Protective Effect of Hydroxytyrosol from Phyllanthus emblica Linn Leaves on Testicular Tissue Injury Induced by CS2 in Mice
-
摘要: 目的:研究从滇橄榄叶中提取的羟基酪醇(hydroxytyrosol from Phyllanthus emblica Linn leaves,PHT)对二硫化碳(carbon disulfide,CS2)致小鼠睾丸组织损伤的保护作用。方法:实验小鼠随机分为对照组(蒸馏水)、CS2染毒组(50 mg/m3)和3个PHT干预组(450、150、50 mg/kg),4周后计算睾丸脏器系数、检测精子质量、测定睾丸组织匀浆中的超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)活性及丙二醛(MDA)含量并观察睾丸组织病理切片,采用Western blot实验检测睾丸组织中凋亡相关因子蛋白的表达情况。结果:经过干预后,PHT高、中剂量组睾丸脏器系数均高于CS2染毒组(P<0.01),且PHT高剂量组与对照组间无统计学差异(P>0.05);各PHT剂量组精子计数和精子活动率均高于CS2染毒组(P<0.01),但低于对照组(P<0.01);各PHT剂量组精子畸形率低于CS2染毒组(P<0.01),且PHT高剂量组与对照组的精子畸形率无统计学差异(P>0.05);观察睾丸组织病理切片发现,与CS2染毒组相比,各PHT剂量组的睾丸组织形态均得到了改善,其中PHT高剂量组与对照组的病理切片在镜下未观察到明显差别;氧化应激指标与凋亡相关因子蛋白的表达情况表明,各PHT剂量组睾丸组织中MDA含量均低于CS2染毒组(P<0.01),PHT高剂量组与对照组间MDA含量无显著差异(P>0.05);各PHT剂量组睾丸组织中SOD和GSH-Px活性高于CS2染毒组(P<0.05),但低于对照组(P<0.01);与CS2染毒组相比,PHT高、中剂量组睾丸组织中Bax和Caspase-3表达降低,Bcl-2表达升高(P<0.01),且各剂量组与对照组间也存在差异(P<0.05)。结论:CS2可以引起小鼠睾丸氧化损伤,且PHT可以针对CS2所致的睾丸组织损伤发挥拮抗作用,其机制可能与PHT的强抗氧化性维持了部分抗氧化酶的活性,缓解了氧化损伤,从而减少了细胞凋亡因子的形成有关。Abstract: Objective: The protective effects of hydroxytyrosol from Phyllanthus emblica Linn leaves (PHT) on CS2-induced testicular injury in mice were studied. Methods: The experimental mice were randomly divided into control group (distilled water), CS2 exposure group (50 mg/m3) and PHT intervention groups (450, 150 and 50 mg/kg). The exposure group and intervention group were exposed to static inhalation for 2 hours a day, 5 days a week for 4 weeks. The intervention group received PHT intragastric intervention every day. The exposure group and the control group were perfused with distilled water. After 4 weeks, the testicular organ coefficient, sperm quality, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) content in testicular homogenate were tested, and the pathological sections of testis were observed. Western blot was used to detect the expression of apoptosis-related factors in testis. Results: After the intervention, the testicular organ coefficients of mice in the medium and high-dose PHT groups were higher than those in the CS2 group (P<0.01). There was no statistical difference between high-dose PHT group and control group (P>0.05); The sperm count and sperm motility in each PHT dose group were higher than those in the CS2 group (P<0.01), but lower than those in the control group (P<0.01). The sperm deformity rate of each PHT dose group was lower than that of CS2 group (P<0.01), and there was no significant difference between high-dose PHT group and control group (P>0.05). The pathological sections of testis showed that the morphology of testis in each PHT dose group was improved compared with CS2 group. No significant difference was observed under microscope between the high-dose PHT group and the control group; The expression of oxidative stress and apoptosis related factor protein showed that MDA content in testis of each PHT dose group was lower than that of CS2 group (P<0.01), and there was no significant difference between high-dose PHT group and control group (P>0.05); The activity of SOD and GSH-Px in testis tissue of each PHT dose group was higher than that of CS2 group (P<0.05), but lower than that of control group (P<0.01); The expression of Bax and Caspase-3 in testis tissue of each PHT dose group was lower than that of CS2 group, the expression of Bcl-2 was increased (P<0.01), and there was difference between each PHT dose group and control group (P<0.05). Conclusion: CS2 can induce oxidative damage of testis in mice, and PHT can antagonize the testicular tissue damage induced by CS2. The mechanism may be related to the strong antioxidant activity of PHT, which maintains the activity of some antioxidant enzymes, alleviates the oxidative damage and reduces the formation of apoptotic factors.
