• 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • Scopus
  • FSTA
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • DOAJ
  • JST China
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020 食品青年科学家峰会

醇溶蛋白复合胶体颗粒在稳定Pickering乳液制备中应用的研究进展

张建 赵雪琴 张稳刚 刘利萍 张慧恩

张建,赵雪琴,张稳刚,等. 醇溶蛋白复合胶体颗粒在稳定Pickering乳液制备中应用的研究进展[J]. 食品工业科技,2022,43(23):394−400. doi:  10.13386/j.issn1002-0306.2021110046
引用本文: 张建,赵雪琴,张稳刚,等. 醇溶蛋白复合胶体颗粒在稳定Pickering乳液制备中应用的研究进展[J]. 食品工业科技,2022,43(23):394−400. doi:  10.13386/j.issn1002-0306.2021110046
ZHANG Jian, ZHAO Xueqin, ZHANG Wengang, et al. A Review on Prolamin-based Colloidal Particles for the Formation of Pickering Emulsion and Applications[J]. Science and Technology of Food Industry, 2022, 43(23): 394−400. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110046
Citation: ZHANG Jian, ZHAO Xueqin, ZHANG Wengang, et al. A Review on Prolamin-based Colloidal Particles for the Formation of Pickering Emulsion and Applications[J]. Science and Technology of Food Industry, 2022, 43(23): 394−400. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021110046

醇溶蛋白复合胶体颗粒在稳定Pickering乳液制备中应用的研究进展

doi: 10.13386/j.issn1002-0306.2021110046
基金项目: 浙江省“生物工程”一流学科的资助(ZS2021009);2020年甘肃省级大学生创新创业训练计划项目(S202010737009);浙江省“生物工程”一流学科开放基金资助(No KF2020004,No KF2021011);2021年浙江万里学院国家级大学生创新创业训练计划项目(202110876036)。
详细信息
    作者简介:

    张建(1979−),男,博士,副教授,研究方向:胶体颗粒制备及活性物质载运,E-mail:jordan1979@126.com

    通讯作者:

    张慧恩(1981−),男,硕士,高级实验师,研究方向:食品分析,E-mail:41714437@qq.com

  • 中图分类号: TS202.3

A Review on Prolamin-based Colloidal Particles for the Formation of Pickering Emulsion and Applications

  • 摘要: 以醇溶蛋白作为基底复合的胶体颗粒是比较理想的稳定Pickering乳液材料。醇溶蛋白基二元/三元复合胶体颗粒是由醇溶蛋白与多糖、多酚或水溶性蛋白质结合形成的,具有稳定的物理化学性质和优越的功能。由于醇溶蛋白复合胶体纳米颗粒具有天然、无毒、食品工业可接受性和良好的乳液稳定性能等显著优势,因此是Pickering乳液领域的研究热点之一。本文综述了近年来醇溶蛋白基复合胶体颗粒稳定Pickering乳液的研究进展。着重介绍醇溶蛋白的特性与应用以及改性方式对醇溶蛋白特性的影响,为提高醇溶蛋白的加工适应性和醇溶蛋白的应用提供理论和应用参考。最后总结了醇溶蛋白基复合胶体颗粒稳定Pickering乳液的目前瓶颈和未来发展方向。
  • 图  1  体外消化模型、体外细胞模型和体内动物实验的示意图[29]

    Figure  1.  Schematic illustration of the in vitro digestion model, in vitro cell models and in vivo animal experiments[29]

    图  2  使用小麦醇溶蛋白/壳聚糖复合胶体稳定的Pickering乳液作为模板形成的多孔蛋白材料制备示意图[43]

    Figure  2.  Schematic illustration for the preparation of a porous protein material using the Pickering-templating method, in which the HIPEs were stabilized by gliadin-chitosan hybrid particles (GCHPs) [53]

    图  3  微凝胶包埋活性酶及其稳定界面催化反应的应用[55]

    Figure  3.  Schematic illustration of enzyme encapsulation within microgels and application of interfacial catalysis via binary particle-stabilized emulsion[55]

