• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

果蔬贮藏保鲜过程中果胶酶变化的研究进展

邢颖 徐怀德

邢颖,徐怀德. 果蔬贮藏保鲜过程中果胶酶变化的研究进展[J]. 食品工业科技,2022,43(23):401−407. doi:  10.13386/j.issn1002-0306.2021120001
引用本文: 邢颖,徐怀德. 果蔬贮藏保鲜过程中果胶酶变化的研究进展[J]. 食品工业科技,2022,43(23):401−407. doi:  10.13386/j.issn1002-0306.2021120001
XING Ying, XU Huaide. Research Progress of Changes of Pectase during the Storage of Fruits and Vegetables[J]. Science and Technology of Food Industry, 2022, 43(23): 401−407. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120001
Citation: XING Ying, XU Huaide. Research Progress of Changes of Pectase during the Storage of Fruits and Vegetables[J]. Science and Technology of Food Industry, 2022, 43(23): 401−407. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021120001

果蔬贮藏保鲜过程中果胶酶变化的研究进展

doi: 10.13386/j.issn1002-0306.2021120001
基金项目: 运城学院2020年度应用研究项目(CY-2020015)。
详细信息
    作者简介:

    邢颖(1988−),女,硕士,讲师,研究方向:果蔬贮藏与加工,E-mail:xingyingnice@163.com

  • 中图分类号: TS255.3

Research Progress of Changes of Pectase during the Storage of Fruits and Vegetables

  • 摘要: 果胶是植物细胞壁胞间层的主要成分,果胶酶存在于天然植物组织中,可以催化果胶分解,进而破坏细胞壁的完整性,使得果蔬硬度下降。在贮藏过程中影响果蔬软化的因素主要有乙烯、Ca2+及温度等。常见的果蔬保鲜技术包括有物理、化学及生物保鲜技术,不同的保鲜技术对果蔬软化的机制不同。本介绍了果胶的结构及果胶酶的分类,同时总结了影响果胶酶活性的主要因素及其常见贮藏保鲜技术对果胶酶的影响,为果蔬贮藏保鲜过程中抑制软化的研究奠定理论基础。
  • 表  1  不同贮藏方法对果胶酶的影响

    Table  1.   Effects of different storage methods on the pectase

    贮藏方式分类具体方法抑制果蔬软化机制应用参考文献
    物理
    保鲜技术
    气调降低果实呼吸代谢,减少乙烯产生;降低贮藏环境中氧气含量,使细胞组分免受氧化损伤;抑制果胶酶相关基因的表达及其活性冬枣、桃子、芒果、
    甜瓜、木瓜
    [22-26]
    辐照抑制果胶酶基因表达及活性;减少乙烯产生;抑制活性氧的积累猕猴桃、番茄、芒果[27,30-31]
    冰点贮藏降低果实呼吸代谢和果胶酶活性甜瓜、杏、绿豆[17,35-36]
    热激处理影响果胶酶活性樱桃、香蕉、草莓、芒果[38-41]
    化学
    保鲜技术
    钙处理影响乙烯生成;抑制果胶酶活性及相关基因的表达;与细胞壁果胶交联结合形成结构稳固的果胶钙,维持细胞壁完整性与稳定性红树莓、杏[43-44]
    1-MCP处理减少乙烯生成;抑制果胶酶活性酸梅、南果梨、苹果[45-47]
    生物
    保鲜技术
    植物提取物原花青素可与果胶结合香蕉[49]
    动物提取物降低果实呼吸速率,抑制真菌生长,抑制果胶酶活性和相关基因的表达香蕉、草莓等[53-54]
    下载: 导出CSV
  • [1] ARROYO B J, BEZERRA A C, OLIVEIRA L L, et al. Antimicrobial active edible coating of alginate and chitosan add ZNO nanoparticles applied in guavas[J]. Food Chemistry,2020,309(30):125566.
    [2] LIU B H, WANG K F, SHU X G, et al. Changes in fruit firmness, quality traits and cell wall constituents of two highbush blueberries (Vaccinium corymbosum L.) during postharvest cold storage[J]. Scientia Horticulturae,2019,246:557−562. doi:  10.1016/j.scienta.2018.11.042
    [3] DEFILIPPI B G, EJSMENTEWICZ T, COVARRUBIAS M P, et al. Changes in cell wall pectins and their relation to postharvest mesocarp softening of “Hass” avocados (Persea americana Mill.)[J]. Plant Physiology and Biochemistry,2018,128:142−151. doi:  10.1016/j.plaphy.2018.05.018
    [4] POSÉ S, PANIAGUA C, ANTONIO J M, et al. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy[J]. Trends in Food Science & Technology,2019,87:47−58.
    [5] 蒋超男. 采后褪黑素处理对南果梨贮藏品质及活性氧代谢的影响[D]. 锦州: 渤海大学, 2021