-
人类的生育能力,特别是精子的质量和数量已发生显著的改变,男性不育和生殖系统发育异常明显增加[1-2],与人群接触工业环境中的化学物质密切相关[3-4]。二硫化碳(carbon disulfide,CS2)广泛应用于农药生产、纺织业和玻璃纸制造业等[5-6],长期职业条件下接触,CS2可经呼吸道和皮肤进入人体,对心血管系统、神经系统以及生殖系统产生不良影响[7]。造成生殖损伤的主要机制为对线粒体造成氧化损伤[8-9]。当机体处于氧化应激状态时,活性氧生成量大于机体清除能力,导致机体脂质过氧化水平升高,干扰细胞生长和细胞周期进程,并诱导细胞凋亡[10-12],从而使精子数量减少、质量下降,生育能力受损。
滇橄榄(Phyllanthus emblica Linn
),又名余甘子,云南省分布广泛。滇橄榄叶是滇橄榄的废弃物和副产物,含有多种生物活性物质,其中羟基酪醇(hydroxytyrosol,HT)是以酯类形式存在的天然多酚化合物,具有抗炎抑菌、防止动脉粥样硬化、抗癌、抗氧化和抑制血小板凝集等作用[13-15]。在黄酮、多酚和橄榄苦苷等多种抗氧化活性成分中,羟基酪醇具有更高的抗氧化能力,其对氧化应激所致疾病具有防治作用[16-18]。研究表明,对比剂肾病(contrast-inducednephropathy, CIN)发生时活性氧产生增多,存在氧化应激反应,HT可以减轻氧化应激对CIN的损伤,发挥肾脏保护作用[19]。张璐璐[20]研究发现,HT通过抑制下丘脑-垂体-肾上腺轴亢进、减轻海马氧化应激、抑制神经炎症、提升海马神经营养因子水平和恢复线粒体功能,缓解了轻度应激诱导的小鼠抑郁样行为。但其在睾丸组织氧化损伤方面的研究鲜有报道。 因此,本实验旨在研究滇橄榄叶羟基酪醇(hy-droxytyrosol from Phyllanthus emblica Linn
leaves,PHT)对CS2诱导小鼠睾丸组织氧化损伤的保护作用,为其在CS2对男(雄)性生殖系统损伤的保护机制研究提供理论依据。 1. 材料与方法
1.1 材料与仪器
清洁级昆明种小鼠40只(体重18±2 g) 购自湖南斯莱克景达实验动物有限公司[许可证号:SCXK(湘)2019-0004];滇橄榄叶 云南树翡翠农林科技有限公司提供;二硫化碳 分析纯,上海四试赫维化工有限公司;超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和丙二醛(MDA)试剂盒 南京建成生物工程研究所;伊红染色液、4%多聚甲醛、BCA蛋白定量检测试剂盒、Bax、Bcl-2、Caspase-3抗体、辣根过氧化物酶(HRP)山羊抗鼠二抗 武汉赛维尔生物科技有限公司。
MDF-382E(N)超低温冰箱 日本SANYO公司;CK40光学显微镜 日本Olympus公司;Multiskan酶标仪 芬兰雷勃公司;XB120A电子分析天平 瑞士Precisa公司;GS-15R低温高速离心机 美国Beckman公司;Agilent 1290 高效液相色谱仪 安捷伦科技有限公司。
1.2 实验方法
1.2.1 滇橄榄叶羟基酪醇纯化物的制备
滇橄榄叶采摘于云南宾川有机滇橄榄基地。40 ℃鼓风干燥、粉碎,过60目筛得滇橄榄叶粉末。准确称取5 g滇橄榄叶粉末,以1:15 g/mL的料液比加入0.1 mol/L的NaOH溶液,在80 ℃下,提取60 min,获得PHT粗提物。将粗提液加入DA-201大孔树脂,采用静态吸附脱附法对PHT粗提物进行分离纯化[21],得到PHT纯化物(此后简称PHT)。
采用HPLC外标法测定PHT的含量,实验条件:色谱柱为C18柱(250 mm×4.6 mm,5 μm),柱温为25 ℃,以乙腈(0.2%冰乙酸)-水(10:90,V/V)为流动相,上样量为5 μL,流速为0.8 mL/min,紫外吸收波长为280 nm。经HPLC检测,PHT粗提物的提取率为0.72%,纯化后,PHT纯度为79.31%。
1.2.2 动物分组及给药
将经过适应性饲养的小鼠按体重随机分为5组,包括对照组、CS2染毒组和PHT高(450 mg/kg)、中(150 mg/kg)、低(50 mg/kg)剂量组(给药剂量根据提取物纯度及预实验确定),每组8只。将从滇橄榄叶中提取的纯化后的PHT以蒸馏水分别配制成4.5、1.5、0.5 mg/mL 3种浓度的溶液作为高、中、低剂量组的干预物质。灌胃前称小鼠体重,每只小鼠的灌胃容量为10 mL/kg。PHT干预组每日9时进行灌胃,对照组和染毒组蒸馏水灌胃。同时,染毒组和PHT各剂量干预组采用静式吸入式染毒,在灌胃当天14~16时染毒2 h,每周染毒5 d,灌胃及染毒时间共持续4周。实验小鼠的使用严格遵守大理大学动物保护和使用委员会规章制度。
1.2.3 睾丸脏器系数的计算
4周后,对小鼠体重进行称量和记录。随后将其处死,并立即取出小鼠睾丸称重,记录睾丸重量。睾丸脏器系数的计算如式(1)所示。
$$\rm 睾丸脏器系数({\text{%}})=睾丸湿重/体重\times 100 $$ (1) 1.2.4 精子质量分析
1.2.4.1 精子计数
在1 mL生理盐水中剪碎附睾,混匀制成精子悬液。悬液放置于60 ℃水浴箱中孵育10 min使精子死亡,取精子悬液充池于血细胞计数板的计数池内,按红细胞计数法计数中央大方格内5个中方格内精子数,计算出每毫升精液中的精子数。
$$\rm 精子总数/mL=5个中方格精子总数\times 5\times 10\times 10^{3}$$ (2) 1.2.4.2 精子活动率
精子悬液制作方法同上,于37 ℃水浴箱中静置10 min,待精子自由流出。在室温条件下,取一滴精子悬液充填血细胞计数板,光学显微镜下镜检,连续计数200个精子中活动精子数,计算精子活动率。
$$\rm 精子活动率({\text{%}})=(精子活动数/200)\times 100 $$ (3) 1.2.4.3 精子畸形率
于干净玻片上取1滴精子滤液推片,放置于室温自然干燥,甲醇固定、干燥,然后用2%伊红染色1~2 h,流水冲洗染液、室温自然晾干玻片,高倍显微镜下计数1000条精子中的畸形精子数,计算精子畸形率。
