Effects of Four Kinds of Antioxidants on the Oxidative Stability of Xanthoceras sorbifolia Bunge Oil and Analysis of Its Fatty Acid Compositions
-
摘要: 以冷榨文冠果油为原料,选择过氧化值、酸价和羰基价为评判指标,采用Schaal烘箱加速氧化法研究了四种抗氧化剂对文冠果油氧化稳定性的影响,建立了以过氧化值为指标的文冠果油的氧化动力学模型,研究了180 ℃高温条件下四种抗氧化剂对文冠果油脂肪酸组成的影响。结果表明,添加迷迭香提取物(RE)、抗坏血酸棕榈酸酯(AP)、特丁基对苯二酚(TBHQ)抗氧化效果依次为TBHQ>RE>AP,添加维生素E(VE)抗氧化效果不显著。拟合的动力学方程模型显示,空白和添加VE组的文冠果油氧化模型符合一级动力学反应,添加RE、AP、TBHQ符合零级动力学反应,通过拟合方程计算空白文冠果油的货架期为177 d,添加抗氧化剂VE、RE、AP、TBHQ的货架期分别为178、346、341、425 d。180 ℃条件下处理文冠果油,RE、AP、TBHQ在前期表现出抑制低碳链脂肪酸、饱和脂肪酸、反式脂肪酸增多的作用,但30 h后抑制作用消失,与空白组对比差别不显著。文冠果油不饱和脂肪酸含量较高,易被氧化,该研究对文冠果油的贮藏和使用提供了数据参考。Abstract: Taking cold-press Xanthoceras sorbifolia Bunge oil as material, the effects of antioxidants on the oxidation stability were studied by Schaal oven test according to peroxide value(POV), acid value(AV) and carbonyl value. The oxidation kinetic model were established with the POV determination, the effects of four antioxidants on the fatty acid compositions of Xanthoceras sorbifolia Bunge oil at 180 ℃ were studied. The results showed that the antioxidant effects of rosemary extract(RE), ascorbal palmitate(AP) and tert butyl hydroquinone (TBHQ) were in the order of TBHQ>RE>AP, and antioxidant effect of vitamin E(VE) was not significant. The fitted kinetic equation model showed that the oxidation of Xanthoceras sorbifolia Bunge oil with blank and VE group accorded with the first-order kinetic reaction, and the addition of RE, AP and TBHQ accorded with the zero order kinetic reaction. According to the fitting equation, the shelf life of blank Xanthoceras sorbifolia Bunge oil was 177 d, and that of antioxidants VE, RE, AP and TBHQ were 178, 346, 341 and 425 d respectively. When Xanthoceras sorbifolia Bunge oil was treated at 180 ℃, RE, AP and TBHQ inhibited the increasing of low carbon chain fatty acids, saturated fatty acids and trans fatty acids in the initial stage. However, the inhibitory effect disappeared after 30 hours, and there was no significant difference compared with the blank group. Unsaturated fatty acid, especially linoleic were enriched in Xanthoceras sorbifolia Bunge oil, it was easy to be oxidized. This study would provide certain data support for the storage and utilization of Xanthoceras sorbifolia Bunge oil.
-
文冠果是我国北方特有的木本油料树种,被誉为“北方油茶”,广泛分布在我国的华北、东北、内蒙、甘肃等地,具有适应性强、耐土壤贫瘠、耐干旱、耐寒的特性,文冠果树生长快、易种植,结实早、产量高,经济价值大[1-2]。文冠果种子可食用,但多用于榨油,种子去皮后的种仁含油率能达到60%以上,且不饱和脂肪酸含量达到90%以上,尤其是含有的少量神经酸,已被证明具有再生和修复受损神经的功能[3-4]。在榨油工艺选择上,为保持油脂的营养及生理活性,防止加工过程中过度氧化,文冠果种仁更适宜于冷榨取油[5]。
有关文冠果油的研究现在主要集中在油脂的提取工艺、资源综合利用以及生物活性探索方面[6-8]。在贮藏阶段,文冠果油的高不饱和脂肪酸含量容易使其发生氧化酸败,影响油脂的质量,添加外源抗氧化剂是一种防止氧化酸败和延长贮藏期的有效方法,目前,我国允许添加在植物油脂中的抗氧化剂有15种左右,现有的研究主要以油脂氧化后的理化指标为参考,初步筛选出维生素C、β-胡萝卜素等对文冠果油具有一定的抗氧化作用[9],更多类型的抗氧化剂对文冠果油氧化稳定性及其脂肪酸组成的影响研究还较少。
