植物基替代蛋白的利用进展

赵婧 宋弋 刘攀航 李全宏 廖小军

赵婧,宋弋,刘攀航,等. 植物基替代蛋白的利用进展[J]. 食品工业科技,2021,42(18):1−8. doi:  10.13386/j.issn1002-0306.2021070082
引用本文: 赵婧,宋弋,刘攀航,等. 植物基替代蛋白的利用进展[J]. 食品工业科技,2021,42(18):1−8. doi:  10.13386/j.issn1002-0306.2021070082
ZHAO Jing, SONG Yi, LIU Panhang, et al. Advances in the Utilization of Plant-based Alternative Protein[J]. Science and Technology of Food Industry, 2021, 42(18): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021070082
Citation: ZHAO Jing, SONG Yi, LIU Panhang, et al. Advances in the Utilization of Plant-based Alternative Protein[J]. Science and Technology of Food Industry, 2021, 42(18): 1−8. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021070082

植物基替代蛋白的利用进展

doi: 10.13386/j.issn1002-0306.2021070082
详细信息
    作者简介:

    赵婧(1990−),女,博士,副教授,研究方向:天然产物开发与利用,E-mail:zhaojing_cau@hotmail.com

  • 中图分类号: TS201

Advances in the Utilization of Plant-based Alternative Protein

  • 摘要: 未来食品对食品的营养健康属性和环境友好性都提出了更高的要求。在此背景下,以“植物肉”为代表的植物基食品引起了国内外的广泛关注。作为“植物肉”生产的主要原料,植物基替代蛋白的开发和利用对食品产业链上下游都有着重要的影响。本文首先介绍了植物基替代蛋白在“植物肉”中的应用现状,阐述了植物基替代蛋白新资源挖掘的必要性;然后总结了植物基替代蛋白的来源、制备手段和加工技术,重点分析了利用高水分挤压技术重构植物蛋白纤维化结构及其机理的研究进展和3D打印技术在蛋白质成型加工方面的研究现状;最后总结了植物基替代蛋白高效利用面临的机遇和挑战,为未来植物基食品的发展方向提供了参考。
  • 图  1  “植物基食品”认证标志和植物肉市场增长(美国)[6]

    Figure  1.  "Plant-based food" certification and market growth of plant-based meat (US)[6]

    图  2  高水分挤压示意图[51]和Navier-Strokes/相分离模型[50]

    Figure  2.  Schematic diagram of high moisture extrusion[51] and Navier-Strokes/phase separation model[50]

    图  3  3D打印示意图[65]和蛋白基3D打印产品[64-65]

    Figure  3.  Schematic diagram of 3D printing and two protein-based products[64-65]

    表  1  国内外部分市售植物肉产品中应用的植物基替代蛋白[9]

    Table  1.   Plant-based alternative proteins used in some commercial plant-based meat[9]

    公司产品植物替代蛋白a
    Impossible Foods植物肉汉堡大豆浓缩蛋白、马铃薯蛋白、大豆分离蛋白
    Beyond Meat植物肉汉堡豌豆蛋白、大米蛋白、绿豆蛋白
    Gardein植物肉丸大豆蛋白浓缩物、大豆分离蛋白、豌豆蛋白
    Lightlife植物肉汉堡豌豆蛋白
    Omnipork植物肉饼大豆浓缩蛋白、大豆分离蛋白、香菇发酵的豌豆和米蛋白
    Field Roast植物肉汉堡小麦分离蛋白
    齐善食品植物牛排大豆分离蛋白、豌豆蛋白
    金字火腿植物肉饼大豆蛋白、小麦蛋白
    珍肉植物肉月饼豌豆蛋白、大豆蛋白
    株肉植物肉碎、肉糜大豆蛋白
    双塔植物肉鸡块豌豆组织蛋白、豌豆分离蛋白
    注:a表示数据来自产品成分标签。
    下载: 导出CSV