    JIANG C N. Effects of postharvest melatonin treatment on storage quality and reactive oxygen species metabolism of nanguo pears[D]. Jinzhou: Bohai University, 2021.
    [6] LIU J N, BI J F, MCCLEMENTS D J, et al. Impacts of thermal and non-thermal processing on structure and functionality of pectin in fruit- and vegetable-based products: A review[J]. Carbohydrate Polymers,2020,250:116890. doi:  10.1016/j.carbpol.2020.116890
    [7] HUI W A, WANG J, ASM C, et al. Effects of postharvest ripening on physicochemical properties, microstructure, cell wall polysaccharides contents (pectin, hemicellulose, cellulose) and nanostructure of kiwifruit (Actinidia deliciosa)[J]. Food Hydrocolloids,2021,118:106808.
    [8] DENG Y, WU Y, LI Y. Changes in firmness, cell wall composition and cell wall hydrolases of grapes stored in high oxygen atmospheres[J]. Food Research International,2005,38(7):769−776. doi:  10.1016/j.foodres.2005.03.003
    [9] IMAIZUMI T, SZYMAŃSKA-CHARGOT M, PIECZYWEK P M, et al. Evaluation of pectin nanostructure by atomic force microscopy in blanched carrot[J]. LWT-Food Science and Technology,2017,84:658−667. doi:  10.1016/j.lwt.2017.06.038
    [10] 徐嘉悦, 王永涛, 饶雷, 等. 促进植物内源性果胶甲酯酶催化作用的因素与机制及其在果蔬加工中的应用[J]. 食品科学,2021:1−22. [XU J Y, WANG Y T, RAO L, et al. The factors and mechanisms that promote the catalysis of plant endogenous pectin methylesterase and the application in fruit and vegetable processing[J]. Food Science,2021:1−22. doi:  10.7506/spkx1002-6630-20191214-156
    [11] 敖雁, 杨淼焱, 张驰, 等. 番茄果实成熟软化中的细胞壁作用机制研究进展[J]. 保鲜与加工,2021,21(12):118−125. [AO Y, YANG M Y, ZHANG C, et al. Research progress of mechanisms in cell wall to affect the fruit ripening in tomato[J]. Storage and Process,2021,21(12):118−125. doi:  10.3969/j.issn.1009-6221.2021.12.017
    [12] 张正科. 1-MCP与内源乙烯相互作用对番茄和鳄梨成熟生理的影响研究[D]. 杨凌: 西北农林科技大学, 2011

    ZHANG Z K. Effect of interaction between 1-MCP and internal ethylene on ripening physiology of tomato and avocado fruit[D]. Yangling: Northwest A & F University, 2011.
    [13] GAYATHRI T, NAIR A S. Biochemical analysis and activity profiling of fruit ripening enzymes in banana cultivars from Kerala[J]. Journal of Food Measurement and Characterization,2017,11(3):1274−1283. doi:  10.1007/s11694-017-9505-6
    [14] SILVEIRA A C, AGUAYO E, CHISARI M, et al. Calcium salts and heat treatment for quality retention of fresh-cut ‘Galia’ melon[J]. Postharvest Biology and Technology,2011,62(1):77−84. doi:  10.1016/j.postharvbio.2011.04.009
    [15] LIU M, LI J, ZONG W, et al. Comparison of calcium and ultrasonic treatment on fruit firmness, pectin composition and cell wall-related enzymes of postharvest apricot during storage[J]. Journal of Food Science and Technology-Mysore,2021,59(4):1588−1597.
    [16] GOU L, JOÃO S, ISABEL D S, et al. Patterns of enzymatic activity of cell wall-modifying enzymes during growth and ripening of apples[J]. Postharvest Biology & Technology,2007,43(3):307−318.
    [17] 张强. 钙与1-MCP调控甜瓜后熟软化机理及近冰温贮藏技术研究[D]. 乌鲁木齐: 新疆大学, 2020.