$$\rm 精子畸形率({\text{%}})=(畸形精子数/1000)\times 100 $$ (4) 1.2.5 病理组织切片观察
用手术刀片将经过4%多聚甲醛固定的睾丸组织修成0.5 mm×0.5 mm×0.5 mm的组织块,经常规组织石蜡包埋、切片、脱蜡后,采用HE染色法制片,观察睾丸的病理组织学变化。
1.2.6 睾丸组织氧化应激指标检测
取出−80 ℃冻存睾丸组织,加入9倍预冷生理盐水,置于冰上进行匀浆,充分研磨,制备10%组织匀浆。低温离心机3000 r/min离心10 min,弃沉淀,留上清液进行各项指标测定。按照试剂盒说明检测MDA、SOD和GSH-Px等指标。
1.2.7 睾丸组织中凋亡相关因子蛋白的表达情况
Western blot实验参照常规方法[22]进行,组织块用预冷的PBS洗涤2~3次,加入10倍组织体积的裂解液进行匀浆;将匀浆完成的匀浆管取出,放置冰上裂解30 min,每隔5 min震荡一次确保组织完全裂解;12000 r/min,4 ℃,离心10 min,收集上清,即为总蛋白溶液,采用BCA试剂盒测蛋白浓度。进行电泳、转膜、封闭等步骤后,加入一抗Caspase-3(1:1000稀释)、Bax(1:2500稀释)、Bcl-2(1:2500稀释)、内参β-actin(1:2000稀释),4 ℃冰箱孵育过夜;次日用TBST洗膜3次,每次5 min,然后加入HRP-IgG(1:2000稀释),反应1 h后重复上述洗膜过程,凝胶成像系统曝光并保存图片后定量分析,以目的蛋白与β-actin灰度值的比值表示目的蛋白的相对表达量。
1.3 数据处理
实验数据均以均数±标准差(
$\bar {\rm x} $ ±s)表示。采用Excel作图,SPSS 25.0软件进行统计学分析,多组间比较采用单因素方差分析。进一步组间两两比较时,采用LSD检验,P<0.05为差异具有统计学意义,P<0.01为差异极显著。2. 结果与分析
2.1 睾丸脏器指数
由表1可知,CS2染毒组睾丸脏器系数相对于对照组下降极显著(P<0.01),说明在CS2的毒性作用下,小鼠睾丸发生了病变性萎缩;PHT高、中剂量组对小鼠睾丸表现出了保护作用,极显著提高了小鼠睾丸脏器系数(P<0.01);且PHT高剂量组小鼠睾丸质量及睾丸脏器系数水平接近对照组,即组间已不存在统计学差异(P>0.05)。说明PHT对CS2致小鼠睾丸损伤的保护作用呈现剂量依赖性。
表 1 PHT对CS2染毒小鼠睾丸及其脏器系数的影响(n=8,$\bar {\rm x}$ ±s)Table 1. Effects of PHT on testis and organ coefficient of mice exposed to CS2 (n=8,$\bar{\rm x} $ ±s)分组 体重 睾丸 重量(g) 重量(g) 脏器系数(%) 对照组 41.3±4.9## 0.278±0.041## 0.671±0.020## CS2染毒组 34.6±3.9** 0.166±0.035** 0.476±0.050** PHT低剂量组 35.9±4.7** 0.185±0.021** 0.517±0.034** PHT中剂量组 38.8±6.1**## 0.232±0.047**## 0.593±0.042**## PHT高剂量组 40.5±4.4## 0.271±0.033## 0.667±0.017## 注:*表示与对照组相比P<0.05,**表示与对照组相比P<0.01;#表示与CS2染毒组相比P<0.05,##表示与CS2染毒组相比P<0.01;表2~表4同。 2.2 精子质量检测
由表2可知,染毒组与对照组相比,精子数量减少,精子活动率降低,而精子畸形率升高,三者变化表现为极显著(P<0.01)。经过PHT干预后,各剂量组与染毒组相比,精子数量和精子活动率得到了极显著的改善(P<0.01),精子畸形率下降极为显著(P<0.01),即PHT可以有效缓解CS2所致的精子损伤,提高精子质量。而且,与对照组相比,PHT高剂量组的精子畸形率未表现出差异(P>0.05),说明在PHT高剂量的保护作用下,显著降低了精子的致畸率。
表 2 PHT对CS2染毒小鼠精子质量的影响(n=8,$\bar{\rm x} $ ±s)Table 2. Effects of PHT on sperm quality of mice exposed to CS2 (n=8,$\bar{\rm x} $ ±s)分组 精子计数(106) 精子活动率(%) 精子畸形率(%) 对照组 18.02±1.00## 92.23±3.46## 2.17±0.75## CS2染毒组 4.59±1.37** 47.50±2.47** 23.67±3.78** PHT低剂量组 8.26±0.84**## 62.67±3.72**## 14.33±1.97**## PHT中剂量组 12.31±1.19**## 66.57±1.92**## 8.17±1.60**## PHT高剂量组 15.16±1.38**## 80.07±2.48**## 3.83±1.47## 2.3 睾丸组织病理切片
通过小鼠睾丸组织HE染色观察PHT对CS2造成的睾丸损伤的影响,结果如图1。由图1(A)可知,对照组小鼠睾丸生精上皮厚,曲细精管呈圆形或椭圆形,结构完整饱满,管内支持细胞及各级生精细胞排列规则,可见各个发育阶段细胞,腔内可见成熟精子。由图1(B)可知,在CS2的毒性作用下,睾丸曲细精管萎缩扭曲成不规则形状,生精上皮变薄,生精细胞数量及管腔内精子细胞数量明显少于正常对照组。各级生精细胞排列紊乱,部分管腔可见大量生精细胞脱落,说明CS2对雄性动物表现出了明显的生殖毒性。由图1(C、D、E)可知,在PHT保护作用下,曲细精管的变形程度减轻,管腔内精子细胞数量明显高于染毒组,且各级生精细胞排列较为规则,官腔内可见成熟精子。说明该剂量下,小鼠睾丸组织形态得到了一定的保护。图1(E)中管腔内精子细胞数量基本正常。说明高剂量PHT对CS2所造成的生殖毒性具有逆转作用,使小鼠的睾丸组织形态趋近于空白对照组。在PHT的抗氧化能力的保护下,睾丸组织的质量得到明显改善。