  • [1] TADROS T F. Emulsion formation and stability[M]. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013: 1−75.
    [2] RAMSDEN W. Separation of solids in the surface-layers of solutions and ‘suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation)-Preliminary account[J]. Proceedings of the Royal Society of London,1904,72(477−486):156−164. doi:  10.1098/rspl.1903.0034
    [3] MENG Y, SUN W, YANG H, et al. Fine tuning of surface properties of SiO2 nanoparticles for the regulation of Pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,592:124603. doi:  10.1016/j.colsurfa.2020.124603
    [4] LI Q, ZHAO T, LI M, et al. One-step construction of Pickering emulsion via commercial TiO2 nanoparticles for photocatalytic dye degradation[J]. Applied Catalysis B: Environmental,2019,249:1−8. doi:  10.1016/j.apcatb.2019.02.057
    [5] LEE J, CHANG J Y. Pickering emulsion stabilized by microporous organic polymer particles for the fabrication of a hierarchically porous monolith[J]. Langmuir,2018,34(39):11843−11849. doi:  10.1021/acs.langmuir.8b02576
    [6] WANG Z, QIU T, GUO L, et al. Polymerization induced shaping of Pickering emulsion droplets: From simple hollow microspheres to molecularly imprinted multicore microrattles[J]. Chemical Engineering Journal,2018,332:409−418. doi:  10.1016/j.cej.2017.09.027
    [7] AKARTUNA I, STUDART A R, TERVOORT E, et al. Macroporous ceramics from particle-stabilized emulsions[J]. Advanced Materials,2008,20(24):4714−4718. doi:  10.1002/adma.200801888
    [8] DUAN L, CHEN M, ZHOU S, et al. Synthesis and characterization of poly (N-isopropylacrylamide)/silica composite microspheres via inverse Pickering suspension polymerization[J]. Langmuir,2009,25(6):3467−3472. doi:  10.1021/la8041617
    [9] MURRAY B S. Pickering emulsions for food and drinks[J]. Current Opinion in Food Science,2019,27:57−63. doi:  10.1016/j.cofs.2019.05.004
    [10] DAI H, WU J, ZHANG H, et al. Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge[J]. Trends in Food Science & Technology,2020,102:16−29.
    [11] MEIRELLES A A D, COSTA A L R, CUNHA R L. Cellulose nanocrystals from ultrasound process stabilizing O/W Pickering emulsion[J]. International Journal of Biological Macromolecules,2020,158:75−84. doi:  10.1016/j.ijbiomac.2020.04.185
    [12] QI W, LI T, ZHANG Z, et al. Preparation and characterization of oleogel-in-water Pickering emulsions stabilized by cellulose nanocrystals[J]. Food Hydrocolloids,2021,110:106206. doi:  10.1016/j.foodhyd.2020.106206
    [13] DONG H, DING Q, JIANG Y, et al. Pickering emulsions stabilized by spherical cellulose nanocrystals[J]. Carbohydrate Polymers,2021,265:118101. doi:  10.1016/j.carbpol.2021.118101
    [14] CUI F, ZHAO S, GUAN X, et al. Polysaccharide-based Pickering emulsions: Formation, stabilization and applications[J]. Food Hydrocolloids,2021:106812.
    [15] YANG Y, WANG W, WU Z, et al. O/W Pickering emulsions stabilized by Flammulina velutipes polysaccharide nanoparticles as a fat substitute: The effects of phase separation on emulsified sausage's techno-functional and sensory quality[J]. Journal of the Science of Food and Agriculture,2020,100(1):268−276. doi:  10.1002/jsfa.10034
    [16] HAO Z Z, PENG X Q, TANG C H. Edible Pickering high internal phase emulsions stabilized by soy glycinin: Improvement of emulsification performance and Pickering stabilization by glycation with soy polysaccharide[J]. Food Hydrocolloids,2020,103:105672. doi:  10.1016/j.foodhyd.2020.105672
    [17] SHI A, FENG X, WANG Q, et al. Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective[J]. Food Hydrocolloids,2020,109:106117. doi:  10.1016/j.foodhyd.2020.106117
    [18] LIU X, HUANG Y Q, CHEN X W, et al. Whole cereal protein-based Pickering emulsions prepared by zein-gliadin complex particles[J]. Journal of Cereal Science,2019,87:46−51. doi:  10.1016/j.jcs.2019.02.004
    [19] SARKAR A, DICKINSON E. Sustainable food-grade Pickering emulsions stabilized by plant-based particles[J]. Current Opinion in Colloid & Interface Science,2020,49:69−81.
    [20] GAO J, LIANG H, LI S, et al. Development of zein/soluble soybean polysaccharide nanoparticle-stabilized Pickering emulsions[J]. Journal of Food Science,2021,86(5):1907−1916. doi:  10.1111/1750-3841.15730