    ZHANG Q. Mechanism of calcium and 1-MCP regulating post-ripening softening and study on near freezing temperature storage of melon[D]. Urumchi: Xinjiang University, 2020.
    [18] 王璐瑶, 帕孜丽亚·托乎提, 戴煌. 气调保鲜技术在梨贮藏保鲜中的研究进展[J]. 中国果菜,2021,41(7):15−19. [WANG L Y, PAZIUYA T, DAI H. Research progress of controued atmosphere technology in pear storage[J]. China Fruit & Vegetable,2021,41(7):15−19. doi:  10.19590/j.cnki.1008-1038.2021.07.003
    [19] 陈燕, 张健, 魏佳, 等. 一氧化氮熏蒸抑制干制灰枣黑曲霉病及贮藏品质保持[J]. 农业工程学报,2019,35(12):297−303. [CHEN Y, ZHANG J, WEI J, et al. Nitric oxide fumigation inhibiting Aspergillus niger disease and maintaining storage quality of dried ash jujube[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(12):297−303. doi:  10.11975/j.issn.1002-6819.2019.12.036
    [20] 邓豪, 王曼, 王霞伟, 等. 一氧化氮熏蒸延缓杏干贮藏期间品质的下降[J]. 现代食品科技,2022,38(1):188−196. [DENG H, WANG M, WANG X W, et al. Nitric oxide fumigation delays the decline in quality of dried apricots during storage[J]. Modern Food Science and Technology,2022,38(1):188−196. doi:  10.13982/j.mfst.1673-9078.2022.1.0375
    [21] 朱丽娟, 侯佳迪, 王军萍, 等. NO延缓新鲜果蔬成熟衰老和提高抗性效果及作用机制研究进展[J]. 食品工业科技,2021,42(22):398−405. [ZHU L J, HOU J D, WANG J P, et al. Research progress on effect and mechanism of no delaying ripening and senescence and improving resistance of fresh fruits and vegetables[J]. Science and Technology of Food Industry,2021,42(22):398−405. doi:  10.13386/j.issn1002-0306.2020090145
    [22] ZHAO Y T, ZHU X, HOU Y Y, et al. Effects of nitric oxide fumigation treatment on retarding cell wall degradation and delaying softening of winter jujube (Ziziphus jujuba Mill. cv. Dongzao) fruit during storage[J]. Postharvest Biology and Technology,2019,156:110954. doi:  10.1016/j.postharvbio.2019.110954
    [23] ZHAO Y Y, TANG J X, SONG C C, et al. Nitric oxide alleviates chilling injury by regulating the metabolism of lipid and cell wall in cold-storage peach fruit[J]. Plant Physiology and Biochemistry,2021,169:63−69. doi:  10.1016/j.plaphy.2021.10.039
    [24] 何俊瑜, 任艳芳, 陈元有, 等. 一氧化氮对常温贮藏下芒果果实软化和细胞壁代谢的影响[J]. 食品工业科技,2018,39(17):269−275. [HE J Y, REN Y F, CHEN Y Y, et al. Effect of nitric oxide on softening and cell wall metabolism of postharvest mango[J]. Science and Technology of Food Industry,2018,39(17):269−275. doi:  10.13386/j.issn1002-0306.2018.17.045
    [25] 石玲, 吴斌, 敬媛媛, 等. 一氧化氮熏蒸处理对甜瓜采后细胞壁代谢及黑斑病控制的影响[J]. 食品科学,2019,40(23):239−245. [SHI L, WU B, JING Y Y, et al. Effects of nitric oxide fumigation on cell wall metabolism and black spot control of postharvest melon[J]. Food Science,2019,40(23):239−245. doi:  10.7506/spkx1002-6630-20181201-006
    [26] GUO Q, WU B, CHEN W, et al. Effects of nitric oxide treatment on the cell wall softening related enzymes and several hormones of papaya fruit during storage[J]. Food Science and Technology International,2014,20(4):309. doi:  10.1177/1082013213484919
    [27] 黄天姿, 李瑞娟, 杨淑霞,等. 电子束辐照对不同品种猕猴桃品质的影响[J]. 食品科学,2021,42(9):70−76. [HUANG T Z, LI R J, YANG S X, et al. Effects of electron beam irradiation on the quality of different varieties kiwifruit[J]. Food Science,2021,42(9):70−76.
    [28] GRASSO E M, URIBE-RENDON R M, LEE K. Inactivation of Escherichia coli inoculated onto fresh-cut chopped cabbage using electron-beam processing[J]. Journal of Food Protection,2011,74:115−118. doi:  10.4315/0362-028X.JFP-10-281
    [29] 李瑞娟, 杨淑霞, 王丹, 等. 高能电子束辐照对猕猴桃细胞壁降解相关酶活性和基因表达的影响[J]. 食品工业科技,2022,43(1):326−334. [LI R J, YANG S X, WANG D, et al. Effect of high energy electron beam irradiation on cell wall degradation related enzyme activities and gene expressions of kiwifruit[J]. Science and Technology of Food Industry,2022,43(1):326−334. doi:  10.13386/j.issn1002-0306.2021050174