2.4 PHT对小鼠睾丸组织氧化应激指标的影响
结果如表3所示,与对照组比,CS2组小鼠睾丸组织MDA含量增加,SOD、GSH-Px活性极显著降低(P<0.01);与CS2染毒组比,PHT高、中剂量组小鼠睾丸组织中MDA含量有所下降,SOD活性和GSH-Px活性极显著升高(P<0.01),低剂量组中MDA含量和SOD活性变化与其他两个剂量组保持一致(P<0.01),GSH-Px活性差异虽不是极显著(0.01<P<0.05),但各剂量组均表现出抑制氧化损伤的效果;当PHT干预剂量为450 mg/kg时,MDA含量与对照组比,已无统计学差异(P>0.05),说明PHT具有较好的抗氧化能力,对CS2所致的氧化损伤有一定的拮抗作用。
表 3 PHT对小鼠睾丸组织氧化应激指标的影响(n=8,$\bar{\rm x} $ ±s)Table 3. Effects of PHT on oxidative stress in testis of mice (n=8,$\bar{\rm x} $ ±s)分组 MDA(nmol/mg prot) SOD(U/mg prot) GSH-Px(U/mg prot) 对照组 0.76±0.04## 436.35±2.65## 270.85±3.85## CS2染毒组 1.91±0.02** 344.81±4.29** 171.08±3.49** PHT低剂量组 1.67±0.06**## 369.96±1.91**## 181.05±2.26**# PHT中剂量组 1.39±0.04**## 393.97±1.76**## 210.33±1.92**## PHT高剂量组 0.82±0.04## 422.80±1.58**## 238.49±2.43**## 2.5 小鼠睾丸组织中凋亡相关因子蛋白的表达情况
PHT对CS2染毒小鼠睾丸组织中凋亡相关因子蛋白相对表达水平的影响见表4,其凝胶电泳图见图2。与对照组相比,CS2染毒组和PHT中、低剂量组睾丸组织中Bax和Caspase-3表达极显著升高(P<0.01),Bcl-2表达极显著降低(P<0.01),PHT高剂量组的Bax、Bcl-2(P<0.05)和Caspase-3(P<0.01)的表达量与对照组也同样存在差异,这三种蛋白相对表达水平差异均有统计学意义;与CS2染毒组相比,中、高剂量干预组睾丸组织中Bax和Caspase-3表达极显著降低,Bcl-2表达极显著升高(P<0.01),且呈现出剂量依赖关系。说明PHT可以有效降低促细胞凋亡因子(Bax和Caspase-3)的表达,同时可以升高抑制细胞凋亡因子(Bcl-2)的表达,即PHT能够对睾丸组织表现出保护作用。
表 4 小鼠睾丸组织中凋亡相关因子蛋白相对表达水平(n=8,$\bar{\rm x} $ ±s)Table 4. Relative expression level of apoptosis-related factor protein in mouse testis (n=8,$\bar{\rm x} $ ±s)分组 Bcl-2 Bax Caspase-3 对照组 1.40±0.04## 1.26±0.02## 0.82±0.01## CS2染毒组 0.94±0.04** 1.84±0.04** 1.34±0.04** PHT低剂量组 1.01±0.04** 1.83±0.02** 1.29±0.03** PHT中剂量组 1.10±0.03**## 1.64±0.04**## 1.14±0.02**## PHT高剂量组 1.30±0.02*## 1.35±0.03*## 0.97±0.06**## 3. 讨论与结论
大量的人群流行病学研究和动物实验研究表明,生产生活中接触到的一些化学物质会造成男(雄)性生殖系统损伤和男(雄)性生殖功能异常[23]。当机体长时间接触到CS2时,会对睾丸组织产生慢性毒性,造成睾丸组织氧化损伤,降低精子质量,增加男性不育的发生率。近年来,氧化应激损伤逐渐受到学者们的关注[24-25]。王姝婷[26]研究发现CS2暴露导致的氧化应激和DNA损伤可能会引起孕鼠子宫和胚胎的细胞自噬水平异常,进而导致胚胎植入障碍。王为等[11]研究发现,CS2作用于大鼠睾丸组织时发生氧化应激产生大量自由基,而体内抗氧化系统能力减弱无法全部清除,自由基对组织直接造成毒性作用。
羟基酪醇具有显著的抗氧化功能[27],其总抗氧化能力相较于黄酮[28]和其他多酚类化合物[29]表现出明显优势,这为其在氧化应激导致的损伤中发挥保护作用提供了理论依据。本实验表明,经CS2染毒的小鼠睾丸脏器系数和精子质量明显降低,通过PHT干预后,可以拮抗CS2染毒所致的小鼠精子数量和活动率降低,减少小鼠精子畸形率的增加,缓解小鼠睾丸组织的损伤程度,并且具有剂量依赖性。此外,本研究结果显示,CS2染毒组中MDA含量升高,SOD和GSH-Px活性下降,睾丸组织表现出氧化损伤,采用不同剂量的PHT拮抗CS2后,睾丸组织MDA含量下降,SOD和GSH-Px活力升高,提示PHT可以在体内发挥较好的抗氧化作用。
CS2可以通过氧化损伤,导致睾丸清除自由基能力下降、脂质过氧化产物大量堆积,使睾丸组织发生氧化损伤,进一步激活促细胞凋亡因子表达。Bcl-2蛋白是Bcl-2原癌基因的编码产物,是细胞存活促进因子。Bax是Bcl-2基因家族中细胞凋亡促进基因,Bax的过度表达可拮抗Bcl-2的保护效应而使细胞趋于死亡,而Caspase-3是细胞凋亡过程中最主要的终末剪切酶[30]。CS2染毒后,Bax和Caspase-3的表达量升高,Bcl-2的表达量降低。Bax、Bcl-2主要在线粒体外膜附近区域发挥功效,Bax蛋白可以使线粒体膜上形成孔道,促进细胞色素C的释放,当细胞受到凋亡信号的作用后,使Caspase-3的表达升高,而Bcl-2蛋白的高表达可以阻止这一过程[31]。在PHT的干预下,促进细胞凋亡因子Bax和Caspase-3的表达量下降,促进细胞存活因子Bcl-2的表达量升高,与CS2染毒组比,中、高剂量组差异有统计学意义(P<0.01),提示PHT可以显著拮抗CS2所致的氧化应激,抑制细胞凋亡的发生。