本文选用Schaal加速氧化法研究冷榨的文冠果油储藏期间的过氧化值、酸价和羰基价的变化,选择2种天然抗氧化剂(单线态氧猝灭剂迷迭香提取物、自由基吸收剂维生素E)、2种化学合成抗氧化剂(自由基吸收剂特丁基对苯二酚、氧清除剂抗坏血酸棕榈酸酯)[10],对文冠果油氧化稳定性影响,并以此建立氧化动力学模型,同时研究在高温条件下,4种抗氧化剂对文冠果油脂肪酸含量变化的影响,以期为文冠果油的后加工及储藏、使用提供一定参考依据。
1. 材料与方法
1.1 材料与仪器
文冠果仁 河北首冠农业科技有限公司提供;37种脂肪酸甲酯混合标准品、反式脂肪酸标准品 美国Supelco公司;石油醚、乙醚、氢氧化钾 分析纯,天津科密欧;甲醇、乙醇、正庚烷、苯 分析纯,德国Merck公司;2,4-二硝基苯肼 分析纯,罗恩试剂;维生素E(VE)、特丁基对苯二酚(tertiary-butylhydroquinone,TBHQ)、抗坏血酸棕榈酸酯(ascorbyl palmitate,AP) 山东中天生物科技;迷迭香提取物(rosemaryextract,RE) 晨光生物科技。
8860气相色谱仪 美国安捷伦公司; SY-2000旋转蒸发仪 上海亚荣生化仪器厂;KH-55A电热恒温干燥箱 康恒仪器有限公司;T2602紫外可见分光光度计 上海佑科;D03S榨油机 韩皇。
1.2 实验方法
1.2.1 文冠果油加工工艺流程
参考文献[11]设计文冠果油的加工工艺如图1:文冠果仁除杂后烘干(60~70 ℃),检测含水量,调节水分含量为2.4%,螺旋压榨取油,静置48 h后使用30目滤网进行粗滤。脱酸条件:根据测定的毛油酸价,添加质量浓度12%的氢氧化钠溶液,超碱用量0.14%,60 ℃搅拌反应28 min,静置后放出皂脚。水洗:添加油质量10%的软化水,65 ℃慢速搅拌,洗涤两次,放出水液。
按照T/LYCY 018-2020《文冠果油》中的质量要求,测定制备文冠果油的折光指数、相对密度、VE总量、甾醇总量、碘值、皂化值、酸价、过氧化值以及羰基价数值。
1.2.2 抗氧化剂对文冠果油氧化稳定性试验
参照GB 2760-2014《食品安全国家标准 食品添加剂使用标准》中抗氧化剂及其在油脂中的最大使用剂量规定,选择VE(0.7 g/kg)、RE(0.7 g/kg)、TBHQ(0.2 g/kg)、AP(0.2 g/kg)作为试验用抗氧化剂及其添加剂量,超声100 Hz处理10 min,混合均匀。以不添加抗氧化剂的文冠果油作为空白对照。
采用Schaal烘箱加速氧化试验研究文冠果油的氧化稳定性[12-13],取75 g油样,放入250 mL三角瓶中,按比例加入抗氧化剂。油样置于60±1 ℃的烘箱内避光保存,每隔4 d取样1次测定油样的过氧化值(POV)、酸价(AV)和羰基价(羰基价在前6 d每隔2 d测定1次)。
1.2.3 文冠果油氧化稳动力学分析
以油脂氧化的POV值为动力学研究指标,反应动力学模型拟合方程[14-16]:
一级反应动力学模型:lnSt=−kt+lnS0 (1) 零级反应动力学模型:−St=kt−S0 (2) 式中,t为反应时间,k为比例系数,S=1/[POV],S0和St分别对应开始和时间t时的S值。测定1.2.2中各试验组POV值变化规律,分别以lnSt、St对t作图,若接近一条直线,则说明对应试验组的氧化符合相应级别的动力学规律,直线的斜率绝对值为其反应速率常数。
1.2.4 热处理条件下文冠果油脂肪酸组成分析
准确称取100 g文冠果油,按照1.2.2添加抗氧化剂,并做空白对照。于180 ℃环境下连续加热,分别在6、18、30、42 h取样10 mL进行脂肪酸及反式脂肪酸含量检测[17],同时分析饱和脂肪酸(SFA)、单不饱和脂肪酸(MUFA)、多不饱和脂肪酸(PUFA)的相互比例及变化。
1.2.5 指标检测方法
过氧化值按照GB 5009.227-2016《食品安全国家标准 食品中过氧化值的测定》中滴定法进行测定;酸价按照GB 5009.229-2016《食品安全国家标准 食品中酸价的测定》中冷溶剂指示剂滴定法进行测定;羰基价GB 5009.230-2016《食品安全国家标准 食品中羰基价的测定》;皂化值:GB/T 5534-2008《动植物油脂 皂化值的测定》;碘值:GB/T 5532-2008《动植物油脂 碘值的测定》;甾醇总量:GB/T 25223-2010《动植物油脂 甾醇组成和甾醇总量的测定 气相色谱法》;VE总量:GB 5009.82-2016《食品安全国家标准 食品中维生素A、D、E的测定》;折光指数:GB/T 5527-2010《动植物油脂 折光指数的测定》;相对密度:GB/T 5526-1985《植物油脂检验 比重测定法》。
脂肪酸参考GB 5009.168-2016《食品安全国家标准 食品中脂肪酸的测定》中归一法进行测定。GC条件为HP-88型号色谱柱(100 m×250 μm×0.25 μm),程序升温:初始温度100 ℃,持续13 min,100~180 ℃,升温速率10 ℃/min,保持6 min;180~200 ℃,升温速率1 ℃/min,保持20 min;200~230 ℃,升温速率4 ℃/min,保持10.5 min,载气为氮气,分流比100:1,进样口温度270 ℃,检测器温度280 ℃。
1.3 数据处理
每个试验重复三次,结果取平均值,以均值±标准偏差(SD)表示。使用Excel 2016软件处理数据,OriginPro 8软件绘图。
2. 结果与分析
2.1 文冠果油的主要指标
如表1所示,本次试验制备的文冠果油样品其过氧化值、酸价等均在T/LYCY 018-2020《文冠果油》要求范围内,且符合一级油的质量要求。
表 1 文冠果油的主要指标Table 1. Main indexes of Xanthoceras sorbifolia Bunge oil折光指数(n20) 相对密度(d2020) VE总量(mg/kg) 甾醇总量(mg/kg) 碘值(以I2计)
(g/100 g)皂化值(KOH)(mg/g) 酸价(KOH)(mg/g) 过氧化值(mmol/kg) 羰基价(meq·kg) 1.465 0.884 721.52 1730.47 123 186.5 0.67 0.75 1.31 2.2 抗氧化剂对文冠果油氧化稳定性的影响
2.2.1 抗氧化剂对文冠果油过氧化值的影响
POV值是油脂氧化的初级产物指标[18],在60 ℃加速氧化试验中POV值的变化如图2所示,文冠果油无论是否添加抗氧化剂,其POV值都随着时间的延长呈增长态势。VE组过氧化值增长迅速,与空白对照无显著性差异,说明在加速氧化(60 ℃)条件下,VE基本未起到抗氧化的作用,这与刘玉兰等[19]在研究VE对花生油抗氧化作用时报道一致,这可能是由于文冠果油本身含有一定量的VE,再添加会使过量的VE在高温条件下促进油脂氧化[20-21];添加RE、AP、TBHQ后,文冠果油样品的POV值明显低于空白组,有效延缓了文冠果油的氧化,且在前12 d内POV值变化不大,分别由原来的0.75 mmol/kg,升至1.47、1.33、1.10 mmol/kg,在12 d后有较为显著的区分(P<0.05),对比可知,天然抗氧化剂RE的抗氧化效果低于合成抗氧化剂TBHQ,但强于AP。