    [30] 王海宏, 孔秋莲, 颜伟强, 等. 电子束辐照对不同成熟度番茄后熟及乙烯生成的影响[J]. 食品与生物技术学报,2018,37(6):617−623. [WANG H H, KONG Q L, YAN W Q, et al. Effect of electron beam irradiation on ripening and ethylene production of tomato fruits harvested at different mature stages[J]. Journal of Food Science and Biotechnology,2018,37(6):617−623.
    [31] TTNA B, MK C, GANG M C, et al. Electron beam radiation delayed the disassembly of cell wall polysaccharides in harvested mangoes[J]. Postharvest Biology and Technology,2021,178:111554. doi:  10.1016/j.postharvbio.2021.111554
    [32] TRUC N T, UTHAIRATANAKIJ A, SRILAONG V, et al. Effect of electron beam radiation on disease resistance and quality of harvested mangoes[J]. Radiation Physics and Chemistry,2020,180:109289.
    [33] ZHAO H D, WANG B G, CUI K B, et al. Improving postharvest quality and antioxidant capacity of sweet cherry fruit by storage at near-freezing temperature[J]. Scientia Horticulturae,2019,246:68−78.
    [34] JING L, WANG Y, WANG R, et al. Effects of controlled freezing-point storage on quality of fresh-cut broccoli[J]. Advance Journal of Food Science & Technology,2016,12(6):317−325.
    [35] FAN X, JIANG W, GONG H, et al. Cell wall polysaccharides degradation and ultrastructure modification of apricot during storage at a near freezing temperature[J]. Food Chemistry,2019,300:125194. doi:  10.1016/j.foodchem.2019.125194
    [36] ELFALLEH W, GUO L, HE S, et al. Characteristics of cell wall structure of green bean during controlled freezing point storage[J]. International Journal of Food Properties,2015,18(8):1756−1772.
    [37] 朱赛赛, 张敏. 温度激化处理对采后果蔬贮藏品质影响的研究进展[J]. 食品科学,2016,37(5):230−238. [ZHU S S, ZHANG M. Advances in the study of the effect of temperature shock treatments on storage quality of postharvest fruits and vegetables[J]. Food Science,2016,37(5):230−238.
    [38] WANG L, JIN P, WANG J, et al. Hot air treatment induces resistance against blue mold decay caused by Penicillium expansum in sweet cherry (Prunus cerasus L.) fruit[J]. Scientia Horticulturae,2015,189:74−80. doi:  10.1016/j.scienta.2015.03.039
    [39] AMNUAYSIN N, JONES M L, SERAYPHEAP K. Changes in activities and gene expression of enzymes associated with cell wall modification in peels of hot water treated bananas[J]. Scientia Horticulturae,2012,142:98−104. doi:  10.1016/j.scienta.2012.05.006
    [40] LANGER S E, OVIEDO N C, MARÍA M, et al. Effects of heat treatment on enzyme activity and expression of key genes controlling cell wall remodeling in strawberry fruit[J]. Plant Physiology & Biochemistry,2018,130:334−344.
    [41] DÍAZ-CORONA D A, LÓPEZ-LÓPEZ M E, AYÓN-REYNA L E, et al. Impact of hot water-calcium on the activity of cell wall degrading and antioxidant system enzymes in mango stored at chilling temperature[J]. Journal of Food Biochemistry,2020,44:13686.
    [42] 张聪聪, 刘静珂, 吉茹, 等. 挂树和钙处理对樱桃果实贮藏品质的影响[J]. 食品科学,2020,41(5):230−236. [ZHANG C C, LIU J K, JI R, et al. Effects of tree-hanging time and calcium treatment on storage quality of cherry fruit[J]. Food Science,2020,41(5):230−236. doi:  10.7506/spkx1002-6630-20190225-163
    [43] LYU J Y, HAN X Z, BAI L, et al. Effects of calcium chloride treatment on softening in red raspberry fruit during low-temperature storage[J]. Journal of Food Biochemistry,2020,44:1−8.
