• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

HPLC法检测蜜饯中20种合成着色剂含量

冉丹, 罗苏苏, 张可欣, 肖玥惠子, 王淑霞, 徐思敏, 李萌

冉丹,罗苏苏,张可欣,等. HPLC法检测蜜饯中20种合成着色剂含量[J]. 食品工业科技,2022,43(16):281−289. doi: 10.13386/j.issn1002-0306.2021100307.
引用本文: 冉丹,罗苏苏,张可欣,等. HPLC法检测蜜饯中20种合成着色剂含量[J]. 食品工业科技,2022,43(16):281−289. doi: 10.13386/j.issn1002-0306.2021100307.
RAN Dan, LUO Susu, ZHANG Kexin, et al. Determination of 20 Kinds of Synthetic Colorants in Candied Fruit by HPLC[J]. Science and Technology of Food Industry, 2022, 43(16): 281−289. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100307.
Citation: RAN Dan, LUO Susu, ZHANG Kexin, et al. Determination of 20 Kinds of Synthetic Colorants in Candied Fruit by HPLC[J]. Science and Technology of Food Industry, 2022, 43(16): 281−289. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100307.

HPLC法检测蜜饯中20种合成着色剂含量

基金项目: 湖南省科技创新平台与人才计划项目(2019TP1058)。
详细信息
    作者简介:

    冉丹(1987−),女,硕士,高级工程师,研究方向:食品质量检验,E-mail:674844338@qq.com

  • 中图分类号: TS207.3

Determination of 20 Kinds of Synthetic Colorants in Candied Fruit by HPLC

  • 摘要: 建立蜜饯中柠檬黄、新红、苋菜红、靛蓝、丽春红S、胭脂红、喹啉黄、日落黄、诱惑红、亮蓝、酸性红44、酸性红、食品红1、橙黄1、酸性红50、专利蓝V、赤藓红、酸性橙2、酸性橙8、亮蓝G共20种合成着色剂的高效液相色谱测定方法。试样用甲醇/氨水溶液提取,混合型弱阴离子反相固相萃取柱净化,甲醇/20 mmol/L乙酸铵为流动相梯度洗脱,二极管阵列检测器多波长检测,外标法定量。结果表明,该方法在0.1~20 μg/mL的线性范围内相关系数均大于0.999,加标回收率范围为84.0%~104.5%,相对标准偏差(RSD)为1.3%~5.3%。该方法操作便捷、稳定性好、回收率高,适用于蜜饯中20种合成着色剂的同时分析检测。该方法可以扩展应用于其他同结构性质的色素分析,对其他食品类别中色素的检测也具有参考意义。
    Abstract: A method for the determination of tartrazine, xinhong, amaranth, indigo, ponceau S, carmine, quinoline yellow, sunset yellow, temptation red, bright blue, acid red 44, acid red, food red 1, orange yellow 1, acid red 50, patent blue V, erythrin, acid orange 2, acid orange 8 and bright blue G in candied fruit was established by high-performance liquid chromatography. The sample was extracted by methanol/ammonia solution, purified by mixed weak anion reversed phase solid phase extraction, eluted by methanol/20 mmol/L ammonium acetate as mobile phase, detected by multi-wavelength diode array detector, and quantified by external standard method. The correlation coefficients were higher than 0.999 in the linear range of 0.1~20 μg/mL. The recoveries were 84.0%~104.5%, the relative standard deviations (RSDs) were 1.3%~5.3%. Results showed that, the method had the advantages of convenient operation, good stability and high recovery, and was suitable for simultaneous analysis of 20 synthetic colorants in candied fruit. The method could be extended to the analysis of other colorants with the same structure property, and could be reference significance for the detection of colorants in other food categories.
  • 合成着色剂又称合成色素,是一种重要的食品添加剂,可以改善食品色泽,较天然色素具有成本低、着色力好等优势,因而广泛被应用于食品工业[1-3]。在食品抽检过程中发现,合成着色剂在蜜饯产品中应用较多,如口味姜、猕猴桃果脯、杨梅凉果、芒果干等,一些蜜饯产品合成着色剂超标情况频频出现。而合成着色剂作为一种化工产品,长期食用对人体存在一定的潜在危害[4-6]。因此,为保障食品安全,蜜饯中合成着色剂的检测仍然是工作重点。

    目前适用于测定蜜饯中合成色素的标准方法为GB 5009.35-2016[7],该方法在蜜饯测定过程中存在诸多方面的问题[8-9]。该标准采用液液分配法和聚酰胺粉吸附法分别测定赤藓红和其他6种合成着色剂,操作繁琐、耗时长,不利于实现批量检测。此外蜜饯样品在抽提过程中,其残渣极容易堵塞垂融漏斗,造成抽提困难,实验难以进行。聚酰胺粉吸附法操作不当,难以保证较好的回收率。

    根据GB 2760-2014规定[10],我国允许在食品中添加的有机合成色素有11种,分别为柠檬黄、日落黄、新红、苋菜红、胭脂红、亮蓝、赤藓红、酸性红、诱惑红、靛蓝、喹啉黄。就现有的标准检测方法来看[7,11-13],均只覆盖部分产品类别和部分色素项目,难以满足实际检测需要。值得重视的是,和欧盟及其他国家法规相比较[14-16],我国在合成着色剂方面的监管还存在滞后情况,例如我国专利蓝V、橙黄、丽春红S等还并未纳入监管范畴,也没有相应的检测标准和方法,而在欧盟及其他国家已被允许应用于食品工业。国外一些关于此类新型色素已屡有报道,如2019年6月输日食品违反日本食品卫生法的情况,通报了源产地为俄罗斯的点心专利蓝Ⅴ非法添加[17];2020年12月3日,欧盟发布条例(EU) 2020/1819,修订(EC) No 1333/2008附件Ⅱ中关于在鲑鱼替代品中的色素使用规定[18],其中就包含了橙黄和丽春红S。由此可见,面对品类繁多的新型合成着色剂,我国相应的法律法规及市场监管亟待完善。

    目前关于色素的分析研究,已有很多文献报道,如刘珈伶[19]固相萃取法测定冰淇淋中6种合成色素,唐一秋[20]采用色素专用柱测定茶饮料中9种合成着色剂,夏宗艳等[21]采用90%丙酮作为提取剂,固相萃取法测定食品中8种色素,高家敏等[22]采用高效液相色谱法同时测定饮料中12种水溶性合成着色剂。但现有的文献基本都是基于特定的样品基础,选择性对部分色素类别进行研究,没有基于合成色素结构特性,开发具有普适性的检测方法。本研究旨在以蜜饯为样品基础,建立一个具有普适性的,可以检测同类型合成着色剂的方法,并可以扩展应用到其他食品类别。同时对前处理各关键影响因素进行探索研究,优化色谱条件,以实现复杂基质样品中合成色素准确、高效、高通量的检测分析。

    标准品:柠檬黄(CAS 1934-21-0,0.5 mg/mL)、新红(CAS 220658-76-4,1.0 mg/mL)、苋菜红(CAS 915-67-3,0.5 mg/mL)、日落黄(CAS 2783-94-0,0.5 mg/mL)、胭脂红(CAS 2611-82-7,0.5 mg/mL)、亮蓝(CAS 3844-45-9,0.5 mg/mL)、赤藓红(CAS 16423-68-0,纯度86.0%)、酸性红(CAS 3567-69-9,纯度87.4%)、诱惑红(CAS 25956-17-6,纯度86.0%)、酸性橙2(CAS633-96-5,纯度80.8%)、靛蓝(CAS 860-22-0,1.0 mg/mL)、丽春红S(CAS 6226-79-5,纯度91.4%)、喹啉黄(CAS 8004-92-0,纯度90.5%)、专利蓝Ⅴ(CAS 3536-49-0,纯度89.7%)、酸性红44(CAS 2766-77-0,纯度85.0%)、食品红1(CAS4548-53-2,纯度90.5%)、橙黄1(CAS 523-44-4,纯度88.3%)、酸性橙8(CAS 5850-86-2,纯度99.9%)、亮蓝G(CAS 6104-58-1,纯度91.4%)、酸性红50(CAS 5873-16-5,纯度60.6%) 均购于上海安谱公司。