综上所述,当长期低剂量的接触脂溶性的CS2时,会促使机体产生过量的MDA,减弱抗氧化酶活性,进一步加重氧化损伤,使Bcl-2和Bax表达失衡,最终激活Caspase-3因子,导致细胞发生凋亡。而PHT具有较强的体外抗氧化活性,其对自由基的清除能力和总抗氧化能力较为突出。将其作用于CS2染毒的动物实验后,同样表现出较为理想的保护作用。PHT保护CS2所致的小鼠生殖损伤的作用机制可能与PHT对抗CS2氧化损伤有关,该研究为缓解机体氧化损伤提供了新的选择,也为预防慢性CS2中毒提供了一种可能。
-
表 1 PHT对CS2染毒小鼠睾丸及其脏器系数的影响(n=8,
ˉx ±s)Table 1 Effects of PHT on testis and organ coefficient of mice exposed to CS2 (n=8,
ˉx ±s)分组 体重 睾丸 重量(g) 重量(g) 脏器系数(%) 对照组 41.3±4.9## 0.278±0.041## 0.671±0.020## CS2染毒组 34.6±3.9** 0.166±0.035** 0.476±0.050** PHT低剂量组 35.9±4.7** 0.185±0.021** 0.517±0.034** PHT中剂量组 38.8±6.1**## 0.232±0.047**## 0.593±0.042**## PHT高剂量组 40.5±4.4## 0.271±0.033## 0.667±0.017## 注:*表示与对照组相比P<0.05,**表示与对照组相比P<0.01;#表示与CS2染毒组相比P<0.05,##表示与CS2染毒组相比P<0.01;表2~表4同。 表 2 PHT对CS2染毒小鼠精子质量的影响(n=8,
ˉx ±s)Table 2 Effects of PHT on sperm quality of mice exposed to CS2 (n=8,
ˉx ±s)分组 精子计数(106) 精子活动率(%) 精子畸形率(%) 对照组 18.02±1.00## 92.23±3.46## 2.17±0.75## CS2染毒组 4.59±1.37** 47.50±2.47** 23.67±3.78** PHT低剂量组 8.26±0.84**## 62.67±3.72**## 14.33±1.97**## PHT中剂量组 12.31±1.19**## 66.57±1.92**## 8.17±1.60**## PHT高剂量组 15.16±1.38**## 80.07±2.48**## 3.83±1.47## 表 3 PHT对小鼠睾丸组织氧化应激指标的影响(n=8,
ˉx ±s)Table 3 Effects of PHT on oxidative stress in testis of mice (n=8,
ˉx ±s)分组 MDA(nmol/mg prot) SOD(U/mg prot) GSH-Px(U/mg prot) 对照组 0.76±0.04## 436.35±2.65## 270.85±3.85## CS2染毒组 1.91±0.02** 344.81±4.29** 171.08±3.49** PHT低剂量组 1.67±0.06**## 369.96±1.91**## 181.05±2.26**# PHT中剂量组 1.39±0.04**## 393.97±1.76**## 210.33±1.92**## PHT高剂量组 0.82±0.04## 422.80±1.58**## 238.49±2.43**## 表 4 小鼠睾丸组织中凋亡相关因子蛋白相对表达水平(n=8,
ˉx ±s)Table 4 Relative expression level of apoptosis-related factor protein in mouse testis (n=8,
ˉx ±s)分组 Bcl-2 Bax Caspase-3 对照组 1.40±0.04## 1.26±0.02## 0.82±0.01## CS2染毒组 0.94±0.04** 1.84±0.04** 1.34±0.04** PHT低剂量组 1.01±0.04** 1.83±0.02** 1.29±0.03** PHT中剂量组 1.10±0.03**## 1.64±0.04**## 1.14±0.02**## PHT高剂量组 1.30±0.02*## 1.35±0.03*## 0.97±0.06**## -
[1] 廖书杰, 徐岩英, 孙瑞娟, 等. 中国“男性生殖健康”基础研究在国家自然科学基金支持下的30年发展概况[J]. 中华男科学杂志,2020,26(1):3−16. [LIAO Shujie, XU Yanying, SUN Ruijuan, et al. The development of basic research in the field of male reproductive health in China over the past 30 years supported by the National Natural Science Foundation of China[J]. National Journal of Andrology,2020,26(1):3−16. LIAO Shunjie, XU Yanying, SUN Ruijuan, et al. The development of basic research in the field of male reproductive health in China over the past 30 years supported by the National Natural Science Foundation of China[J]. National Journal of Andrology, 2020, 26(1): 3-16.