2.2.2 抗氧化剂对文冠果油酸价的影响
酸价是油脂中游离脂肪酸的标志,由图3可以看出,在加速氧化的24 d内,试验组和对照组的AV值逐渐增加,趋势相似,但增加不明显,个别时间还出现下降的现象。分析原因可能是酸价在油脂前期较为稳定,处理时间较短,还未到快速增长期。60 ℃加速氧化24 d后酸价最高值是空白组的0.88 mg/g,还未超过LS/T 3265-2019《文冠果油》中一级文冠果油酸价质量要求(≤1 mg/g),因此在试验条件下文冠果油的AV值与POV值相比,并不是氧化敏感和变质的评价指标。
2.2.3 抗氧化剂对文冠果油羰基价的影响
油脂氧化初级产物氢过氧化物不稳定,进一步会分解生成醛、酮、酸、酯及短链的羰基化合物,羰基价反应了油脂中醛酮类等主要次级氧化产物含量[22]。由图4可以看出,油脂羰基价整体呈上升趋势,对比空白组,RE、AP、TBHQ有效抑制了羰基价的增长,尤其是在加速氧化初期(0~6 d)抑制最为明显,个别时间还出现羰基价下降的情况,这可能是由于有效的抗氧化剂抑制油脂初级氧化产物生成,次级氧化产物增加会相对较少,同时个别次级氧化物具有挥发性[23],在60 ℃条件下挥发,使得测定值减少。综合对比,抗氧化剂按抑制羰基价增长的能力排序为:TBHQ>RE>AP。VE组在0~4 d表现出对一定的抗氧化性,但随后与空白组相比差别不大。
2.3 文冠果油加速氧化过程动力学模型
Schaal烘箱加速氧化试验中,过氧化值的变化较为敏感,选择过氧化值作为文冠果油质量评价指标,分别以零级、一级氧化动力学模型对文冠果油加速氧化时的过氧化值与时间进行拟合,其方程和回归系数见表2。
表 2 POV值与氧化时间(t)之间拟合方程Table 2. Regression equation between POV value and time抗氧化剂种类 零级反应回归方程 回归系数R2 一级反应回归方程 回归系数R2 空白 S=−0.0531t+0.8506 0.6122 lnS=−0.1898t–0.1845 0.9430 VE S=−0.0418t+0.7839 0.5737 lnS=−0.1721t–0.2667 0.9376 RE S=−0.0601t+1.4043 0.9529 lnS=−0.1251t+0.6979 0.9304 AP S=−0.0605t+1.3928 0.9455 lnS=−0.1345t+0.7257 0.9148 TBHQ S=−0.0518t+1.4783 0.9489 lnS=−0.0798t+0.6141 0.8461 注:S表示油脂过氧化值的倒数,即1/[POV]。 在试验时间内,空白和添加维生素E组样品一级反应拟合方程的回归系数明显优于零级反应,说明在60 ℃条件下文冠果油的加速氧化过程是一级反应,其氧化速率常数分别为0.1898和0.1721 h−1;添加迷迭现提取物和抗坏血酸棕榈酸酯的样品零级和一级拟合方程回归系数都大于0.9,说明其氧化过程同时具有零级和一级特征,但更符合零级反应,氧化速率常数分别为0.0601和0.0605(POV)−1·h−1;TBHQ组零级反应拟合方程回归系数优于一级反应,说明添加TBHQ后文冠果油加速氧化过程是零级反应,氧化速率常数为0.0518(POV)−1·h−1。从氧化速率常数上也能看出,TBHQ抗氧化能力最强;RE和AP对文冠果油有一定的抗氧化作用,且抗氧化能力相似;VE则和空白组氧化程度相似,在试验浓度下对文冠果油几乎抗氧化作用。添加RE、AP和TBHQ后,文冠果油的反应模型由一级向零级变化,速率常数也明显减小,说明添加物改变了反应历程,起到了抗氧化作用。
按照Van’t Hoff方程法[24],60 ℃下1 d相当于常温(20 ℃)货架期16 d,以GB 2716-2018《食品安全国家标准 植物油》中POV≤9.85 mmol/kg为指标,通过拟合方程计算货架期。结果显示:空白文冠果油的货架期为177 d,添加抗氧化剂VE、RE、AP、TBHQ的货架期分别为178、346、341、425 d。
2.4 热处理对文冠果油脂肪酸组成的影响
2.4.1 文冠果油脂肪酸含量分析
脂肪酸是食用油的主要成分,占甘油三酯95%左右,脂肪酸的组成配比是油脂的营养价值和保健功能的主要体现[25]。文冠果油脂肪酸主要由8种组成,以油酸和亚油酸含量最高,分别达到31.12%和40.87%。其中饱和脂肪酸含量为7.5%,主要是棕榈酸、硬脂酸和山嵛酸;单不饱和脂肪酸占比44.1%,以油酸、芥酸和神经酸为主;多不饱和脂肪酸占比48.4%,以亚油酸和亚麻酸为主。
2.4.2 脂肪酸含量变化分析
分析油脂中主要脂肪酸变化、低碳脂肪酸含量以及饱和、单不饱和和多不饱和脂肪酸的比例,能够评价加热处理对脂肪酸组成的影响[26]。在180 ℃条件下对抗氧化剂文冠果油样品连续热处理,间隔一定时间测定脂肪酸组成,结果如表3所示。
表 3 加热条件下不同抗氧化剂对文冠果油脂肪酸组成的影响Table 3. Effects of different antioxidants on fatty acid of Xanthoceras sorbifolia Bunge oil under heating conditions抗氧
化剂时间
(h)低碳脂肪酸
≤15C(%)棕榈酸
C16:0(%)硬脂酸
C18:0(%)油酸
C18:1(%)亚油酸
C18:2(%)亚麻酸
C18:3(%)山嵛酸
C22:0(%)芥酸
C22:1(%)神经酸
C24:1(%)反式脂肪酸
(%)SFA(%):
MUFA(%):