    乙酸铵、无水乙醇、氨水(分析纯),甲醇、乙腈(色谱纯) 国药集团;Inspire C18色谱分析柱(250 mm×4.6 mm ,5 μm) 迪马科技有限公司;聚酰胺柱Cleanert PA(1 g/6 mL) 天津博纳艾杰尔科技有限公司;混合型强阴离子反相固相萃取柱 ProElut PXA(150 mg/6 mL)、混合型弱阴离子反相固相萃取柱ProElut PWA(150 mg/6 mL)、混合型弱阴离子反相固相萃取柱ProElut PWA-2(150 mg/6 mL) 迪马科技有限公司;混合型弱阴离子反相固相萃取柱Cleanert PWAX柱(150 mg/6 mL) 天津博纳艾杰尔科技有限公司;混合型弱阴离子反相固相萃取柱CNW poly-sery PWAX (150 mg/6 mL)、CNW poly-sery 色素专用固相萃取柱(500 mg/6 mL) 上海安谱公司;样品材料口味姜、甜心金桔干、猕猴桃干、金梅姜等 源于抽检残余样品及市场采购。

    岛津LC-20A高效液相色谱仪(配DAD检测器) 岛津(中国)有限公司 ;Milli-Q超纯水仪 德国默克密理博公司;VGT超声波振荡仪 广东固特公司;M37610-33涡旋振荡器 赛默飞世尔公司;SHZ-W恒温水浴锅 常州万顺仪器制造有限公司;TD-6高速离心机 万和仪器制造公司;HPD 24位固相萃取装置 色谱科仪器公司;MTN-2800W氮吹浓缩仪 天津奥特赛恩斯仪器公司。

    样品取可食部分,经充分粉碎后混合均匀,称取5.0 g(精确至0.01 g)于50 mL具塞比色管中,加入20 mL提取剂(甲醇:氨水=10:1,v/v),涡旋混匀后超声10 min,重复提取两次,上清液水浴蒸发至近干,3~5 mL水少量多次溶解转移至15 mL离心管,加入100 μL甲酸混匀,待净化。依次用5 mL甲醇、5 %甲酸水溶液活化混合型弱阴离子反相固相萃取柱ProElut PWA-2,将待净化液转移至萃取小柱,控制流速每秒1滴,再依次用5 mL 5 %甲酸、甲醇淋洗,弃去淋洗液,用6 mL 5 %氨水甲醇洗脱,收集洗脱液,氮吹浓缩至近干,流动相(甲醇:20 mmol/L乙酸铵=2:8,v/v)溶解定容至1 mL,过PTFE膜,待测。

    岛津LC-20A高效液相色谱仪(配DAD检测器);色谱柱:Inspire C18色谱分析柱(250 mm×4.6 mm,5 μm);柱温:30 ℃;进样量:10 μL;检测波长:254 nm/428 nm/509 nm/625 nm;流速:1.0 mL/min;流动相A为甲醇,流动相B为20 mmol/L乙酸铵溶液,梯度洗脱条件见表1

    表  1  梯度洗脱条件
    Table  1.  Gradient elution conditions
    时间(min)流速(mL/min)A甲醇(%)B 20 mmol/L乙酸铵(%)
    0.01.01090
    2.01.01090
    18.01.07030
    27.01.09010
    32.01.09010
    34.01.01090
    38.01.01090
    下载: 导出CSV 
    | 显示表格

    称取固体标准品各5.0 mg(按纯度折算后的质量),水定容至10 mL容量瓶,配制浓度为0.5 mg/mL标准储备液,新红、靛蓝液体标准品直接稀释至0.5 mg/mL,分别准确移取0.01、0.1、0.2、0.4、1.0、2.0 mL标准储备液于50 mL容量瓶中,水定容至刻度,配得浓度为0.1~20 μg/mL系列标准工作液。按1.2.2进行分析测定,记录线性方程及相关系数。

    选择空白基质样品,分别加入不同浓度水平的标液,每个水平重复分析测定6次,进行加标回收与精密度试验。以供试液响应最低项目的3倍信噪比及10倍信噪比确定检出限与定量限。

    通 过 与 岛津LC-20A仪 器 配 套 的Labsolution 色谱处理软件完成数据采集分析,采用 Excel 软件进行图形绘制及处理,结果统计为 3 次平 行测定结果。

    提取是分析检测的第一步,也是关键步骤,如果提取溶剂选择不当,会直接影响目标物回收率。有文献提出采用水溶液超声提取[23]、亚铁氰化钾-乙酸锌-水溶液沉淀提取[24]、丙酮/水溶液提取[21]、乙醇/氨水/水溶液提取[25]、乙腈/氨水溶液提取[26]、甲醇/氨水溶液提取[27]等方法提取着色剂。本研究就以上各种提取溶剂进行了比较,以柠檬黄、胭脂红、日落黄、酸性橙2四种极性有差异的合成着色剂为监测指标,以蜜饯加标样品作为分析对象,研究其提取效果及回收率,回收率为统计3次平行试验结果值,如表2

    表  2  不同提取溶剂的提取效果及回收率比较
    Table  2.  Comparison of extraction effect and recovery rate with different extraction methods
    提取溶剂提取效果回收率(%)
    温热水样液极浑浊35.2±10.0
    乙酸铵水溶液样液极浑浊37.6±8.8
    亚铁氰化钾-乙酸锌样液澄清26.3±6.9
    硫酸-钨酸钠样液较澄清27.5±7.3
    丙酮:水=9:1,v/v样液澄清,部分样品结团,不易分散51.2±5.4
    乙腈:氨水:水=7:2:1,v/v样液澄清92.6±3.7
    甲醇:氨水=10:1,v/v样液澄清93.6±3.9
    乙腈:氨水=10:1,v/v样液澄清,但有样品提取液出现分层91.6±4.1
    下载: 导出CSV 
    | 显示表格

    以上结果表明,采用乙醇/氨水/水、甲醇/氨水两种提取溶剂时回收率较高、便于操作。通过分析合成着色剂分子结构式,发现除靛蓝外,赤藓红为苯甲酸钠结构,其他合成着色剂均为苯磺酸钠结构,而含此类酸性基团的色素更容易被碱性提取溶剂提取。采用乙腈/氨水提取,虽然回收率高,但因某些蜜饯样品可能会添加氯化钠、山梨酸钾、苯甲酸钠、焦亚硫酸钠及糖类,产生盐析和糖析现象,应用范围存在局限。为进一步探索比较乙醇/氨水/水、甲醇/氨水两种提取方式,选取口味姜丝、芒果干及甜心金桔三种样品类型分别进行比较研究。试验发现,在检测分析甜心金桔干样品时,采用乙醇/氨水/水、甲醇/氨水两种提取溶剂,日落黄、酸性橙2回收率差异不大,但乙醇/氨水/水提取,柠檬黄、胭脂红回收率很低,平行性很差,高低相差近10倍,测试结果见表3。所以本研究提取液采用甲醇/氨水作为优化选择的样品提取液。

    表  3  不同提取剂对不同样品的色素回收率比较(%)
    Table  3.  Comparison of colorant recovery rate of different extractants for different samples (%)
    样品类型提取剂柠檬黄胭脂红日落黄酸性橙2
    口味姜丝乙醇/氨水/水93.4±3.190.3±4.193.0±4.491.4±3.4
    甲醇/氨水94.2±3.091.2±2.693.2±3.194.4±3.1
    芒果干乙醇/氨水/水91.0±3.291.3±2.994.0±4.792.5±2.8
    甲醇/氨水92.3±4.192.5±3.593.3.0±2.593.1±3.5
    甜心金桔乙醇/氨水/水11.5±7126.3±10291.0±3.292.3±4.1
    甲醇/氨水89±4.991.3±2.992.2±3.591.4±2.7
    下载: 导出CSV 
    | 显示表格

    通过对不同比例甲醇/氨水进行试验,发现氨水比例越高,提取效果越好,结果见图1。但甲醇/氨水比例到达20:1后,增加氨水比例,回收率影响并不明显,考虑到某些样品本身可能含有天然酸性物质,会中和少量碱,所以提取溶剂宜增大氨水使用比例。当甲醇/氨水比例为5:1时,增加后续蒸发浓缩时长。故最终本文选择的甲醇/氨水比例为10:1。