[2] TIAN Y, SONG W, XU D, et al. Autophagy induced by ROS aggravates testis oxidative damage in diabetes via breaking the feedforward loop linking p62 and Nrf2[J]. Oxidative Medicine and Cellular Longevity,2020(1):1−9.
[3] 钱玲, 李涛. 环境化学物的生殖毒性研究进展[J]. 环境与职业医学,2005(2):167−171. [QIAN Ling, LI Tao. Review of reproductive toxicity of environmental chemical pollutants[J]. Journal of Environmental and Occupational Medicine,2005(2):167−171. doi: 10.3969/j.issn.1006-3617.2005.02.025 QIAN Ling, LI Tao. Review of reproductive toxicity of environmental chemical pollutants[J]. Journal of Environmental and Occupational Medicine, 2005(2): 167-171. doi: 10.3969/j.issn.1006-3617.2005.02.025
[4] 罗艺文, 高盼, 闫路, 等. 邻苯二甲酸二(异)丁酯及其替代品的内分泌干扰效应研究进展[J]. 环境化学,2021,40(1):11−27. [LUO Yiwen, GAO Pan, YAN Lu, et al. Research progress on endocrine disruption effect of di-n-butyl phthalate, diisobutyl phthalate and substitutes[J]. Environmental Chemistry,2021,40(1):11−27. doi: 10.7524/j.issn.0254-6108.2020080602 LUO Yiwen, GAO Pan, YAN Lu, et al. Research progress on endocrine disruption effect of di-n-butyl phthalate, diisobutyl phthalate and substitutes[J]. Environmental Chemistry, 2021, 40(1): 11-27. doi: 10.7524/j.issn.0254-6108.2020080602
[5] 宁甲练, 唐瑾, 胡天佑, 等. 红外光谱的二硫化碳火焰光谱辐射特性研究[J]. 光谱学与光谱分析,2020,40(5):1377−1381. [NING Jialian, TANG Jin, HU Tianyou, et al. Study on spectral radiation characteristics of carbon disulfide flame based on infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(5):1377−1381. NING Jialian, TANG Jin, HU Tianyou, et al. Study on spectral radiation characteristics of carbon disulfide flame based on infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1377-1381.
[6] 管林强, 邓昊, 姚路, 等. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量[J]. 物理学报,2019,68(8):125−131. [GUAN Linqiang, DENG Hao, YAO Lu, et al. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica,2019,68(8):125−131. doi: 10.7498/aps.68.20182140 GUAN Linqiang, DENG Hao, YAO Lu, et al. Measurement of middle infrared spectroscopic parameters of carbon disulfide based on tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2019, 68(8): 125-131. doi: 10.7498/aps.68.20182140
[7] 朱蛇锁, 谢元辰, 宋海燕, 等. 某企业职业接触二硫化碳作业人员神经-肌电图检测情况调查及分析[J]. 中国临床研究,2017,30(10):1419−1422, 1428. [ZHU Shesuo, XIE Yuanchen, SONG Haiyan, et al. Survey and analysis of nerve-EMG detection in occupational workers exposed to carbon disulfide in an enterprise[J]. Chinese Journal of Clinical Research,2017,30(10):1419−1422, 1428. ZHU Shesuo, XIE Yuanchen, SONG Haiyan, et al. Survey and analysis of nerve-EMG detection in occupational workers exposed to carbon disulfide in an enterprise[J]. Chinese Journal of Clinical Research, 2017, 30(10): 1419-1422, 1428.
[8] 马文倩, 霍正浩, 刘春莲. 氧化应激对生殖健康的影响[J]. 宁夏医学杂志,2019,41(4):377−381. [MA Wenqian, HUO Zhenghao, LIU Chunlian. Effects of oxidative stress on reproductive health[J]. Ningxia Medical Journal,2019,41(4):377−381. MA Wenqian, HUO Zhenghao, LIU Chunlian. Effects of oxidative stress on reproductive health[J]. Ningxia Medical Journal, 2019, 41(4): 377-381.