    表  2  植物蛋白主要来源a,b

    Table  2.   Major sources of plant-based proteinsa,b

    分类来源
    豆类大豆、豌豆、绿豆、鹰嘴豆、黑豆、蚕豆、芸豆、竹豆、红小豆等
    果蔬/
    花卉/
    药材等
    南瓜籽、番茄籽、辣椒籽、甜椒籽、油菜籽、石榴籽、葡萄籽、苹果籽、西瓜籽、甜瓜籽、火龙果籽、沙棘籽、丝瓜籽、黄瓜籽、萝卜籽、韭菜籽、芹菜籽、花椒籽、亚麻籽、棉籽、火麻籽、胡麻籽、汉麻籽、火麻籽、牡丹籽、红菇娘籽、山茶籽、辣木籽、红花籽、柠条籽、黄腊果籽、番木瓜籽、紫苏籽、奇亚籽、元宝枫籽、马齿苋籽、油茶籽、秋葵籽、仙人掌果籽、打瓜籽、马铃薯、山药、龙须菜、羊栖菜等
    坚果花生、芝麻、杏仁、莲子、桃仁、榛子、核桃、葵花籽等
    谷物大米、小米、燕麦、小麦、荞麦、玉米、青稞、紫米、黑米等
    食用菌杏鲍菇、金针菇、双孢菇、鸡腿菇、平菇、滑子菇、猴头菇、白玉菇、大球盖菇、白灵菇、滑菇等
    藻类小球藻、螺旋藻、紫球藻等
    其他四翅滨藜、油莎豆、水飞蓟、欧李仁、苜蓿叶、长萼堇菜叶、金花菜叶等
    注:a表示数据主要来自于中国知网;b表示依据PBFA的植物基食品定义和饮食习惯,此处将食用菌和藻类也列入了植物基蛋白的来源。
    下载: 导出CSV
  • [1] McClements D J. Future foods: How modern science is transforming the way we eat[M]. Springer, 2019.
    [2] 陈坚. 中国食品科技: 从2020到2035[J]. 中国食品学报,2020,19(12):1−5. [Chen J. Food science and technology in China: from 2020 to 2035[J]. Journal of Chinese Institute of Food Science and Technology,2020,19(12):1−5.
    [3] 周景文, 张国强, 赵鑫锐, 等. 未来食品的发展: 植物蛋白肉与细胞培养肉[J]. 食品与生物技术学报,2020,39(10):1−8. [Zhou J W, Zhang G Q, Zhao X R, et al. Future of food: Plant-based and cell-cultured meat[J]. Journal of Food Science and Biotechnology,2020,39(10):1−8. doi:  10.3969/j.issn.1673-1689.2020.10.001
    [4] Pimentel D, Pimentel M. Sustainability of meat-based and plant-based diets and the environment[J]. American Journal of Clinical Nutrition,2003,78(3 SUPPL.):660−663.
    [5] Song M, Fung T T, Hu F B, et al. Association of animal and plant protein intake with all-cause and cause-specific mortality[J]. JAMA Internal Medicine,2016,176(11):1728.
    [6] Mordor Intelligence. Meat substitutes market–growth, trends, and forecast (2019-2026)[EB/OL]. https://www.valuemarketresearch.com/report/meat-substitutes-market.
    [7] 江连洲, 张鑫, 窦薇, 等. 植物基肉制品研究进展与未来挑战[J]. 中国食品学报,2013,53(9):1689−1699. [Jiang L Z, Zhang X, Dou W, et al. Advance and challenges in plant-based meat[J]. Journal of Chinese Institute of Food Science and Technology,2013,53(9):1689−1699.
    [8] Young V R, Pellett P L. Plant proteins in relation to human protein and amino acid nutrition[J]. American Journal of Clinical Nutrition,1994,59(5 Suppl):1203S.
    [9] 欧雨嘉, 郑明静, 曾红亮, 等. 植物蛋白肉研究进展[J]. 食品与发酵工业,2020,46(12):299−305. [Ou Y J, Zheng M J, Zeng H L, et al. Advance in plant-based meat reasearch[J]. Food and Fermentation Industries,2020,46(12):299−305.
    [10] 王妙玲, 张彩猛, 李兴飞, 等. 水媒法燕麦分离蛋白的制备工艺[J]. 食品与发酵工业,2021. [Wang M L, Zhang C M, Li X F, et al. Study on the preparation of oat protein isolate by aqueous extraction method[J]. Food and Fermentation Industries,2021.
    [11] 张凡, 李书田, 王显瑞, 等. 小米分离蛋白提取方法优化及对蛋白组成的影响[J]. 中国食品学报,2021,22(2):161−170. [Zhang F, Li S T, Wang X R, et al. Extraction method optimization of foxtail millet isolated protein and its effect on protein composition[J]. Journal of Chinese Institute of Food Science and Technology,2021,22(2):161−170.
    [12] 姚思含, 廖敏和, 康佳欣, 等. 优化酶辅助三相法提取亚麻籽油、亚麻籽蛋白和亚麻籽胶[J/OL]. 中国油脂: 1−12[2021-08-11]. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.2021.05.102.

    Yao S, Liao M, Kang J, et al. The enzyme-assisted three-phase partitioning was optimized to extract flaxseed oil, flaxseed protein and flaxseed gum[J/OL]. China Oils and Fats:1−12[2021-08-11]. https://doi.org/10.19902/j.cnki.zgyz.1003-7969.2021.05.102.
    [13] 翟晓娜, 师建芳, 赵慧凝, 等. 菜籽饼粕蛋白的提取、功能特性及其在食品中应用的研究进展[J]. 食品工业科技,2021,42(12):389−397. [Zhai X N, Shi J F, Zhao H N, et al. Extraction, functional properties and food applications of rapeseed meal protein isolates[J]. Science and Technology of Food Industry,2021,42(12):389−397.
    [14] 马燕, 孟伊娜, 邹淑萍, 等. 高压脱脂辣椒籽分离蛋白提取工艺优化及其功能特性研究[J]. 中国调味品,2020,45(8):54−60. [Ma Y, Meng Y N, Zou S P, et al. Study on extraction process optimization and functional properties of high-pressure degreased capsicum seed protein isolate[J]. China Condiment,2020,45(8):54−60. doi:  10.3969/j.issn.1000-9973.2020.08.012
    [15] 孔凡, 何东平, 雷芬芬, 等. 不同程度水解对南瓜籽蛋白功能性质的影响[J]. 粮食与油脂,2020,33(10):91−94. [Kong F, He D P, Lei F F, et al. Effects of different degrees of hydrolysis on the functional properties of pumpkin seed protein[J]. Cereals & Oils,2020,33(10):91−94. doi:  10.3969/j.issn.1008-9578.2020.10.023
    [16] 姜国庆, 闫秋丽, 李东, 等. 螺旋藻中藻蓝蛋白提取、纯化及稳态化研究进展[J]. 食品安全质量检测学报,2021,12(6):2333−2338. [Jiang G, Yan Q, Li D, et al. Research progress on separation, purification and stabilization of phycocyanin from Spirulina[J]. Journal of Food Safety and Quality,2021,12(6):2333−2338.
    [17] Chatterjee M, Gupta S, Bhar A, et al. Optimization of an efficient protein extraction protocol compatible with two-dimensional electrophoresis and mass spectrometry from recalcitrant phenolic rich roots of chickpea (Cicer arietinum L.)[J]. International Journal of Proteomics,2012,2012:1−10.
    [18] Feyzi S, Varidi M, Zare F, et al. Fenugreek(Trigonella foenum Graecum) seed protein isolate: Extraction optimization, amino acid composition, thermo and functional properties[J]. Journal of the Science of Food and Agriculture,2015,95(15):3165−3176. doi:  10.1002/jsfa.7056
    [19] Du M, Xie J, Gong B, et al. Extraction, physicochemical characteristics and functional properties of mung bean protein[J]. Food Hydrocolloids,2018,76:131−140. doi:  10.1016/j.foodhyd.2017.01.003
    [20] Gerliani N, Hammami R, Aïder M. Assessment of the extractability of protein-carbohydrate concentrate from soybean meal under acidic and alkaline conditions[J]. Food Bioscience,2019,28:116−124. doi:  10.1016/j.fbio.2019.01.004
    [21] Capellini M C, Giacomini V, Cuevas M S, et al. Rice bran oil extraction using alcoholic solvents: Physicochemical characterization of oil and protein fraction functionality[J]. Industrial Crops and Products,2017,104:133−143.
    [22] Chen R, Wang X J, Zhang Y Y, et al. Simultaneous extraction and separation of oil, proteins, and glucosinolates from Moringa oleifera seeds[J]. