHAO Hao, DU Xianfeng. Influence of cellulose film on refreshment of green tea[J]. Journal of Anhui Agricultural University, 2018, 45(5): 832-835. doi: 10.13610/j.cnki.1672-352x.20181023.024
[21] 国家卫生和计划生育委员会. GB 5009.3-2016食品中水分的测定[S]. 北京: 中国标准出版社, 2016-8-31 National Health and Family Planning Commission. GB 5009.3-2016 Determination of moisture in food[S]. Beijing: China Standard Press, 2016-8-31.
[22] 国家标准化管理委员会. GB/T 8313-2018茶叶中茶多酚和儿茶素类含量的检测方法[S]. 北京: 中国标准出版社, 2018-7-13 National Standardization Administration. GB/T 8313-2018 Detection method of tea polyphenols and catechins in tea[S]. Beijing: China Standard Press, 2018-7-13.
[23] 国家标准化管理委员会. GB/T 23776-2018茶叶感官审评方法[S]. 北京: 中国标准出版社, 2018-2-6 National Standardization Administration. GB/T 23776-2018 Tea sensory evaluation method[S]. Beijing: China Standard Press, 2018-2-6.
[24] MIRASOLI M, GOTTI R, DI FUSCO M, et al. Electronic nose and chiral-capillary electrophoresis in evaluation of the quality changes in commercial green tea leaves during a long-term storage[J]. Talanta: The International Journal of Pure and Applied Analytical Chemistry,2014,129:32−38.
[25] ANANINGSIH V K, SHARMA A, ZHOU W. Green tea catechins during food processing and storage: A review on stability and detection[J]. Food Research International,2013,50(2):469−479. doi: 10.1016/j.foodres.2011.03.004
[26] 肖文军, 胡详文, 龚志华, 等. 优质绿茶贮藏过程品质劣变的研究[J]. 天然产物研究与开发,2006(6):999−1002, 1047. [XIAO Wenjun, HU Xiangwen, GONG Zhihua, et al. Study on quality worsening of excellent tea during storage[J]. Natural Product Research and Development,2006(6):999−1002, 1047. doi: 10.16333/j.1001-6880.2006.06.029 XIAO Wenjun, HU Xiangwen, GONG Zhihua, et al. Study on quality worsening of excellent tea during storage[J]. Natural Product Research and Development, 2006(6): 999-1002, 1047. doi: 10.16333/j.1001-6880.2006.06.029
[27] FRIEDMAN M, LEVIN C E, CHOI S-H, et al. Changes in the composition of raw tea leaves from the Korean Yabukida plant during high-temperature processing to pan-fried Kamairi-Cha green tea[J]. Journal of Food Science,2009,74(5):C406−C412. doi: 10.1111/j.1750-3841.2009.01185.x
[28] 李维熙, 王葳, 王文静. 茶多酚的氧化聚合机制研究进展[J]. 暨南大学学报(自然科学与医学版),2016,37(3):193−200. [LI Weixi, WANG Wei, WANG Wenjing. The reseach progress in the adverse in tea of polypehnol oxidation and polymerization[J]. Journal of Jinan University (Natural Science and Medicine Edition),2016,37(3):193−200. LI Weixi, WANG Wei, WANG Wenjing. The reseach progress in the adverse in tea of polypehnol oxidation and polymerization[J]. Journal of Jinan University(Natural Science and Medicine Edition), 2016, 37(3): 193-200.
[29] ORTIZ J, FERRUZZI M G, TAYLOR L S, et al. Interaction of environmental moisture with powdered green tea formulations: Effect on catechin chemical stability[J]. Journal of Agricultural and Food Chemistry,2008,56(11):4068−4077. doi: 10.1021/jf800246s
[30] DAI W, LOU N, XIE D, et al. N-Ethyl-2-Pyrrolidinone-substituted Flavan-3-Ols with anti-inflammatory activity in lipopolysaccharide-stimulated macrophages are storage-related marker compounds for green tea[J]. Journal of Agricultural and Food Chemistry, 68(43): 12164-12172.
[31] 崔峰. 绿茶在贮藏过程中品质变化规律及影响因素研究[D]. 杭州: 浙江大学, 2008 CUI Feng. Research on the quality changes and influencing factors of green tea during storage[D]. Hangzhou: Zhejiang University, 2008.
[32] 苏小琴, 左小博, 涂云飞, 等. 环境因子对扁形绿茶贮藏品质影响研究及货架期预测初探[J]. 食品工业科技,2020,41(12):275−280. [SU Xiaoqin, ZUO Xiaobo, TU Yunfei, et al. Effects of environmental factors on storage quality of flat green tea and preliminary study on shelf life[J]. Science and Technology of Food Industry,2020,41(12):275−280. doi: 10.13386/j.issn1002-0306.2020.12.045 SU Xiaoqin, ZUO Xiaobo, TU Yunfei, et al. Effects of environmental factors on storage quality of flat green tea and preliminary study on shelf life[J]. Science and Technology of Food Industry, 2020, 41(12): 275-280. doi: 10.13386/j.issn1002-0306.2020.12.045
[33] 苏小琴, 刁春华, 孔俊豪, 等. 贮藏条件对颗粒型绿茶品质变化规律的影响及货架期初探[J]. 中国茶叶加工,2020(4):13−20. [SU Xiaoqin, DIAO Chunhua, KONG Junhao, et al. Effect of storage conditions on granular green tea quality and preliminary study on shelf life[J]. China Tea Processing,2020(4):13−20. doi: 10.15905/j.cnki.33-1157/ts.2020.04.002 SU Xiaoqin, DIAO Chunhua, KONG Junhao, et al. Effect of storage conditions on granular green tea quality and preliminary study on shelf life[J]. China Tea Processing, 2020(4): 13-20. doi: 10.15905/j.cnki.33-1157/ts.2020.04.002
-
期刊类型引用(1)
1. 赵康妤,杨萍,马俊坤,舒文静,杨凤,谢伊莎,刘庆庆. 超声协同热处理对菜籽蛋白结构及溶解性的影响. 食品科学. 2025(01): 100-107 . 百度学术
其他类型引用(0)