[9] 董煜, 郭寅生, 王为, 等. 二硫化碳对雄性大鼠生殖功能的影响及MPTP的干预作用[J]. 工业卫生与职业病,2016,42(3):176−181. [DONG Yu, GUO Yinsheng, WANG Wei, et al. Effect of carbon disulfide on reproductive function in male rats and intervention of MPTP[J]. Industrial Health and Occupational Diseases,2016,42(3):176−181. DONG Yu, GUO Yinsheng, WANG Wei, et al. Effect of carbon disulfide on reproductive function in male rats and intervention of MPTP[J]. Industrial Health and Occupational Diseases, 2016, 42(3): 176-181.
[10] YANG L, ZHANG B, YUAN Y, et al. Oxidative stress and DNA damage in utero and embryo implantation of mice exposed to carbon disulfide at peri-implantation[J]. Human & Experimental Toxicology,2014,33(4):424−434.
[11] 王为, 黄浩, 黎丽茜, 等. 二硫化碳对大鼠睾丸组织氧化损伤及p53调控细胞凋亡的影响[J]. 华中科技大学学报(医学版),2015,44(4):377−382. [WANG Wei, HUANG Hao, LI Lixi, et al. Effects of carbon disulfide on oxidative stress and p53 mediated apoptosis of rat’s testis[J]. Acta Medicinae Universitatis Scientiae et Technologiae Huazhong,2015,44(4):377−382. WANG Wei, HUANG Hao, LI Lixi, et al. Effects of carbon disulfide on oxidative stress and p53 mediated apoptosis of rat’s testis[J]. Acta Medicinae Universitatis Scientiae et Technologiae Huazhong, 2015, 44(4): 377-382.
[12] 郭寅生. 二硫化碳暴露致男(雄)性生殖细胞和精子损伤机制的研究[D]. 武汉: 华中科技大学, 2015, 10−12 GUO Yinsheng. Study on the mechanism of CS2-induced male germ cells and sperms injury[D]. Wuhan: Huazhong University of Science and Technology, 2015, 10−12.
[13] 李楠, 赵兴文, 郭美佳, 等. 油橄榄叶有效成分的提取及药理活性的研究进展[J]. 食品工业科技,2020,41(10):327−331, 338. [LI Nan, ZHAO Xingwen, GUO Meijia, et al. Advances in extraction and pharmacological activities of effective constituents from Olea europaea leaf[J]. Science and Technology of Food Industry,2020,41(10):327−331, 338. LI Nan, ZHAO Xingwen, GUO Meijia, et al. Advances in extraction and pharmacological activities of effective constituents from Olea europaea leaf[J]. Science and Technology of Food Industry, 2020, 41(10): 327-331, 338.
[14] SWEEDAN G E, Al-HAIDARI M A, MAGEMAND M A, et al. Antimicrobial and antibiofilm activities of alcoholic extract of olive leaves (Olea europaea) against pathogenic bacteria[J]. Bioscience Research,2019,16(1):367−374.
[15] 王玉, 樊瑞娜, 李海燕, 等. 高速逆流色谱分离制备油橄榄叶中橄榄苦苷[J]. 中成药,2018,40(4):979−982. [WANG Yu, FAN Ruina, LI Haiyan, et al. Preparation of oleuropein from olive leaves by high-speed counter-current chromatography[J]. Chinese Traditional Patent Medicine,2018,40(4):979−982. doi: 10.3969/j.issn.1001-1528.2018.04.046 WANG Yu, FAN Ruina, LI Haiyan, et al. Preparation of oleuropein from olive leaves by high-speed counter-current chromatography[J]. Chinese Traditional Patent Medicine, 2018, 40(4): 979-982. doi: 10.3969/j.issn.1001-1528.2018.04.046
[16] 吴凡. 橄榄果渣制备羟基酪醇及体外抗氧化活性研究[D]. 兰州: 西北师范大学, 2019, 1−5 WU Fan. Study on preparation of hydroxy tyrosol from olive pomace and its in vitro antioxidant activity[D]. Lanzhou: Northwest Normal University, 2019, 1−5.
[17] AHAMAD J, TOUFEEQ I, KHAN M A, et al. Oleuropein: A natural antioxidant molecule in the treatment of metabolic syndrome[J]. Phytotherapy Research: PTR,2019,33(12):3112−3128. doi: 10.1002/ptr.6511
[18] 王安华, 龙国清, 王东东, 等. 油橄榄果渣中多酚提取及活性研究进展[J]. 食品研究与开发,2021,42(5):219−224. [WANG Anhua, LONG Guoqing, WANG Dongdong, et al. Research progress on extraction and activities of polyphenols from Olea europaea fruit residue[J]. Food Research and Development,2021,42(5):219−224. WANG Anhua, LONG Guoqing, WANG Dongdong, et al. Research progress on extraction and activities of polyphenols from Olea europaea fruit residue[J]. Food Research and Development, 2021, 42(5): 219-224.
[19] 潘配强, 于芬芬, 单文红, 等. 羟基酪醇对对比剂诱导的肾损伤的保护作用[J]. 临床肾脏病杂志,2019,19(12):917−921. [PAN Peiqiang, YU Fenfen, SHAN Wenhong, et al. Protective effects of hydroxytyrosol on contrast-induced nephropathy in rats[J]. Journal of Clinical Nephrology,2019,19(12):917−921. PANG Peiqiang, YU Fenfen, SHAN Wenhong, et al. Protective effects of hydroxytyrosol on contrast-induced nephropathy in rats[J]. Journal of Clinical Nephrology, 2019, 19(12): 917-921.