PUFA(%)空白 0 0.05±0.03 4.78±0.03 2.16±0.02 31.12±0.61 40.87±0.45 7.23±0.15 0.45±0.02 9.58±0.05 3.05±0.12 − 7.5:44.1:48.4 空白 6 0.25±0.08 5.54±0.03 2.52±0.02 32.92±0.35 38.85±0.51 7.02±0.15 0.47±0.03 9.80±0.05 3.06±0.10 − 8.8:45.0:44.8 18 0.75±0.12 5.92±0.06 2.86±0.03 32.86±0.43 37.77±0.57 6.55±0.14 0.52±0.03 9.22±0.02 2.56±0.16 0.41±0.26 10.2:45.1:44.8 30 1.25±0.10 6.42±0.05 3.58±0.07 31.87±0.51 36.53±0.62 6.44±0.16 0.60±0.02 8.46±0.04 2.47±0.17 0.46±0.21 12.1:43.8:44.0 42 1.56±0.15 7.86±0.11 4.15±0.05 30.44±1.75 36.02±1.25 6.24±0.56 0.60±0.03 7.18±0.26 2.57±0.55 1.42±0.26 14.7:41.6:43.7 VE 6 0.22±0.07 5.56±0.09 2.64±0.03 32.08±0.41 39.13±0.42 6.95±0.08 0.42±0.04 9.68±0.04 3.12±0.04 − 8.9:45.0:46.2 18 0.85±0.07 6.23±0.05 2.83±0.07 32.24±0.52 37.42±0.44 6.35±0.18 0.56±0.06 9.34±0.04 2.63±0.08 0.39±0.12 10.6:44.9:44.5 30 1.31±0.15 6.58±0.12 3.53±0.05 31.74±0.15 37.19±0.98 5.72±0.19 0.62±0.03 8.67±0.10 2.56±0.11 0.46±0.17 12.3:43.9:43.8 42 1.67±0.21 7.82±0.11 4.15±0.10 30.44±1.23 36.22±1.33 5.84±0.66 0.60±0.07 7.18±0.12 2.43±0.12 1.45±0.18 14.8:41.6:43.7 RE 6 0.06±0.02 4.73±0.03 2.18±0.04 31.18±0.43 40.53±0.55 7.28±0.12 0.44±0.04 9.68±0.06 3.12±0.07 − 7.5:44.3:48.2 18 0.28±0.02* 5.12±0.05* 2.33±0.04* 31.48±0.58 39.45±0.76* 7.25±0.27* 0.46±0.08 9.43±0.09 3.03±0.11* 0.17±0.07* 8.3:44.5:47.3 30 0.98±0.13* 6.06±0.05 3.14±0.08* 32.19±0.55* 37.84±0.68* 6.27±0.26* 0.65±0.08 8.63±0.12 2.63±0.12 0.42±0.15 11.0:44.2:44.8 42 1.66±0.12 7.76±0.09 4.16±0.12 30.15±0.87 36.51±0.98 5.81±0.54 0.63±0.09 7.39±0.12 2.24±0.15 1.34±0.19 14.8:41.3:43.9 AP 6 0.07±0.03 4.78±0.08 2.24±0.05 31.24±0.16 40.35±0.56 7.24±0.14 0.45±0.05 9.72±0.08 3.08±0.08 − 7.6:44.4:48.0 18 0.38±0.03* 5.27±0.06* 2.55±0.05* 31.46±0.22* 39.13±0.47* 7.17±0.18* 0.46±0.09 9.47±0.12 3.08±0.16* 0.22±0.06* 8.8:44.5:46.8 30 1.05±0.08* 6.25±0.08 3.28±0.07* 32.24±0.22* 37.27±0.89* 6.18±0.21* 0.63±0.08 8.66±0.11 2.69±0.16 0.48±0.20 11.4:44.4:44.2 42 1.86±0.16 7.90±0.10 4.14±0.11 30.14±0.79 36.18±1.26 5.75±0.48 0.68±0.10 7.49±0.15 2.58±0.18 1.36±0.21 15.1:41.6:43.4 TBHQ 6 0.06±0.02 4.76±0.05 2.15±0.04 31.14±0.27 40.84±0.29 7.24±0.15 0.43±0.03 9.52±0.07 3.08±0.07 − 7.5:44.1:48.5 18 0.27±0.06* 5.16±0.05* 2.45±0.06* 31.33±0.23* 39.59±0.43* 7.21±0.18* 0.51±0.05 9.32±0.07 3.04±0.14* 0.23±0.06* 8.5:44.1:47.4 30 0.89±0.15* 6.05±0.09* 3.14±0.08* 32.08±0.43* 37.87±0.87* 6.25±0.45* 0.62±0.08 8.74±0.12 2.75±0.15 0.35±0.19 10.9:44.3:44.8 42 1.56±0.16 7.15±0.10 4.16±0.08 30.06±0.46 36.35±1.12 5.80±0.44 0.67±0.06 7.51±0.14 2.49±0.17 1.38±0.23 14.1:41.8:44.0 注:“−”表示不含有或在检出限下;“*”表示与空白组相比,差异显著(P<0.05)。 可以看出,未添加抗氧化剂的空白组随着加热时间的延长,低碳脂肪酸的含量、饱和脂肪酸的占比有不同程度的增加,单不饱和脂肪酸占比有先增大后下降的趋势,多不饱和脂肪酸的占比随加热时间逐渐减少,添加VE组的变化趋势与空白组相似,脂肪酸变化无显著性差异。添加RE、AP、TBHQ组在热处理前期(18和30 h)与对照空白组差异显著(P<0.05),抑制了低碳链脂肪酸和饱和脂肪酸的含量,随着热处理时间的延长(30 h后),脂肪酸含量及组成与空白组差异不显著。
分析原因,可能是在热处理前期,加热促进了不饱和脂肪酸(UFA)被氧化为SFA[27],且文冠果油中PUFA含量占比较高,氧化作用也增加了MUFA的占比,抗氧化剂有效抑制UFA被氧化,从变化趋势可以看出,抗氧化能力TBHQ>RE≈AP。随着加热时间的延长,油脂容易发生热解、缩合等,使得低碳链及饱和脂肪酸的含量升高,同时高温也促使反式脂肪酸的生成[28-30],这一阶段抗氧化剂作用几乎可以忽略。
3. 结论