    图  1  不同比例甲醇氨水溶液提取效率比较
    Figure  1.  Comparison of extraction efficiency of methanol-ammonia solution with different proportions

    现有国标多采用聚酰胺吸附法净化合成着色剂,该法成本低,但过程繁琐耗时,不利于实现批量检验。固相萃取技术是目前常用的净化手段,能有效提取目标物,在检测领域应用广泛。也有文献对固相萃取柱在合成着色剂方便的应用进行了探索,如刘秀娟等[28]采用HLB柱净化饼干中合成着色剂;任荣军等[29]采用Cleanert-PWAX 柱净化中成药中合成着色剂;刘珈伶等[19]采用Oasis WAX柱净化冰淇淋中合成着色剂。由于合成着色剂多为苯磺酸、苯甲酸类有机酸,若采用C18、HLB硅胶基质SPE柱,保留较弱,难以吸附,或在淋洗阶段被洗脱。结合色素结构特性,选择阴离子交换模式较为适宜,市面上阴离子交换柱类型较多,本试验选择国产3个品牌7种固相萃取小柱进行比较研究,分别为聚酰胺柱:Cleanert PA(1 g/6 mL),混合型强阴离子反相固相萃取柱:ProElut PXA(150 mg/6 mL),混合型弱阴离子反相固相萃取柱:ProElut PWA(150 mg/6 mL)、ProElut PWA-2(150 mg/6 mL)、Cleanert PWAX柱(150 mg/6 mL)、CNW poly-sery PWAX(150 mg/6 mL),CNW poly-sery 色素专用柱(500 mg/6 mL)。本实验通过对同一加标样品加入甲醇/氨水进行提取,蒸发浓缩后加入甲酸,以保证待净化液偏酸性,再采用相同的淋洗和洗脱条件进行SPE净化处理(见1.2.1),以测试7种固相萃取柱对不同色素的回收率,统计3次平行测试结果如下表4。试验表明聚酰胺柱Cleanert PA对丽春红S、胭脂红、酸性红等保留性强难以洗脱;混合型强阴离子反相柱ProElut PXA对所有色素有极强吸附保留作用;混合型弱阴离子反相柱ProElut PWA比ProElut PWA-2保留性更强,部分色素回收率偏低;CNW poly-sery色素专用柱对亮蓝、专利蓝Ⅴ、亮蓝G保留性较弱,在甲醇淋洗阶段被部分洗脱,回收率偏低。洗脱液氨水比例从5%提升到20%,聚酰胺柱和混合型强阴离子反相柱对部分色素仍有强保留,因此不适宜色素分析。不同的弱阴离子反相柱可能最优淋洗和洗脱条件有所差异,在本试验条件下,ProElut PWA-2、cleanert PWAX、CNW poly-sery PWAX性能相当,各色素均有较好的回收。本实验建立的方法选择ProElut PWA-2作为净化SPE柱。

    表  4  不同固相萃取柱回收率比较(%)
    Table  4.  Comparison of recovery rate with different solid phase extraction columns (%)
    序号项目Cleanert PAProElut PXAProElut PWAProElut PWA-2cleanert PWAXpoly-sery 专用柱poly-sery PWAX
    1柠檬黄98.1±3.13.8±1.187.2±3.191.7±1.189.7±1.195.1±4.692.5±1.1
    2新红65.3±2.66.4±2.585.3±2.392.6±2.191.5±5.396.5±2.794.5±3.1
    3苋菜红61.1±4.39.0±3.261.5±1.194.3±3.497.3±2.294.7±4.292.3±4.3
    4靛蓝72.4±3.313.3±1.792.6±1.494.4±2.592.3±1.187.2±2.792.1±3.4
    5丽春红S4.0±3.21.2±2.546.7±5.188.2±2.294.1±2.192.6±4.494.5±3.5
    6胭脂红0.5±0.10.3±3.252.2±3.298.3±1.894.2±1.292.8±1.591.7±2.1
    7喹啉黄QYNa2I a82.3±2.311.2±1.273.1±1.291.2±2.494.0±2.392.7±2.293.4±2.3
    8日落黄92.1±4.113.2±4.186.3±1.594.2±3.895.7±2.194.2±3.293.3±3.3
    9喹啉黄QYNa2II a87.2±4.316.5±1.282.5±1.191.7±2.394.2±3.291.1±2.293.1±3.3
    10诱惑红94.1±3.711.3±3.294.2±2.891.3±4.293.1±4.196.3±3.791.0±3.6
    11亮蓝98.2±2.910.2±2.295.5±4.193.1±1.192.8±1.457.3±2.595.4±2.5
    12酸性红4451.4±3.111.1±1.558.1±2.694.2±2.593.1±3.497.5±5.794.5±1.1
    13酸性红31.3±2.31.3±1.159.3±5.594.6±3.197.3±2.991.2±5.191.3±2.1
    14喹啉黄 QYNaI a71.8±4.315±1.963.3±2.190.2±2.793.4±3.692.1±2.794.2±3.6
    15食品红178.3±1.74.6±2.153.3±4.595.4±2.593.2±3.392.3±3.194.1±1.1
    16橙黄197.1±1.51.2±1.582.5±2.296.6±1.797.8±4.793.2±2.892.2±2.1
    17喹啉黄 QYNaII a88.2±2.76.8±1.284.4±2.793.7±2.194.6±2.894.1±2.391.7±3.5
    18专利蓝Ⅴ96.5±2.81.4±1.196.1±3.792.3±2.393.3±5.969.4±4.294.3±1.2
    19酸性红5096.1±4.61.1±0.995.7±2.191.5±4.592.4±2.292.2±3.291.2±1.4
    20赤藓红94.2±2.33.2±3.181.3±5.697.2±2.395.5±3.493.0±2.191.3±2.0
    21酸性橙20.4±0.32.5±1.178.4±2.197.3±1.892.1±1.894.5±4.091.4±2.7
    22酸性橙898.5±3.71.7±0.598.2±3.198.1±3.197.2±3.295.2±3.295.1±1.9
    23亮蓝G97.3±2.85.6±0.696.3±3.197.3±3.195.3±2.863.4±2.991.5±3.3
    注:a喹啉黄为2-(2-喹啉基)-茚满基-1,3-二酮单磺酸钠盐(QYNa)和2-(2-喹啉基)-茚满基-1,3-二酮二磺酸 二钠盐(QYNa2)的混合物。QYNa、QYNa2各存在两个同分异构体,按保留时间的前后分别定义为: QYNa2Ⅰ、QYNa2Ⅱ、QYNaⅠ、QYNaⅡ[13]
    下载: 导出CSV 
    | 显示表格

    针式过滤器是实验室最为常见的、使用频率很高的耗材,多用于上机前最后一步净化处理。然而某些材质的针式过滤器对目标物可能存在吸附作用,直接影响最终回收率。目前市面上主要滤膜材质分为6种,具体分类及性能如下表5所示。为研究6种滤膜(均选用0.45 um)对合成着色剂是否吸附作用,选用浓度为2.0 μg/mL的混合标样进行测试。结果表明,尼龙膜对合成着色剂吸附作用最为明显,其他膜对赤藓红存在一定吸附,PTFE膜对合成色素基本无吸附作用。

    表  5  不同滤膜材质类型及使用性能
    Table  5.  Different material types of filter membrane and its application performance
    滤膜类型适用条件使用性能合成着色剂适用情况
    聚醚砜(PES)水系较高化学稳定和热稳定,耐酸碱赤藓红少有吸附
    混合纤维素酯(MCE)水系不耐有机溶液和强酸、强碱溶液赤藓红少有吸附
    尼龙(Nylon)水系、有机系化学稳定性较好,耐酸碱及有机试剂大部分色素有吸附
    聚四氟乙烯(PTFE)水系、有机系耐温性好,抗强酸、碱及氧化剂基本无吸附作用
    聚偏氟乙烯(PVDF)有机系适用于化学腐蚀性强的有机溶剂赤藓红少有吸附
    聚丙烯(PP)有机系物理化学性质稳定,有较好相容性赤藓红少有吸附
    下载: 导出CSV 
    | 显示表格