    [44] LIU H, CHEN F, LAI S, et al. Effects of calcium treatment and low temperature storage on cell wall polysaccharide nanostructures and quality of postharvest apricot (Prunus armeniaca)[J]. Food Chemistry,2017,225(15):87−97.
    [45] LIN Y F, LIN Y X, LIN H T, et al. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage[J]. Food Chemistry,2018,264:1−8. doi:  10.1016/j.foodchem.2018.05.031
    [46] 张梦媛, 白琳, 吕静祎, 等. 1-甲基环丙烯对采后南果梨果实软化的影响[J]. 食品科学,2018,39(17):206−211. [ZHANG M Y, BAI L, LYU J Y, et al. Effect of 1-methylcyclopropene on the postharvest softening of Nanguo pear fruits[J]. Food Science,2018,39(17):206−211.
    [47] WIN N M, YOO J, NAING A H, et al. 1-Methylcyclopropene (1-MCP) treatment delays modification of cell wall pectin and fruit softening in “Hwangok” and “Picnic” apples during cold storage[J]. Postharvest Biology and Technology,2021,180:111599. doi:  10.1016/j.postharvbio.2021.111599
    [48] 任佳琦, 李福香, 雷琳, 等. 原花青素与果胶相互作用对果蔬加工特性的影响[J]. 食品与发酵工业,2019,45(12):83−88. [REN J Q, LI F X, LEI L, et al. Effects of interactions between procyanidins and pectins on processing properties of fruits and vegetables: A review[J]. Food and Fermentation Industries,2019,45(12):83−88. doi:  10.13995/j.cnki.11-1802/ts.019217
    [49] CHEN J, LI Y X, LI F F, et al. Effects of procyanidin treatment on the ripening and softening of banana fruit during storage[J]. Scientia Horticulturae,2022(292):110644.
    [50] MEGHA M, GILL P, JAWANDHA S K, et al. Effect of chitosan coating incorporated with pomegranate peel extract on pear fruit softening, quality and cell wall degrading enzymes during cold storage[J]. Journal of Food Processing and Preservation,2021,45(12):15984.
    [51] KUMAR P, SETHI S, SHARMA R R, et al. Effect of chitosan coating on postharvest life and quality of plum during storage at low temperature[J]. Scientia Horticulturae,2017,226:104−109.
    [52] 刘笑宏, 赵玲玲, 牟红梅, 等. 猕猴桃采后保鲜技术研究进展[J]. 保鲜与加工,2021,21(11):121−128. [LIU X H, ZHAO L L, MO H M, et al. Advances in Preservation methods for postharvest kiwifruit[J]. Storage and Process,2021,21(11):121−128. doi:  10.3969/j.issn.1009-6221.2021.11.018
    [53] ARISA W, PRANEE R, KANOGWAN S. Inhibitory effects of high molecular weight chitosan coating on ‘Hom Thong’ banana fruit softening[J]. Food Packaging and Shelf Life,2021,29:100731. doi:  10.1016/j.fpsl.2021.100731
    [54] WANG K, LI T, CHEN S, et al. The biochemical and molecular mechanisms of softening inhibition by chitosan coating in strawberry fruit (Fragaria x ananassa) during cold storage[J]. Scientia Horticulturae,2020,271:109483.
    [55] LO’AY A A, DAWOOD H. Active chitosan/PVA with ascorbic acid and berry quality of 'Superior seedless' grapes[J]. Scientia Horticulturae,2017,224:286−292. doi:  10.1016/j.scienta.2017.06.043
    [56] LIU K, LIU J, LI H, et al. Influence of postharvest citric acid and chitosan coating treatment on ripening attributes and expression of cell wall related genes in cherimoya (Annona cherimola Mill.) fruit[J]. Scientia Horticulturae,2016,198(10):1−11.
    [57] SHI Z J, YANG H Y, JIAO J Y, et al. Effects of graft copolymer of chitosan and salicylic acid on reducing rot of postharvest fruit and retarding cell wall degradation in grapefruit during storage[J]. Food Chemisry,2019,283:92−100. doi:  10.1016/j.foodchem.2018.12.078
  • 加载中
计量
  • 文章访问数:  56
  • HTML全文浏览量:  9
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回

    重要通知

    1、快速见刊:客座主编专栏征稿-食源性功能物质挖掘及评价
           2、喜讯 :《食品工业科技》被DOAJ数据库收录!
           3喜报:《食品工业科技》世界期刊影响力稳居Q2区
           4、祝贺:《食品工业科技》中国期刊影响力稳居Q1第二名