文冠果油不饱和脂肪酸含量较高,易氧化酸败,通过添加抗氧化剂提高油脂氧化稳定性。试验选用的迷迭香提取物(RE)、抗坏血酸棕榈酸酯(AP)、特丁基对苯二酚(TBHQ)表现出对文冠果油有不同程度的抗氧化作用,维生素E作用不显著。抗氧化作用顺序为:TBHQ>RE>AP,其中RE作为天然产物,虽然不如化学合成抗氧化剂TBHQ,但优于AP,从生物安全角度考虑可以选为文冠果油较为合理的抗氧化剂。通过对文冠果油有加速氧化过程中过氧化值(POV)、酸价(AV)、羰基价的变化分析,选择POV作为文冠果油氧化敏感性指标,结合氧化动力学模型预测其货架期,结果显示添加0.7 g/kg的RE将文冠果油货架期从177 d提升至346 d。
文冠果油在高温受热(180 ℃)的初期,添加抗氧化剂能够有效抑制脂肪酸的氧化分解、反式脂肪酸生成、不饱和脂肪酸占比增加等,但随着加热时间的延长,其抑制作用消失,最主要的原因可能是油脂长时间处于高温,发生了热解及缩合等反应。本文就四种抗氧化剂对文冠果油的稳定性及脂肪酸组成的影响进行了研究,为文冠果油的贮藏及使用提供了一定依据,但随着贮藏或高温时间的延长,文冠果油的营养及活性功能变化还有待于进一步研究。
-
表 1 文冠果油的主要指标
Table 1 Main indexes of Xanthoceras sorbifolia Bunge oil
折光指数(n20) 相对密度(d2020) VE总量(mg/kg) 甾醇总量(mg/kg) 碘值(以I2计)
(g/100 g)皂化值(KOH)(mg/g) 酸价(KOH)(mg/g) 过氧化值(mmol/kg) 羰基价(meq·kg) 1.465 0.884 721.52 1730.47 123 186.5 0.67 0.75 1.31 表 2 POV值与氧化时间(t)之间拟合方程
Table 2 Regression equation between POV value and time
抗氧化剂种类 零级反应回归方程 回归系数R2 一级反应回归方程 回归系数R2 空白 S=−0.0531t+0.8506 0.6122 lnS=−0.1898t–0.1845 0.9430 VE S=−0.0418t+0.7839 0.5737 lnS=−0.1721t–0.2667 0.9376 RE S=−0.0601t+1.4043 0.9529 lnS=−0.1251t+0.6979 0.9304 AP S=−0.0605t+1.3928 0.9455 lnS=−0.1345t+0.7257 0.9148 TBHQ S=−0.0518t+1.4783 0.9489 lnS=−0.0798t+0.6141 0.8461 注:S表示油脂过氧化值的倒数,即1/[POV]。 表 3 加热条件下不同抗氧化剂对文冠果油脂肪酸组成的影响
Table 3 Effects of different antioxidants on fatty acid of Xanthoceras sorbifolia Bunge oil under heating conditions
抗氧
化剂时间
(h)低碳脂肪酸
≤15C(%)棕榈酸
C16:0(%)硬脂酸
C18:0(%)油酸
C18:1(%)亚油酸
C18:2(%)亚麻酸
C18:3(%)山嵛酸
C22:0(%)芥酸
C22:1(%)神经酸
C24:1(%)反式脂肪酸
(%)SFA(%):
MUFA(%):
PUFA(%)空白 0 0.05±0.03 4.78±0.03 2.16±0.02 31.12±0.61 40.87±0.45 7.23±0.15 0.45±0.02 9.58±0.05 3.05±0.12 − 7.5:44.1:48.4 空白 6 0.25±0.08 5.54±0.03 2.52±0.02 32.92±0.35 38.85±0.51 7.02±0.15 0.47±0.03 9.80±0.05 3.06±0.10 − 8.8:45.0:44.8 18 0.75±0.12 5.92±0.06 2.86±0.03 32.86±0.43 37.77±0.57 6.55±0.14 0.52±0.03 9.22±0.02 2.56±0.16 0.41±0.26 10.2:45.1:44.8 30 1.25±0.10 6.42±0.05 3.58±0.07 31.87±0.51 36.53±0.62 6.44±0.16 0.60±0.02 8.46±0.04 2.47±0.17 0.46±0.21 12.1:43.8:44.0 42 1.56±0.15 7.86±0.11 4.15±0.05 30.44±1.75 36.02±1.25 6.24±0.56 0.60±0.03 7.18±0.26 2.57±0.55 1.42±0.26 14.7:41.6:43.7 VE 6 0.22±0.07 5.56±0.09 2.64±0.03 32.08±0.41 39.13±0.42 6.95±0.08 0.42±0.04 9.68±0.04 3.12±0.04 − 8.9:45.0:46.2 18 0.85±0.07 6.23±0.05 2.83±0.07 32.24±0.52 37.42±0.44 6.35±0.18 0.56±0.06 9.34±0.04 2.63±0.08 0.39±0.12 10.6:44.9:44.5 30 1.31±0.15 6.58±0.12 3.53±0.05 31.74±0.15 37.19±0.98 5.72±0.19 0.62±0.03 8.67±0.10 2.56±0.11 0.46±0.17 12.3:43.9:43.8 42 1.67±0.21 7.82±0.11 4.15±0.10 30.44±1.23 36.22±1.33 5.84±0.66 0.60±0.07 7.18±0.12 2.43±0.12 1.45±0.18 14.8:41.6:43.7 RE 6 0.06±0.02 4.73±0.03 2.18±0.04 31.18±0.43 40.53±0.55 7.28±0.12 0.44±0.04 9.68±0.06 3.12±0.07 − 7.5:44.3:48.2 18 0.28±0.02* 5.12±0.05* 2.33±0.04* 31.48±0.58 39.45±0.76* 7.25±0.27* 0.46±0.08 9.43±0.09 3.03±0.11* 0.17±0.07* 8.3:44.5:47.3 30 0.98±0.13* 6.06±0.05 3.14±0.08* 32.19±0.55* 37.84±0.68* 6.27±0.26* 0.65±0.08 8.63±0.12 2.63±0.12 0.42±0.15 11.0:44.2:44.8 42 1.66±0.12 7.76±0.09 4.16±0.12 30.15±0.87 36.51±0.98 5.81±0.54 