[20] 张璐璐. 羟基酪醇改善小鼠抑郁样行为及机制研究[D]. 湛江: 广东海洋大学, 2021, 38−43 ZHANG Lulu. Hydroxytyrosol improves depression-like behavior in mice and its mechanism[D]. Zhanjiang: Guangdong Ocean University, 2021, 38−43.
[21] 李春燕, 颜军, 陈封政, 等. 油橄榄叶中羟基酪醇的提取及分离纯化[J]. 食品与发酵工业,2014,40(4):227−232. [LI Chunyan, YAN Jun, CHEN Fengzheng, et al. Extraction and purifiction of hydroxytyrosol from olive leaves[J]. Food and Fermentation Industries,2014,40(4):227−232. LI Chunyan, YAN Jun, CHEN Fengzheng, et al. Extraction and purifiction of hydroxytyrosol from olive leaves[J]. Food and Fermentation Industries, 2014, 40(4): 227-232.
[22] LIU Q, CEN C, FU H, et al. Antioxidant activity of Coridius chinensis extracts on manganese-induced testicular damage in rats[J]. Environmental Toxicology,2019,34(10):1067−1073. doi: 10.1002/tox.22777
[23] 郭寅生. 二硫化碳暴露致男(雄)性生殖细胞和精子损伤机制的研究[D]. 武汉: 华中科技大学, 2015, 71−72 GUO Yinsheng. Study on the mechanism of CS2-induced male germ cells and sperms injury[D]. Wuhan: Huazhong University of Science and Technology, 2015, 71−72.
[24] AKTAS S, KUM C, AKSOY M. Effects of boric acid feeding on the oxidative stress parameters in testes, sperm parameters and DNA damage in mice[J]. Journal of Trace Elements in Medicine and Biology,2019(58):126447.
[25] AMSA B, GR A, JPK A. Amelioration of heat stress-induced damage to testes and sperm quality-Science Direct[J]. Theriogenology,2020(158):84−96.
[26] 王姝婷. 植入期CS2暴露致孕鼠自噬水平变化及膳食补充NCG对妊娠结局的影响[D]. 济南: 山东大学, 2016, 1−5 WANG Shuting. The change of autophagy in mice after exposed to carbon disulfide at peri-implantation and the effect on the pregnancy outcome after mice diet supplement N-carbamylglutamate[D]. Jinan: Shandong University, 2016, 1−5.
[27] 唐娟, 刘琳, 李承蔓, 等. 羟基酪醇的药理作用和药代动力学研究进展[J]. 中国实验方剂学杂志,2021,27(6):241−250. [TANG Juan, LIU Lin, LI Chengman, et al. Research progress on pharmacological action and pharmacokinetics of hydroxytyrosol[J]. Chinese Journal of Experimental Traditional Medical Formulae,2021,27(6):241−250. TANG Juan, LIU Lin, LI Chengman, et al. Research progress on pharmacological action and pharmacokinetics of hydroxytyrosol[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2021, 27(6): 241-250.
[28] 王定美, 陈新富, 麦力文, 等. 木薯叶抗氧化能力与总黄酮含量及其关系研究[J]. 食品研究与开发,2021,42(2):37−43. [WANG Dingmei, CHEN Xinfu, MAI Liwen, et al. Study on the relationship between antioxidant capacity and total flavonoids contents of cassava leaves[J]. Food Research and Development,2021,42(2):37−43. WANG Dingmei, CHEN Xinfu, MAI Liwen, et al. Study on the relationship between antioxidant capacity and total flavonoids contents of cassava leaves[J]. Food Research and Development, 2021, 42(2): 37-43.
[29] 唐毓玮, 龙凌云, 毛立彦, 等. 干燥方式对睡莲花茶多酚及其抗氧化性的影响[J]. 食品研究与开发,2020,41(11):59−65. [TANG Yuwei, LONG Lingyun, MAO Liyan, et al. Effects of drying methods on polyphenol and antioxidant activities of waterlily tea[J]. Food Research and Development,2020,41(11):59−65. TANG Yuwei, LONG Lingyun, MAO Liyan, et al. Effects of drying methods on polyphenol and antioxidant activities of waterlily tea[J]. Food Research and Development, 2020, 41(11): 59-65.
[30] 黄晓彧, 张振, 王为, 等. 二硫化碳对大鼠睾丸生殖细胞凋亡中线粒体途径相关基因表达的影响[J]. 工业卫生与职业病,2014,40(2):108−113. [HUANG Xiaoyu, ZHANG Zhen, WANG Wei, et al. Effect of carbon disulfide on the expression of mitochondrion relatedgene in mediating testiculai germ cells apoptosis of male rats[J]. Industrial Health and Occupational Diseases,2014,40(2):108−113. HUANG Xiaoyu, ZHANG Zheng, WANG Wei, et al. Effect of carbon disulfide on the expression of mitochondrion relatedgene in mediating testiculai germ cells apoptosis of male rats[J]. Industrial Health and Occupational Diseases, 2014, 40(2): 108-113.
[31] CHIPUK J E, GREEN D R. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization?[J]. Trends Cell Biol,2008,18(4):157−164. doi: 10.1016/j.tcb.2008.01.007
-
期刊类型引用(1)
1. 代莹,刘双能,刘晋琦,邢莉那,朱童,周素梅,芦晶. 多重酶解协同制备绿豆基植物乳及其品质分析. 食品科技. 2024(09): 175-183 . 百度学术
其他类型引用(0)