    [21] YANG H, SU Z, MENG X, et al. Fabrication and characterization of Pickering emulsion stabilized by soy protein isolate-chitosan nanoparticles[J]. Carbohydrate Polymers,2020,247:116712. doi:  10.1016/j.carbpol.2020.116712
    [22] REN Z, LI Z, CHEN Z, et al. Characteristics and application of fish oil-in-water Pickering emulsions structured with tea water-insoluble proteins/κ-carrageenan complexes[J]. Food Hydrocolloids,2021,114:106562. doi:  10.1016/j.foodhyd.2020.106562
    [23] ROWLAND A T, KEATING C D. Formation and properties of liposome-stabilized all-aqueous emulsions based on PEG/dextran, PEG/Ficoll, and PEG/sulfate aqueous biphasic systems[J]. Soft Matter,2021,17(13):3688−3699. doi:  10.1039/D0SM01849J
    [24] LIU W, LIU J, SALT L J, et al. Structural stability of liposome-stabilized oil-in-water pickering emulsions and their fate during in vitro digestion[J]. Food & Function,2019,10(11):7262−7274.
    [25] PATEL A S, LAKSHMIBALASUBRAMANIAM S P, NAYAK B. Steric stabilization of phycobiliprotein loaded liposome through polyethylene glycol adsorbed cellulose nanocrystals and their impact on the gastrointestinal tract[J]. Food Hydrocolloids,2020,98:105252. doi:  10.1016/j.foodhyd.2019.105252
    [26] ZHOU F Z, YU X H, ZENG T, et al. Fabrication and characterization of novel water-insoluble protein porous materials derived from Pickering high internal-phase emulsions stabilized by gliadin-chitosan-complex particles[J]. Journal of Agricultural and Food Chemistry,2019,67(12):3423−3431. doi:  10.1021/acs.jafc.9b00221
    [27] SONG J, SUN C, GUL K, et al. Prolamin-based complexes: Structure design and food-related applications[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(2):1120−1149. doi:  10.1111/1541-4337.12713
    [28] YAN X, MA C, CUI F, et al. Protein-stabilized Pickering emulsions: Formation, stability, properties, and applications in foods[J]. Trends in Food Science & Technology,2020,103:293−303.
    [29] HUANG X N, ZHU J J, XI Y K, et al. Protein-based Pickering high internal phase emulsions as nutraceutical vehicles of and the template for advanced materials: A perspective paper[J]. Journal of Agricultural and Food Chemistry,2019,67(35):9719−9726. doi:  10.1021/acs.jafc.9b03356
    [30] LUO Y, WANG Q. Zein-based micro- and nano-particles for drug and nutrient delivery: A review[J]. Journal of Applied Polymer Science,2014,131(16):40696.
    [31] ZHOU F Z, HUANG X N, WU Z, et al. Fabrication of zein/pectin hybrid particle-stabilized Pickering high internal phase emulsions with robust and ordered interface architecture[J]. Journal of Agricultural and Food Chemistry,2018,66(42):11113−11123. doi:  10.1021/acs.jafc.8b03714
    [32] ZOU Y, YANG X, SCHOLTEN E. Tuning particle properties to control rheological behavior of high internal phase emulsion gels stabilized by zein/tannic acid complex particles[J]. Food Hydrocolloids,2019,89:163−170.
    [33] DAI L, YANG S, WEI Y, et al. Development of stable high internal phase emulsions by Pickering stabilization: Utilization of zein-propylene glycol alginate-rhamnolipid complex particles as colloidal emulsifiers[J]. Food Chemistry,2019,275:246−254. doi:  10.1016/j.foodchem.2018.09.122
    [34] SUN C, GAO Y, ZHONG Q. Properties of ternary biopolymer nanocomplexes of zein, sodium caseinate, and propylene glycol alginate and their functions of stabilizing high internal phase Pickering emulsions[J]. Langmuir,2018,34:9215−9227. doi:  10.1021/acs.langmuir.8b01887
    [35] HU Y Q, YIN S W, ZHU J H, et al. Fabrication and characterization of novel Pickering emulsions and Pickering high internal emulsions stabilized by gliadin colloidal particles[J]. Food Hydrocolloids,2016,61:300−310.
    [36] WANG Y, YAN W, JIA X, et al. Improving stability of gliadin-based Pickering emulsions by deamidation[J]. Journal of Food Engineering,2020,271:109773. doi:  10.1016/j.jfoodeng.2019.109773
    [37] JIANG Y, ZHU Y, LI F, et al. Gliadin/amidated pectin core–shell nanoparticles for stabilization of Pickering emulsion[J]. International Journal of Food Science & Technology,2020,55(10):3278−3288.
    [38] WANG H, LI M F, LIN F, et al. Fabrication and characterization of bi-crosslinking Pickering emulsions stabilized by gliadin/alginate coacervate particles[J]. Journal of Food Engineering,2021,291:110318. doi:  10.1016/j.jfoodeng.2020.110318