0.63±0.09 7.39±0.12 2.24±0.15 1.34±0.19 14.8:41.3:43.9 AP 6 0.07±0.03 4.78±0.08 2.24±0.05 31.24±0.16 40.35±0.56 7.24±0.14 0.45±0.05 9.72±0.08 3.08±0.08 − 7.6:44.4:48.0 18 0.38±0.03* 5.27±0.06* 2.55±0.05* 31.46±0.22* 39.13±0.47* 7.17±0.18* 0.46±0.09 9.47±0.12 3.08±0.16* 0.22±0.06* 8.8:44.5:46.8 30 1.05±0.08* 6.25±0.08 3.28±0.07* 32.24±0.22* 37.27±0.89* 6.18±0.21* 0.63±0.08 8.66±0.11 2.69±0.16 0.48±0.20 11.4:44.4:44.2 42 1.86±0.16 7.90±0.10 4.14±0.11 30.14±0.79 36.18±1.26 5.75±0.48 0.68±0.10 7.49±0.15 2.58±0.18 1.36±0.21 15.1:41.6:43.4 TBHQ 6 0.06±0.02 4.76±0.05 2.15±0.04 31.14±0.27 40.84±0.29 7.24±0.15 0.43±0.03 9.52±0.07 3.08±0.07 − 7.5:44.1:48.5 18 0.27±0.06* 5.16±0.05* 2.45±0.06* 31.33±0.23* 39.59±0.43* 7.21±0.18* 0.51±0.05 9.32±0.07 3.04±0.14* 0.23±0.06* 8.5:44.1:47.4 30 0.89±0.15* 6.05±0.09* 3.14±0.08* 32.08±0.43* 37.87±0.87* 6.25±0.45* 0.62±0.08 8.74±0.12 2.75±0.15 0.35±0.19 10.9:44.3:44.8 42 1.56±0.16 7.15±0.10 4.16±0.08 30.06±0.46 36.35±1.12 5.80±0.44 0.67±0.06 7.51±0.14 2.49±0.17 1.38±0.23 14.1:41.8:44.0 注:“−”表示不含有或在检出限下;“*”表示与空白组相比,差异显著(P<0.05)。 -
[1] 李信, 上官慧娟, 杨博, 等. 基于微波预处理压榨文冠果油储藏期间的品质研究[J]. 中国油脂,2020,45(4):41−45,66. [LI Xin, SHANGGUAN Huijuan, YANG Bo, et al. Quality of pressed Xanthoceras sorbifolia oil during storage based on microwave pretreatment[J]. China Oils and Fats,2020,45(4):41−45,66. doi: 10.12166/j.zgyz.1003-7969/2020.04.009 LI Xin, SHANGGUAN Huijuan, YANG Bo, et al. Quality of pressed Xanthoceras sorbifolia oil during storage based on microwave pretreatment[J]. China Oils and Fats, 2020, 45(4): 41-45, 66. doi: 10.12166/j.zgyz.1003-7969/2020.04.009
[2] 陆昕, 乌志颜, 潘喜华, 等. 文冠果油对SD孕鼠毒性和胎鼠致畸性研究[J]. 中国油脂,2021,46(6):71−75. [LU Xin, WU Zhiyan, PAN Xihua, et al. Toxicity on SD pregnant rats and teratogenicity in fetal rats fed by Xanthoceras sorbifolium Bunge. seed oil[J]. China Oils and Fats,2021,46(6):71−75. LU Xin, WU Zhiyan, PAN Xihua, et al. Toxicity on SD pregnant rats and teratogenicity in fetal rats fed by Xanthoceras sorbifolium Bunge. seed oil[J]. China Oils and Fats, 2021, 46(6): 71-75.
[3] TU Xinghao, WAN Jingya, XIE Ya, et al. Lipid analysis of three special nervonic acid resources in China[J]. Oil Crop Science,2020,5(4):180−186. doi: 10.1016/j.ocsci.2020.12.004
[4] HU Dandong, CUI Yujuan, ZHANG Ji. Nervonic acid ameliorates motor disorder in mice with Parkinson’s disease[J]. Neurochemical Journal,2021,15(3):317−324. doi: 10.1134/S1819712421030065
[5] 常志娟, 李红, 卜琳斐. 冷、热榨文冠果油品质比较分析[J]. 中国油脂,2019,44(10):121−123. [CHANG Zhijuan, LI Hong, BO Linfei. Quality comparison of cold pressed and hot pressed Xanthoceras sorbifolia Bunge. seed oils[J]. China Oils and Fats,2019,44(10):121−123. CHANG Zhijuan, LI Hong, BO Linfei. Quality comparison of cold pressed and hot pressed Xanthoceras sorbifolia Bunge. seed oils[J]. China Oils and Fats, 2019, 44(10): 121-123.
[6] 阮瑜琳. 文冠果油和蛋白的制备及油脂氧化稳定性的研究[D]. 武汉: 武汉轻工大学, 2016. RUAN Yulin. Study on preparation of Xanthoceras sorbifolia oil and protein and protein, and oxidative stability of oil[D]. Wuhan: Wuhan Polytechnic University, 2016.
[7] ZHU Hongjin, YU Lili, LIU Jiachuan, et al. A new coumarin glucoside ester from seeds oil leavings of Xanthoceras sorbifolia[J]. Chinese Herbal Medicines,2018:113−115.
[8] 白雪, 胡文忠, 姜爱丽, 等. 文冠果种仁油开发和应用的研究进展[J]. 食品工业科技, 2016, 37(9): 393-396,400. BAI Xue, HU Wenzhong, JIANG Aili, et al. Research advance on the development and application of Xanthoceras sorbifona bunge seed oil. Science and Technology of Food Industry, 2016, 37(9): 393-396,400.
[9] 范琛. 天然抗氧化剂在文冠果油中抗氧化效果的研究[D]. 北京: 北京林业大学, 2016. FAN Chen. Research of antioxdant effect of natural antioxdant in the Sorbifolia oil[D]. Beijing: Beijing Forestry University, 2016.
[10] 肖菁, 吴卫国, 彭思敏. 食用油抗氧化剂及其安全性研究进展[J]. 粮食与油脂,2021,34(9):10−13,17. [XIAO Jing, WU Weiguo, PENG Simin. Research progress of antioxidants and its safety of edible oil[J]. Cereals & Oils,2021,34(9):10−13,17. doi: 10.3969/j.issn.1008-9578.2021.09.002 XIAO Jing, WU Weiguo, PENG Simin. Research progress of antioxidants and its safety of edible oil[J]. Cereals & Oils, 2021, 34(9): 10-13, 17. doi: 10.3969/j.issn.1008-9578.2021.09.002
[11] 周力, 刘祥龙, 何东平, 等. 响应面法优化冷榨铁核桃油脱酸工艺的研究[J]. 粮食与油脂,2016,29(4):48−51. [ZHOU Li, LIU Xianglong, HE Dongping, et al. Optimization of cold pressed iron walnut oil deacidification by response surface method[J]. Cereals & Oils,2016,29(4):48−51. doi: 10.3969/j.issn.1008-9578.2016.04.015 ZHOU Li, LIU Xianglong, HE Dongping, et al. Optimization of cold pressed iron walnut oil deacidification by response surface method[J]. Cereals & Oils, 2016, 29(4): 48-51. doi: 10.3969/j.issn.1008-9578.2016.04.015
[12] 朱式业, 熊武国, 李加兴, 等. 茶多酚对牡丹籽油氧化稳定性的影响及货架期预测[J]. 中国油脂,2019,44(1):92−96. [ZHU Shiye, XIONG Wuguo, LI Jiaxing, et al. Effect of tea polyphenol on oxidative stability of peony seed oil and shelf life prediction[J]. China Oils and Fats,2019,44(1):92−96. doi: 10.3969/j.issn.1003-7969.2019.01.020 ZHU Shiye, XIONG Wuguo, LI Jiaxing, et al. Effect of tea polyphenol on oxidative stability of peony seed oil and shelf life prediction[J]. China Oils and Fats, 2019, 44(1): 92-96. doi: 10.3969/j.issn.1003-7969.2019.01.020
[13] ZORICA D, JELENA M, GORDANA Z, et al. Effect of pomegranate peel extract on the oxidative stability of pomegranate seed oil[J]. Food Chemistry,2020,333:1−9.
[14] 刘建平, 张玉军, 刘彩丽. 辣椒籽中甲醇提取物的抗氧化动力学研究[J]. 河南工业大学学报(自然科学版),2011,32(5):25−28. [LIU Jianping, ZHANG Yujun, LIU Caili. Study on antioxidation kinetics of methanol extract of chilli seed[J]. Journal of Henan University of Technology (Natural Science Edition),2011,32(5):25−28. LIU Jianping, ZHANG Yujun, LIU Caili. Study on antioxidation kinetics of methanol extract of chilli seed[J]. Journal of Henan University of Technology(Natural Science Edition), 2011, 32(5), 25-28.
[15] 曹君. 不同脂肪酸结构食用油的氧化规律及其动力学研究[D]. 南昌: 南昌大学, 2015. CAO Jun. Oxidative patterns and kinetics of edible oils with different fatty acid compositions[D]. Nanchang: Nanchang University, 2016.
[16] GUI Huasheng, QUAN Chengzhou, DE Maoli. Evalution of the pyrolytic and kinetics characteristics of Xanthoceras sorbifolia oil[J]. Advanced Materials Research,2012,1790:401−404.