    色谱分析柱如选择不当,容易导致柠檬黄与新红分离度较差,通过优化条件也难以改善。本研究选用Inspire C18色谱分析柱(250 mm×4.6 mm,5 μm)作为色谱分析柱,以甲醇-20 mmol/L乙酸铵为流动相体系,通过优化条件,按表1条件梯度洗脱,20种合成色素30 min可以完成很好分离,标准溶液色谱图见图2

    图  2  标准溶液色谱图
    注:a、b、c、d依次为标准溶液在波长254、428、509、625 nm的色谱图;出峰顺序为:1.柠檬黄,2.新红,3.苋菜红,4.靛蓝,5.丽春红S,6.胭脂红,7.喹啉黄QYNa2I ,8.日落黄,9.喹啉黄QYNa2II,10.诱惑红,11.亮蓝,12酸性红44,13.酸性红,14.喹啉黄QYNaI,15.食品红1,16.橙黄1,17.喹啉黄QYNaII,18.酸性红50,19.专利蓝Ⅴ,20.赤藓红,21.酸性橙2,22酸性橙8,23.亮蓝G。
    Figure  2.  Standard solution chromatography

    目前国家标准和文献方法检测波长多选用254 nm,但实际检测中发现复杂基质样品中大部分干扰物在254 nm均有吸收,容易干扰积分判断。此外亮蓝、靛蓝、专利蓝Ⅴ在紫外区灵敏度很低,往往定量不准,难以满足实际检测需要。本实验采用可见波长进行定量分析,二极管阵列检测器(DAD)对20种色素在200~800 nm范围内进行全波长扫描,各种合成着色剂最大吸收波长见表6,综合考虑检测器通道的限制,最终选择428、509、625 nm为定量波长。

    表  6  20种合成着色剂最大吸收波长、定量波长、线性方程、检出限及定量限
    Table  6.  Maximum absorption wavelength, quantitative wavelength, linear equation, detection limit and quantitative limit of 20 synthetic colorants
    序号项目最大吸收波长λ(nm)定量波长
    λ(nm)
    线性方程相关系数r检出限(mg/kg)定量限(mg/kg)
    1柠檬黄428428Y=14772X+2360.999940.51.5
    2新红507509Y=10435X+3150.999960.51.5
    3苋菜红522509Y=11256X+1020.999890.51.5
    4靛蓝609625Y=2985X−1160.999120.51.5
    5丽春红S518509Y=12854X+2560.999360.51.5
    6胭脂红510509Y=12806X+3300.999980.51.5
    7喹啉黄QYNa2I412428Y=4819X−1110.999940.51.5
    8日落黄483509Y=14439X+5290.999970.51.5
    9喹啉黄QYNa2II417428Y=2002X−1450.999820.51.5
    10诱惑红508509Y=16089X+3360.999890.51.5
    11亮蓝630625Y=38530X−1270.999950.51.5
    12酸性红44513509Y=11767X+2440.999890.51.5
    13酸性红518509Y=12675X+3690.999960.51.5
    14喹啉黄 QYNaI417428Y=5580X−1410.999480.51.5
    15食品红1504509Y=12699X+5120.999980.51.5
    16橙黄1472509Y=11157X+1030.999970.51.5
    17喹啉黄 QYNaII413428Y=11142X+1260.999920.51.5
    18酸性红50532509Y=19511X+3610.999880.51.5
    19专利蓝Ⅴ636625Y=44901X−1150.999120.51.5
    20赤藓红531509Y=9673X−1250.999120.51.5
    21酸性橙2484509Y=13401X+2230.999860.51.5
    22酸性橙8492509Y=12895X+1160.999950.51.5
    23亮蓝G609625Y=5738X+1280.999450.51.5
    下载: 导出CSV 
    | 显示表格

    将1.2.3的系列标准溶液,按优化的色谱条件进行测定,以浓度为横坐标,峰面积为纵坐标,进行线性拟合。结果可知,20种合成色素在0.1~20 μg /mL内均呈良好的线性,相关系数符合GB/T 27404-2008中附录F.2要求,不同种类合成着色剂的最大吸收波长、定量波长、线性方程及相关系数见表6。在本试验条件下对供试液进行稀释,以单位浓度峰面积响应最低的靛蓝3倍信噪比确定检出限,10倍信噪比确定定量限,结果如下表6。本方法检出限均可以达到GB5009.35-2016检出限(0.5 mg/kg)要求。

    选择一未添加色素的口味姜作为空白基质,按三个浓度水平进行加标,分别为1.0、5.0和50 mg/kg,每个水平重复分析测定6次,计算回收率和相对标准偏差(RSD),结果如表7。实验结果表明,20种合成色素在1.0 mg/kg添加水平回收率为84.0%~101.7%,RSD为1.6%~4.4%;5.0 mg/kg添加水平回收率为90.1%~104.3%,RSD为1.3%~4.9%;50 mg/kg添加水平回收率为90.2%~104.5%,RSD为1.4%~5.3%。回收率及精密度符合GB/T 27404-2008中附录F.1、F.3要求。

    表  7  20种合成着色剂不同添加水平的回收率和精密度(n=6)
    Table  7.  Recovery and precision of 20 synthetic colorants with different additive levels (n=6)
    序号项目加标量1.0 mg/kg 加标量5.0 mg/kg 加标量50 mg/kg
    回收率(%)RSD(%)回收率(%)RSD(%)回收率(%)RSD(%)
    1柠檬黄91.5~99.63.8 90.1~97.83.5 91.3~98.13.2
    2新红85.5~93.94.091.5~96.32.390.5~95.62.4
    3苋菜红90.5~94.11.791.4~96.72.4101.1~104.51.4
    4靛蓝87.3~96.94.491.0~97.63.191.5~99.73.9
    5丽春红S91.5~94.61.991.5~96.52.391.0~96.42.1
    6胭脂红89.6~99.64.391.1~97.93.291.2~98.93.5
    7喹啉黄QYNa2I90.4~99.64.291.2~95.72.194.4~98.82.1
    8日落黄92.9~101.74.193.8~103.64.492.4~96.51.9
    9喹啉黄QYNa2II91.5~95.41.991.5~95.81.891.1~97.93.3
    10诱惑红92.4~98.12.793.9~97.62.192.3~96.21.8
    11亮蓝87.1~92.52.293.7~95.91.392.5~99.83.4
    12酸性红4492.6~96.51.8 90.8~97.53.2 91.2~96.62.5
    13酸性红90.1~95.12.191.1~94.61.692.9~99.73.4
    14喹啉黄 QYNaI91.7~96.82.291.5~95.71.990.2~101.65.1
    15食品红190.6~95.42.191.5~99.23.591.3~102.14.8
    16橙黄191.8~97.72.391.2~95.62.191.6~99.43.8
    17喹啉黄 QYNaII90.5~98.33.790.2~92.61.392.3~97.12.2
    18酸性红5091.1~99.34.090.5~93.31.394.5~98.31.7
    19专利蓝Ⅴ84.0~94.14.392.5~97.52.491.1~102.85.3
    20赤藓红89.3~95.12.790.5~95.72.391.5~98.43.1
    21酸性橙291.5~97.73.093.1~104.34.991.5~97.72.9
    22酸性橙892.4~95.81.690.5~94.21.793.6~99.42.7
    23亮蓝G91.3~97.52.693.5~100.83.092.4~97.92.5
    下载: 导出CSV 
    | 显示表格

    目前适用于检测蜜饯中合成着色剂的标准为GB5009.35-2016。为验证本实验方法,并进一步与标准检测方法进行比较分析,选择添加有合成着色剂的甜心金桔干、猕猴桃干和金梅姜作为分析对象,按步骤1.2进行检测分析,结果如表8。试验结果表明,甜心金桔干检出胭脂红和日落黄,胭脂红超出GB2760-2014限量标准0.05 g/kg;猕猴桃干检出柠檬黄和亮蓝;金梅姜检出胭脂红,超出GB2760-2014限量标准0.05 g/kg。由表8可见,采用本方法检测分析阳性样品,定量结果均高于国标方法,回收率更高,操作更加便捷,具有更好的优势。

    表  8  蜜饯中合成着色剂的检测方法比较 (mg/kg)
    Table  8.  Comparison of detection methods of synthetic colorants in candied fruit (mg/kg)
    序号项目本方法 GB 5009.35-2016
    甜心金桔干猕猴桃干金梅姜甜心金桔干猕猴桃干金梅姜
    1柠檬黄ND36ND ND29ND
    2新红NDNDNDNDNDND
    3苋菜红NDNDNDNDNDND
    4靛蓝NDNDNDNDNDND
    5丽春红SNDNDNDNDNDND
    6胭脂红64aND58a51aND52a
    7喹啉黄QYNa2INDNDNDNDNDND
    8日落黄82NDND77NDND
    9喹啉QYNa2IINDNDNDNDNDND
    10诱惑红NDNDNDNDNDND
    11亮蓝ND21NDND19ND
    12酸性红44NDNDNDNDNDND
    13酸性红NDNDNDNDNDND
    14喹啉黄 QYNaINDNDNDNDNDND
    15食品红1NDNDNDNDNDND
    16橙黄1NDNDNDNDNDND
    17喹啉黄 QYNaIINDNDNDNDNDND
    18酸性红50NDNDNDNDNDND
    19专利蓝ⅤNDNDNDNDNDND
    20赤藓红NDNDNDNDNDND
    21酸性橙2NDNDNDNDNDND
    22酸性橙8NDNDNDNDNDND
    23亮蓝GNDNDNDNDNDND
    注:a:胭脂红检测结果超出GB2760-2014限量标准0.05 g/kg;ND表示未检出。
    下载: 导出CSV 
    | 显示表格

    本研究采用二极管阵列反相高效液相色谱对蜜饯中20种合成着色剂进行分析检测。对不同提取试剂的提取效率进行比较优化,选择甲醇/氨水溶液作为样品提取液;对7种不同的SPE柱进行比较分析,选择混合型弱阴离子反相固相萃取柱进行样品净化;对不同过滤膜进行比较优选;对检测波长及仪器条件进行优化。从线性方程、检出限、定量限、回收率、精密度等方面进行方法学考察,并对不同品类的实际样品进行测试分析。结果表明,该方法操作便捷、稳定性好、回收率高,可以有效解决目前在蜜饯检测过程中遇到的困难,并可以参考应用于其他食品类别,为色素类检测标准的制订及修订提供参考依据。

  • 图  1   不同比例甲醇氨水溶液提取效率比较

    Figure  1.   Comparison of extraction efficiency of methanol-ammonia solution with different proportions

    图  2   标准溶液色谱图

    注:a、b、c、d依次为标准溶液在波长254、428、509、625 nm的色谱图;出峰顺序为:1.柠檬黄,2.新红,3.苋菜红,4.靛蓝,5.丽春红S,6.胭脂红,7.喹啉黄QYNa2I ,8.日落黄,9.喹啉黄QYNa2II,10.诱惑红,11.亮蓝,12酸性红44,13.酸性红,14.喹啉黄QYNaI,15.食品红1,16.橙黄1,17.喹啉黄QYNaII,18.酸性红50,19.专利蓝Ⅴ,20.赤藓红,21.酸性橙2,22酸性橙8,23.亮蓝G。

    Figure  2.   Standard solution chromatography

    表  1   梯度洗脱条件

    Table  1   Gradient elution conditions

    时间(min)流速(mL/min)A甲醇(%)B 20 mmol/L乙酸铵(%)
    0.01.01090
    2.01.01090
    18.01.07030
    27.01.09010
    32.01.09010
    34.01.01090
    38.01.01090
    下载: 导出CSV

    表  2   不同提取溶剂的提取效果及回收率比较

    Table  2   Comparison of extraction effect and recovery rate with different extraction methods

    提取溶剂提取效果回收率(%)
    温热水样液极浑浊35.2±10.0
    乙酸铵水溶液样液极浑浊37.6±8.8
    亚铁氰化钾-乙酸锌样液澄清26.3±6.9
    硫酸-钨酸钠样液较澄清27.5±7.3
    丙酮:水=9:1,v/v样液澄清,部分样品结团,不易分散51.2±5.4
    乙腈:氨水:水=7:2:1,v/v样液澄清92.6±3.7
    甲醇:氨水=10:1,v/v样液澄清93.6±3.9
    乙腈:氨水=10:1,v/v样液澄清,但有样品提取液出现分层91.6±4.1
    下载: 导出CSV

    表  3   不同提取剂对不同样品的色素回收率比较(%)

    Table  3   Comparison of colorant recovery rate of different extractants for different samples (%)

    样品类型提取剂柠檬黄胭脂红日落黄酸性橙2
    口味姜丝乙醇/氨水/水93.4±3.190.3±4.193.0±4.491.4±3.4
    甲醇/氨水94.2±3.091.2±2.693.2±3.194.4±3.1
    芒果干乙醇/氨水/水91.0±3.291.3±2.994.0±4.792.5±2.8
    甲醇/氨水92.3±4.192.5±3.593.3.0±2.593.1±3.5
    甜心金桔乙醇/氨水/水11.5±7126.3±10291.0±3.292.3±4.1
    甲醇/氨水89±4.991.3±2.992.2±3.591.4±2.7
    下载: 导出CSV

    表  4   不同固相萃取柱回收率比较(%)

    Table  4   Comparison of recovery rate with different solid phase extraction columns (%)

    序号项目Cleanert PAProElut PXAProElut PWAProElut PWA-2cleanert PWAXpoly-sery 专用柱poly-sery PWAX
    1柠檬黄98.1±3.13.8±1.187.2±3.191.7±1.189.7±1.195.1±4.692.5±1.1
    2新红65.3±2.66.4±2.585.3±2.392.6±2.191.5±5.396.5±2.794.5±3.1
    3苋菜红61.1±4.39.0±3.261.5±1.194.3±3.497.3±2.294.7±4.292.3±4.3
    4靛蓝72.4±3.313.3±1.792.6±1.494.4±2.592.3±1.187.2±2.792.1±3.4
    5丽春红S4.0±3.21.2±2.546.7±5.188.2±2.294.1±2.192.6±4.494.5±3.5
    6胭脂红0.5±0.10.3±3.252.2±3.298.3±1.894.2±1.292.8±1.591.7±2.1
    7喹啉黄QYNa2I a82.3±2.311.2±1.273.1±1.291.2±2.494.0±2.392.7±2.293.4±2.3
    8日落黄92.1±4.113.2±4.186.3±1.594.2±3.895.7±2.194.2±3.293.3±3.3
    9喹啉黄QYNa2II a87.2±4.316.5±1.282.5±1.191.7±2.394.2±3.291.1±2.293.1±3.3
    10诱惑红94.1±3.711.3±3.294.2±2.891.3±4.293.1±4.196.3±3.791.0±3.6
    11亮蓝98.2±2.910.2±2.295.5±4.193.1±1.192.8±1.457.3±2.595.4±2.5
    12酸性红4451.4±3.111.1±1.558.1±2.694.2±2.593.1±3.497.5±5.794.5±1.1
    13酸性红31.3±2.31.3±1.159.3±5.594.6±3.197.3±2.991.2±5.191.3±2.1
    14喹啉黄 QYNaI a71.8±4.315±1.963.3±2.190.2±2.793.4±3.692.1±2.794.2±3.6
    15食品红178.3±1.74.6±2.153.3±4.595.4±2.593.2±3.392.3±3.194.1±1.1
    16橙黄197.1±1.51.2±1.582.5±2.296.6±1.797.8±4.793.2±2.892.2±2.1
    17喹啉黄 QYNaII a88.2±2.76.8±1.284.4±2.793.7±2.194.6±2.894.1±2.391.7±3.5
    18专利蓝Ⅴ96.5±2.81.4±1.196.1±3.792.3±2.393.3±5.969.4±4.294.3±1.2
    19酸性红5096.1±4.61.1±0.995.7±2.191.5±4.592.4±2.292.2±3.291.2±1.4
    20赤藓红94.2±2.33.2±3.181.3±5.697.2±2.395.5±3.493.0±2.191.3±2.0
    21酸性橙20.4±0.32.5±1.178.4±2.197.3±1.892.1±1.894.5±4.091.4±2.7
    22酸性橙898.5±3.71.7±0.598.2±3.198.1±3.197.2±3.295.2±3.295.1±1.9
    23亮蓝G97.3±2.85.6±0.696.3±3.197.3±3.195.3±2.863.4±2.991.5±3.3
    注:a喹啉黄为2-(2-喹啉基)-茚满基-1,3-二酮单磺酸钠盐(QYNa)和2-(2-喹啉基)-茚满基-1,3-二酮二磺酸 二钠盐(QYNa2)的混合物。QYNa、QYNa2各存在两个同分异构体,按保留时间的前后分别定义为: QYNa2Ⅰ、QYNa2Ⅱ、QYNaⅠ、QYNaⅡ[13]
    下载: 导出CSV

    表  5   不同滤膜材质类型及使用性能

    Table  5   Different material types of filter membrane and its application performance

    滤膜类型适用条件使用性能合成着色剂适用情况
    聚醚砜(PES)水系较高化学稳定和热稳定,耐酸碱赤藓红少有吸附
    混合纤维素酯(MCE)水系不耐有机溶液和强酸、强碱溶液赤藓红少有吸附
    尼龙(Nylon)水系、有机系化学稳定性较好,耐酸碱及有机试剂大部分色素有吸附
    聚四氟乙烯(PTFE)水系、有机系耐温性好,抗强酸、碱及氧化剂基本无吸附作用
    聚偏氟乙烯(PVDF)有机系适用于化学腐蚀性强的有机溶剂赤藓红少有吸附
    聚丙烯(PP)有机系物理化学性质稳定,有较好相容性赤藓红少有吸附
    下载: 导出CSV

    表  6   20种合成着色剂最大吸收波长、定量波长、线性方程、检出限及定量限

    Table  6   Maximum absorption wavelength, quantitative wavelength, linear equation, detection limit and quantitative limit of 20 synthetic colorants

    序号项目最大吸收波长λ(nm)定量波长
    λ(nm)
    线性方程相关系数r检出限(mg/kg)定量限(mg/kg)
    1柠檬黄428428Y=14772X+2360.999940.51.5
    2新红507509Y=10435X+3150.999960.51.5
    3苋菜红522509Y=11256X+1020.999890.51.5
    4靛蓝609625Y=2985X−1160.999120.51.5
    5丽春红S518509Y=12854X+2560.999360.51.5
    6胭脂红510509Y=12806X+3300.999980.51.5
    7喹啉黄QYNa2I412428Y=4819X−1110.999940.51.5
    8日落黄483509Y=14439X+5290.999970.51.5
    9喹啉黄QYNa2II417428Y=2002X−1450.999820.51.5
    10诱惑红508509Y=16089X+3360.999890.51.5
    11亮蓝630625Y=38530X−1270.999950.51.5
    12酸性红44513509Y=11767X+2440.999890.51.5
    13酸性红518509Y=12675X+3690.999960.51.5
    14喹啉黄 QYNaI417428Y=5580X−1410.999480.51.5
    15食品红1504509Y=12699X+5120.999980.51.5
    16橙黄1472509Y=11157X+1030.999970.51.5
    17喹啉黄 QYNaII413428Y=11142X+1260.999920.51.5
    18酸性红50532509Y=19511X+3610.999880.51.5
    19专利蓝Ⅴ636625Y=44901X−1150.999120.51.5
    20赤藓红531509Y=9673X−1250.999120.51.5
    21酸性橙2484509Y=13401X+2230.999860.51.5
    22酸性橙8492509Y=12895X+1160.999950.51.5
    23亮蓝G609625Y=5738X+1280.999450.51.5
    下载: 导出CSV

    表  7   20种合成着色剂不同添加水平的回收率和精密度(n=6)

    Table  7   Recovery and precision of 20 synthetic colorants with different additive levels (n=6)

    序号项目加标量1.0 mg/kg 加标量5.0 mg/kg 加标量50 mg/kg
    回收率(%)RSD(%)回收率(%)RSD(%)回收率(%)RSD(%)
    1柠檬黄91.5~99.63.8 90.1~97.83.5 91.3~98.13.2
    2新红85.5~93.94.091.5~96.32.390.5~95.62.4
    3苋菜红90.5~94.11.791.4~96.72.4101.1~104.51.4
    4靛蓝87.3~96.94.491.0~97.63.191.5~99.73.9
    5丽春红S91.5~94.61.991.5~96.52.391.0~96.42.1
    6胭脂红89.6~99.64.391.1~97.93.291.2~98.93.5
    7喹啉黄QYNa2I90.4~99.64.291.2~95.72.194.4~98.82.1
    8日落黄92.9~101.74.193.8~103.64.492.4~96.51.9
    9喹啉黄QYNa2II91.5~95.41.991.5~95.81.891.1~97.93.3
    10诱惑红92.4~98.12.793.9~97.62.192.3~96.21.8
    11亮蓝87.1~92.52.293.7~95.91.392.5~99.83.4
    12酸性红4492.6~96.51.8 90.8~97.53.2 91.2~96.62.5
    13酸性红90.1~95.12.191.1~94.61.692.9~99.73.4
    14喹啉黄 QYNaI91.7~96.82.291.5~95.71.990.2~101.65.1
    15食品红190.6~95.42.191.5~99.23.591.3~102.14.8
    16橙黄191.8~97.72.391.2~95.62.191.6~99.43.8
    17喹啉黄 QYNaII90.5~98.33.790.2~92.61.392.3~97.12.2
    18酸性红5091.1~99.34.090.5~93.31.394.5~98.31.7
    19专利蓝Ⅴ84.0~94.14.392.5~97.52.491.1~102.85.3
    20赤藓红89.3~95.12.790.5~95.72.391.5~98.43.1
    21酸性橙291.5~97.73.093.1~104.34.991.5~97.72.9
    22酸性橙892.4~95.81.690.5~94.21.793.6~99.42.7
    23亮蓝G91.3~97.52.693.5~100.83.092.4~97.92.5
    下载: 导出CSV

    表  8   蜜饯中合成着色剂的检测方法比较 (mg/kg)

    Table  8   Comparison of detection methods of synthetic colorants in candied fruit (mg/kg)

    序号项目本方法 GB 5009.35-2016
    甜心金桔干猕猴桃干金梅姜甜心金桔干猕猴桃干金梅姜
    1柠檬黄ND36ND ND29ND
    2新红NDNDNDNDNDND
    3苋菜红NDNDNDNDNDND
    4靛蓝NDNDNDNDNDND
    5丽春红SNDNDNDNDNDND
    6胭脂红64aND58a51aND52a
    7喹啉黄QYNa2INDNDNDNDNDND
    8日落黄82NDND77NDND
    9喹啉QYNa2IINDNDNDNDNDND
    10诱惑红NDNDNDNDNDND
    11亮蓝ND21NDND19ND
    12酸性红44NDNDNDNDNDND
    13酸性红NDNDNDNDNDND
    14喹啉黄 QYNaINDNDNDNDNDND
    15食品红1NDNDNDNDNDND
    16橙黄1NDNDNDNDNDND
    17喹啉黄 QYNaIINDNDNDNDNDND
    18酸性红50NDNDNDNDNDND
    19专利蓝ⅤNDNDNDNDNDND
    20赤藓红NDNDNDNDNDND
    21酸性橙2NDNDNDNDNDND
    22酸性橙8NDNDNDNDNDND
    23亮蓝GNDNDNDNDNDND
    注:a:胭脂红检测结果超出GB2760-2014限量标准0.05 g/kg;ND表示未检出。
    下载: 导出CSV
  • [1]

    DIACU E, UNGUREANU E M, IVANOVI A A, et al. Voltammetric techniques for determination of synthetic pigment Allura Red AC in beverages[J]. Revista de Chimie-Bucharest-Original Edition-,2015,66(8):1100−1104.

    [2]

    DOELL D L, FOLMER D E, LEE H S, et al. Exposure estimate for FD&C Color Additives for the U. S. population[J]. Food Additives & Contaminants,2016,33(5):782−797.

    [3] 李巧玲, 田晶. 食用合成色素的安全性评价及对策[J]. 食品工业,2017(11):268−271. [LI Qiaoling, TIAN Jing. Safety evaluation and countermeasure of edible synthetic pigment[J]. Food Industry,2017(11):268−271.

    LI Qiaoling, TIAN Jing. Safety evaluation and countermeasure of edible synthetic pigment [J]. Food Industry, 2017(11) : 268-271.

    [4] 孙文通, 康勇, 王仕兴. 食品中偶氮类色素检测方法的研究进展[J]. 食品安全质量检测学报,2016(6):2302−2308. [SUN Wentong, KANG Yong, WANG Shixing. Research progress on determination methods of azo pigments in food[J]. Journal of Food Safety and Quality Inspection,2016(6):2302−2308.

    SUN Wentong, KANG Yong, WANG Shixing. Research progress on determination methods of Azo Pigments in food [J]. Journal of Food Safety and Quality Inspection, 2016(6) : 2302-2308.

    [5] 胡梦坤, 王震宇, 董娇. 食用色素安全评价及检测技术[J]. 农业科技与装备,2019(4):47−48. [HU Mengkun, WANG Zhenyu, DONG Jiao. Safety evaluation and detection technology of food pigment[J]. Agricultural Technology and Equipment,2019(4):47−48.

    HU Mengkun, WANG Zhenyu, DONG Jiao. Safety Evaluation and detection technology of food pigment [J]. Agricultural technology and equipment, 2019(4): 47-48.

    [6]

    CLEMENS R, PRESSMAN P. Coloring the truth: Color additives in nutrition and health[J]. Nutrition Today,2018,53(4):169−173. doi: 10.1097/NT.0000000000000285

    [7] 中华人民共和国国家卫生和计划生育委员会. GB 5009.35-2016 食品安全国家标准 食品中合成着色剂的测定[S]. 北京: 中国标准出版社, 2017.

    National Health and Family Planning Commission. GB 5009.35-2016 National standard for food safety. Determination of synthetic colorants in food[S]. Beijing: China Standard Press, 2017.

    [8] 廖若宇, 孙悦, 刘新保, 等. 食品中合成着色剂的提取方式及测定方法研究进展[J]. 食品工业科技,2021,41(20):342−350. [LIAO Ruoyu, SUN Yue, LIU Xinbao, et al. Research progress on extraction and determination of synthetic colorants in food[J]. Science and Technology in the Food Industry,2021,41(20):342−350.

    LIAO Ruoyu, SUN Yue, LIU Xinbao, et al. Research progress on extraction and determination of synthetic colorants in food [J]. Science and Technology in the Food Industry, 2021, 41(20) : 342-350.

    [9] 郭永辉, 赵连兴, 柯泽华, 等. 高效液相色谱法测定食品中着色剂和工业染料[J]. 食品与发酵工业,2020,46(17):259−263. [GUO Yonghui, ZHAO Lianxing, KE Zehua, et al. High-performance liquid chromatography determination of colorants and industrial dyes in food[J]. Food and Fermentation Industries,2020,46(17):259−263.

    GUO Yonghui, ZHAO Lianxing, KE Zehua, et al. High-performance liquid chromatography determination of colorants and industrial dyes in food[J]. Food and fermentation industries, 2020, 46(17) : 259-263.

    [10] 中华人民共和国国家卫生和计划生育委员会. GB 2760-2014食品安全国家标准 食品添加剂使用标准[S]. 北京: 中国标准出版社, 2015.

    National Health and Family Planning Commission. GB 2760-2014 National standard for food safety standard for use of food additives[S]. Beijing: China Standard Press, 2015.

    [11] 中华人民共和国出入境检验检疫总局. SN/T 1743-2006进出口行业标准 食品中诱惑红、酸性红、亮蓝、日落黄的含量检测 高效液相色谱法[S]. 北京: 中国标准出版社, 2006.

    General Administration of Entry-exit Inspection and Quarantine. SN/T 1743-2006 Standard for import and export industries, determination of alluring red, acid red, bright blue, and sunset yellow in foods, high-performance liquid chromatography[S]. Beijing: China Standard Press, 2006.

    [12] 中国国家标准化管理委员会. GB/T 21916-2008 水果罐头中合成着色剂的测定 高效液相色谱法[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of China. GB/T 21916-2008 Determination of synthetic colorants in canned fruits, high-performance liquid chromatography[S]. Beijing: China Standard Press, 2008.

    [13] 江苏省计划和生育委员会. DBS 32/012-2016 食品安全地方标准 食品中喹啉黄的检测 高效液相色谱法、液相色谱-质谱/质谱法[S].

    Jiangsu Provincial Planning and Family Planning Commission. DBS 32/012-2016 Local standard for food safety, determination of quinoline yellow in food, High-performance liquid chromatography, LC-MS/MS[S].

    [14] 邹志飞, 蒲民, 李建军, 等. 各国(地区)食用色素的使用现况与比对分析[J]. 中国食品卫生杂志,2010,22(2):112−121. [ZOU Zhifei, PU Min, LI Jianjun, et al. The present situation and comparative analysis of the use of food pigment in different countries (regions)[J]. Food Safety,2010,22(2):112−121.

    ZOU Zhifei, PU Min, LI Jianjun, et al. The present situation and comparative analysis of the use of food pigment in different countries (regions)[J]. Food Safety, 2010, 22(2): 112-121.

    [15] 宋丹萍, 张宏, 李琪. 国内外食用色素标准的比较及检测方法的研究进展[J]. 食品科学,2014,35(3):295−300. [SONG Danping, ZHANG Hong, LI Qi. Comparison of food pigment standards and development of detection methods at home and abroad[J]. Food Science,2014,35(3):295−300. doi: 10.7506/spkx1002-6630-201403058

    SONG Danping, ZHANG Hong, LI Qi. Comparison of food pigment standards and development of detection methods at home and abroad [J]. Food Science, 2014, 35(3): 295-300. doi: 10.7506/spkx1002-6630-201403058

    [16] 陈贤驰, 曾豪威, 汪宁, 等. 国内外食用色素比对分析[J]. 食品安全导刊,2018(16):70−74. [CHEN Xianchi, ZENG Haowei, WANG Ning, et al. Comparative analysis of edible pigments at home and abroad[J]. Food Safety Guide,2018(16):70−74. doi: 10.3969/j.issn.1674-0270.2018.16.033

    CHEN Xianchi, ZENG Haowei, WANG Ning, et al. Comparative analysis of Edible Pigments at home and abroad[J]. Food Safety Guide, 2018(16) : 70-74. doi: 10.3969/j.issn.1674-0270.2018.16.033

    [17] 《2019年6月输日食品违反日本食品卫生法情况》[N/OL]. 食品伙伴网. http://news.foodmate.net/2019/06/522569.html.

    《Violation of Japanese Food Hygiene Law by food exported to Japan in June 2019》[N/OL]. Food partners. http://news.foodmate.net/2019/06/522569.html.

    [18] 《欧盟修订鲑鱼替代品中的色素使用规定》[N/OL]. 进出口服务网. http://www.ciedata.com/News/202101/fa73dd75-1b30-4148-8322-2123ffbd097d.html.

    EU revised regulations on the use of pigments in Salmon Substitutes [N/OL]. Import and Export Service Network. http://www.ciedata.com/News/202101/fa73dd75-1b30-4148-8322-2123ffbd097d.html.

    [19] 刘珈伶, 陈宁周, 蒋定之, 等. 冰淇淋中6种合成色素的固相萃取HPLC检测方法[J]. 中国食品添加剂,2018,1(167):196−201. [LIU Jialing, CHEN Ningzhou, JIANG Dingzhi, et al. Determination of six synthetic pigments in ice cream by solid phase extraction and HPLC[J]. Chinese Food Additives,2018,1(167):196−201.

    LIU Jialing, CHEN Ningzhou, JIANG Dingzhi, et al. Determination of six synthetic pigments in ice cream by solid phase extraction and HPLC[J]. Chinese Food Additives, 2018, 1(167): 196-201.

    [20] 唐一秋. 固相萃取-高效液相色谱法对食品中9种合成着色剂的测定[J]. 粮食流通技术,2019(7):149−152. [TANG Yiqiu. Solid phase extraction-determination of nine synthetic colorants in food by high-performance liquid chromatography[J]. Food Distribution Technology,2019(7):149−152.

    TANG Yiqiu. Solid phase extraction-determination of nine synthetic colorants in food by High-performance liquid chromatography[J]. Food Distribution Technology, 2019(7): 149-152.

    [21] 夏宗艳, 徐文远, 徐豪, 等. 超高压液相色谱同时检测食品中8种人工合成色素[J]. 化工技术与开发,2019,48(1):52−56. [XIA Zongyan, XU Wenyuan, XU Hao, et al. Simultaneous determination of eight synthetic pigments in food by high-performance liquid chromatography[J]. Chemical Technology and Development,2019,48(1):52−56. doi: 10.3969/j.issn.1671-9905.2019.01.014

    XIA Zongyan, XU Wenyuan, XU Hao, et al. Simultaneous determination of eight synthetic pigments in food by high-performance liquid chromatography[J]. Chemical Technology and Development, 2019, 48(1): 52-56. doi: 10.3969/j.issn.1671-9905.2019.01.014

    [22] 高家敏, 钮正睿, 李红霞, 等. 高效液相色谱法测定饮料中12种水溶性合成着色剂[J]. 食品安全质量检测学报,2019,10(1):135−140. [GAO Jiamin, NIU Zhengrui, LI Hongxia, et al. High-performance liquid chromatography determination of 12 water soluble synthetic colorants in beverages[J]. Journal of Food Safety and Quality Inspection,2019,10(1):135−140. doi: 10.3969/j.issn.2095-0381.2019.01.024

    GAO Jiamin, NIU Zhengrui, LI Hongxia, et al. High-performance liquid chromatography determination of 12 water soluble synthetic colorants in beverages[J]. Journal of Food Safety and Quality Inspection, 2019, 10(1) : 135-140. doi: 10.3969/j.issn.2095-0381.2019.01.024

    [23] 肖锋, 赵琼晖, 吕行, 等. 高效液相色谱法同时测定糖果中喹啉黄等9种禁限用合成色素[J]. 湘潭大学自科学报,2014,36(3):86−89. [XIAO Feng, ZHAO Qionghui, LÜ Xing, et al. Simultaneous determination of quinoline yellow and other 9 restricted synthetic pigments in candy by high-performance liquid chromatography[J]. Journal of the University of Xiangtan,2014,36(3):86−89.

    XIAO Feng, ZHAO Qionghui, Lv Xing, et al. Simultaneous determination of quinoline yellow and other 9 restricted synthetic pigments in candy by high-performance liquid chromatography[J]. Journal of the University of Xiangtan, 2014, 36(3) : 86-89.

    [24] 陈沛金, 张毅, 肖锋, 等. 高效液相色谱法测定糖果、蜜饯和饮料中19种食品添加剂[J]. 食品安全质量检测学报,2014(11):3487−3494. [CHEN Peijin, ZHANG Yi, XIAO Feng, et al. High-performance liquid chromatography determination of 19 food additives in confectionery, candied fruit and beverages[J]. Journal of Food Safety and Quality Inspection,2014(11):3487−3494.

    CHEN Peijin, ZHANG Yi, XIAO Feng, et al. High-performance liquid chromatography determination of 19 food additives in confectionery, candied fruit and beverages[J]. Journal of Food Safety and Quality Inspection, 2014(11) : 3487-3494.

    [25] 邢晓慧, 尹未华, 韩春菊, 等. 高效液相色谱法测定蜜饯中食用合成色素[J]. 食品研究与开发,2007,28(10):133−135. [XING Xiaohui, YIN Weihua, HAN Chunju, et al. High-performance liquid chromatography determination of edible synthetic pigment in candied fruit[J]. Food Research and Development,2007,28(10):133−135. doi: 10.3969/j.issn.1005-6521.2007.10.042

    XING Xiaohui, YIN Weihua, HAN Chunju, et al. High-performance liquid chromatography determination of edible synthetic pigment in candied fruit[J]. Food Research and Development, 2007, 28(10) : 133-135. doi: 10.3969/j.issn.1005-6521.2007.10.042

    [26] 代弟, 徐静, 杨璐, 等. 高效液相色谱法检测饮料中7种人工合成色素[J]. 食品安全质量检测学报,2017(3):1037−1040. [DAI Di, XU Jing, YANG Lu, et al. High-performance liquid chromatography assay for seven synthetic pigments in beverages[J]. Journal of Food Safety and Quality Inspection,2017(3):1037−1040.

    DAI Di, XU Jing, YANG Lu, et al. High-performance liquid chromatography assay for seven synthetic pigments in beverages[J]. Journal of Food Safety and Quality Inspection, 2017(3): 1037-1040.

    [27] 罗镭, 董婷, 马临科. UPLC-DAD法快速检测延胡索和红花中非法添加的28种合成色素[J]. 中药材,2017,40(11):2546−2550. [LUO Lei, DONG Ting, MA Linke. Rapid detection of 28 synthetic pigments illegally added in Corydalis yanhusuo and Carthamus tinctorius by UPLC-DAD method[J]. Chinese Materia Medica,2017,40(11):2546−2550.

    LUO Lei, DONG Ting, MA Linke. Rapid detection of 28 synthetic pigments illegally added in Corydalis Yanhusuo and Carthamus Tinctorius by UPLC-DAD method[J]. Chinese Materia Medica, 2017, 40(11) : 2546-2550.

    [28] 刘秀娟, 曹秀, 余明霞, 等. 高效液相色谱法测定饼干中的9种合成着色剂[J]. 食品工业,2021,42(5):455−457. [LIU Xiujuan, CAO Xiu, YU Mingxia, et al. High-performance liquid chromatography determination of 9 synthetic colorants in biscuits[J]. Food Industry,2021,42(5):455−457.

    LIU Xiujuan, CAO Xiu, YU Mingxia, et al. High-performance liquid chromatography determination of 9 synthetic colorants in biscuits[J]. Food Industry, 2021, 42(5) : 455-457.

    [29] 任荣军, 毛谊平, 陶涌, 等. 阴离子交换固相萃取-高效液相色谱法快速测定中成药中10种合成色素的方法研究[J]. 临床医药实践,2019,28(2):127−131. [REN Rongjun, MAO Yiping, TAO Yong, et al. Study on the rapid determination of 10 synthetic pigments in Chinese patent medicines by anion exchange solid phase extraction with high-performance liquid chromatography[J]. Clinical Medicine Practice,2019,28(2):127−131.

    REN Rongjun, MAO Yiping, TAO Yong, et al. Study on the rapid determination of 10 synthetic pigments in Chinese patent medicines by anion exchange solid phase extraction with High-performance liquid chromatography[J]. Clinical Medicine Practice, 2019, 28(2) : 127-

  • 期刊类型引用(4)

    1. 刘明珠,华玲,张秀萍,丁燃容,刘媛媛. 微波花椒鸡丁预制菜的工艺优化及其挥发性风味物质分析. 四川旅游学院学报. 2025(01): 30-35 . 百度学术
    2. 王美仁,王柏辉,杨帆,刘学勤,苏春霞,段晓蓉. 不同加工方式对牛肉干产品风味物质的影响. 食品安全质量检测学报. 2025(02): 127-137 . 百度学术
    3. 玛尔哈巴·帕尔哈提,宋占腾,杨睿娜,李静,安静,刘敏,徐贞贞,朱靖蓉. 不同品种恰玛古风味品质分析. 食品工业科技. 2025(04): 306-315 . 本站查看
    4. 郑佳琦,宫雅姝,牛梦迪,王军. 鲫鱼冷藏期间新鲜度与挥发性物质相关性分析. 食品与发酵工业. 2024(23): 226-233 . 百度学术

    其他类型引用(1)

图(2)  /  表(8)
计量
  • 文章访问数:  251
  • HTML全文浏览量:  88
  • PDF下载量:  32
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-10-31
  • 网络出版日期:  2022-06-07
  • 刊出日期:  2022-08-14

目录

/

返回文章
返回
x 关闭 永久关闭