    [39] ZHU Y, CHEN X, MCCLEMENTS D J, et al. pH-, ion- and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets[J]. Food Hydrocolloids,2018,77:870−878. doi:  10.1016/j.foodhyd.2017.11.032
    [40] XIAO J, CHEN Y J, HUANG Q R. Physicochemical properties of kafirin protein and its applications as building blocks of functional delivery systems[J]. Food & Function,2017,8(4):1402−1413.
    [41] JIE X, XIANG A W, ALEJANDRO J P G, et al. Kafirin nanoparticles-stabilized Pickering emulsions: Microstructure and rheological behavior[J]. Food Hydrocolloids,2016,54:30−39. doi:  10.1016/j.foodhyd.2015.09.008
    [42] XIAO J, LI C, HUANG Q R. Kafirin nanoparticle-stabilized Pickering emulsions as oral delivery vehicles: Physicochemical stability and in vitro digestion profile[J]. Journal of Agricultural and Food Chemistry,2015,63(47):10263−10270. doi:  10.1021/acs.jafc.5b04385
    [43] WANG Q. Peanut processing characteristics and quality evaluation[M]. Springer Singapore, 2018, 43−56.
    [44] FANG J N, XIAO Q W, HUI J Z, et al. Improving the bioaccessibility and in vitro absorption of 5-demethylnobiletin from chenpi by se-enriched peanut protein nanoparticles-stabilized Pickering emulsion[J]. Journal of Functional Foods,2019,55:76−85. doi:  10.1016/j.jff.2019.02.019
    [45] HU X, ZHAO M M, SUN W Z, et al. Effects of microfluidization treatment and transglutaminase cross-linking on physicochemical, functional, and conformational properties of peanut protein isolate[J]. Journal of Agricultural and Food Chemistry,2011,59(16):8886−8894. doi:  10.1021/jf201781z
    [46] SONG R, QI Y, JIA Z, et al. Astaxanthin-loaded zein/calcium alginate composite microparticles: Characterization, molecular interaction and release kinetics in fatty food simulant system[J]. LWT,2020,134:110146. doi:  10.1016/j.lwt.2020.110146
    [47] JIANG G L, ZHU M J. Preparation of astaxanthin-encapsulated complex with zein and oligochitosan and its application in food processing[J]. LWT,2019,106:179−185. doi:  10.1016/j.lwt.2019.02.055
    [48] GE S, JIA R, LI Q, et al. Pickering emulsion stabilized by zein/adzuki bean seed coat polyphenol nanoparticles to enhance the stability and bioaccessibility of astaxanthin[J]. Journal of Functional Foods,2022,88:104867. doi:  10.1016/j.jff.2021.104867
    [49] CHEN X, CHEN Y, HUANG Y, et al. Hybrid bionanoparticle-stabilized Pickering emulsions for quercetin delivery: Effect of interfacial composition on release, lipolysis, and bioaccessibility[J]. ACS Applied Nano Materials,2019,2(10):6462−6472. doi:  10.1021/acsanm.9b01413
    [50] MA J J, HUANG X N, YIN S W, et al. Bioavailability of quercetin in zein-based colloidal particles-stabilized Pickering emulsions investigated by the in vitro digestion coupled with Caco-2 cell monolayer model[J]. Food Chemistry,2021,360:130152. doi:  10.1016/j.foodchem.2021.130152
    [51] SILVERSTEIN M S. Emulsion-templated porous polymers: A retrospective perspective[J]. Polymer,2014,55(1):304−320. doi:  10.1016/j.polymer.2013.08.068
    [52] JIAO B, SHI A, WANG Q, et al. High-internal-phase Pickering emulsions stabilized solely by peanut-protein-isolate microgel particles with multiple potential applications[J]. Angewandte Chemie,2018,130(30):9418−9422. doi:  10.1002/ange.201801350
    [53] ZHOU F Z, YU X H, ZHU J J, et al. Hofmeister effect-assistant fabrication of all-natural protein-based porous materials templated from Pickering emulsions[J]. Journal of Agricultural and Food Chemistry,2020,68(40):11261−11272. doi:  10.1021/acs.jafc.0c01079
    [54] XI Y, LIU B, JIANG H, et al. Sodium caseinate as a particulate emulsifier for making indefinitely recycled pH-responsive emulsions[J]. Chemical Science,2020,11(15):3797−3803. doi:  10.1039/C9SC05050G
    [55] JIANG H, LIU L, LI Y, et al. Inverse Pickering emulsion stabilized by binary particles with contrasting characteristics and functionality for interfacial biocatalysis[J]. ACS Applied Materials & Interfaces,2020,12(4):4989−4997.
  • 加载中
图(3)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  22
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-05
  • 网络出版日期:  2022-10-19
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回