[17] 姚梦莹, 匡婷, 云永欢, 等. 鼠尾草酸对椰子油热加工过程中主要理化性质、脂肪酸组成与自由基的影响研究[J]. 中国油脂,2020,45(8):39−44. [YAO Mengying, KUANG Ting, YUN Yonghuan, et al. Effects of carnosic acid on main physicochemical properties, fatty acid composition and free radicals in coconut oil thermal processing[J]. China Oils and Fats,2020,45(8):39−44. doi: 10.12166/j.zgyz.1003-7969/2020.08.009 YAO Mengying, KUANG Ting, YUN Yonghuan, et al. Effects of carnosic acid on main physicochemical properties, fatty acid composition and free radicals in coconut oil thermal processing[J]. China Oils and Fats, 2020, 45(8): 39-44. doi: 10.12166/j.zgyz.1003-7969/2020.08.009
[18] FARHOOSH R, PAZHOUHANMEHR S. Relative contribution of compositional parameters to the primary and secondary oxidation of canola oil[J]. Food Chemistry,2009,114(3):1002−1006. doi: 10.1016/j.foodchem.2008.10.054
[19] 刘玉兰, 邓金良, 马宇翔, 等. 不同储藏温度和抗氧化剂对花生油和大豆油氧化稳定性的影响[J]. 粮食与油脂,2021,34(3):1−5,16. [LIU Yulan, DENG Jinliang, MA Yuxiang, et al. Effects of different storage temperatures and antioxidants on the oxidative stability of peanut oil and soybean oil[J]. Cereals & Oils,2021,34(3):1−5,16. doi: 10.3969/j.issn.1008-9578.2021.03.001 LIU Yulan, DENG Jinliang, MA Yuxiang, et al. Effects of different storage temperatures and antioxidants on the oxidative stability of peanut oil and soybean oil[J]. Cereals&Oils, 2021, 34(3): 1-5, 16. doi: 10.3969/j.issn.1008-9578.2021.03.001
[20] INGRID E, JOHN W Y, YVONNE V Y, et al. Association between tocopherol isoform composition and lipid oxidation in selected multiple edible oils[J]. Food Research International,2013,52(2):508−514. doi: 10.1016/j.foodres.2013.02.013
[21] 刘普, 张丽娜, 张江磊, 等. 几种天然抗氧化剂对牡丹籽油氧化稳定性的影响[J]. 中国粮油学报,2019,34(7):54−61. [LIU Pu, ZHANG Lina, ZHANG Jianglei, et al. Effects of several natural antioxidants on the oxidative stability of peony seed oil[J]. Journal of Chinese Institute of Food Science and Technology,2019,34(7):54−61. doi: 10.3969/j.issn.1003-0174.2019.07.010 LIU Pu, ZHANG Lina, ZHANG Jianglei, et al. Effects of several natural antioxidants on the oxidative stability of peony seed oil[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 34(7): 54−61. doi: 10.3969/j.issn.1003-0174.2019.07.010
[22] FARHOOSH R, HOSEINI-YAZDI S-Z. Evolution of oxidative values during kinetic studies on olive oil oxidation in the rancimat test[J]. Journal of the American Oil Chemists' Society,2014,91(2):281−293. doi: 10.1007/s11746-013-2368-z
[23] PANG X, LEWIS A C, HAMILTON J F. Determination of airborne carbonyls via pentafluorophenylhydrazine derivatisation by GC-MS and its comparison with HPLC method[J]. Talanta,2011,85(1):406−414. doi: 10.1016/j.talanta.2011.03.072
[24] 张雯静, 吕秋冰, 陈雨柔, 等. 冬瓜籽油氧化稳定性研究及货架期预测[J]. 粮食与油脂,2020,33(12):68−71. [ZHANG Wenjing, LV Qiubing, CHEN Yurou, et al. Study on oxidative stability of wax gourd seeds oil and its shelf life prediction[J]. Cereals & Oils,2020,33(12):68−71. doi: 10.3969/j.issn.1008-9578.2020.12.019 ZHANG Wenjing, LV Qiubing, CHEN Yurou, et al. Study on oxidative stability of wax gourd seeds oil and its shelf life prediction [J]. Cereals & Oils, 2020, 33(12): 68-71. doi: 10.3969/j.issn.1008-9578.2020.12.019
[25] 董志文, 张妮, 阮瑜林, 等. 文冠果油在烹饪温度下性质与营养物质的变化[J]. 中国油脂,2018,43(4):33−36. [DONG Zhiwen, Zhang Ni, RUAN Yulin, et al. Properties and nutritional substances changes of Xanthoceras sorbifolia Bunge oil at cooking temperature[J]. China Oils and Fats,2018,43(4):33−36. doi: 10.3969/j.issn.1003-7969.2018.04.008 DONG Zhiwen, Zhang Ni, RUAN Yulin, et al. Properties and nutritional substances changes of Xanthoceras sorbifolia Bunge oil at cooking temperature[J]. China Oils and Fats, 2018, 43(4): 33-36. doi: 10.3969/j.issn.1003-7969.2018.04.008
[26] 王进英. 油茶籽油热稳定性研究[D]. 长沙: 中南林业科技大学, 2017. WANG Jinying. Studies on the heating stability of camellia seed oil[D]. Changsha: Central South University of Forestry & Technology, 2017.
[27] 于文秀, 刘玉兰, 曲宗乔, 等. 不同抗氧化剂对调和油煎炸性能影响研究[J]. 中国油脂,2018,43(8):89−93,103. [YU Wenxiu, LIU Yulan, QU Zongqiao. Effect of different antioxidants on frying performance of blend oil[J]. China Oils and Fats,2018,43(8):89−93,103. doi: 10.3969/j.issn.1003-7969.2018.08.019 YU Wenxiu, LIU Yulan, QU Zongqiao. Effect of different antioxidants on frying performance of blend oil[J]. China Oils and Fats, 2018, 43(8): 89-93, 103. doi: 10.3969/j.issn.1003-7969.2018.08.019
[28] LI C, ZHANG Y, LI S, et al. Mechanism of formation of trans fatty acid under heating condition in triolein[J]. Journal of Agricultural and Food Chemistry,2013,61:10392−10397. doi: 10.1021/jf402854b
[29] 李昌模, 张钰斌, 李帅, 等. 反式脂肪酸生成机理的研究[J]. 中国粮油学报,2015,30(7):141−146. [LI Changmo, ZHANG Yubin, LI Shuai, et al. Mechanism of formation of trans-fatty acids[J]. Journal of Chinese Institute of Food Science and Technology,2015,30(7):141−146. doi: 10.3969/j.issn.1003-0174.2015.07.027 LI Changmo, ZHANG Yubin, LI Shuai, et al. Mechanism of formation of trans-fatty acids[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 30(7): 141-146. doi: 10.3969/j.issn.1003-0174.2015.07.027
[30] 杨雪莲, 张翔宇, 谢建春, 等. 部分食品煎炸用油的反式脂肪酸比较[J]. 中国食品学报,2021,21(1):327−333. [YANG Xuelian, ZHANG Xiangyu, XIE Jianchun, et al. Comparison of trans fatty acids in frying oil for common food[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(1):327−333. YANG Xuelian, ZHANG Xiangyu, XIE Jianchun, et al. Comparison of trans fatty acids in frying oil for common food[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(1): 327-333.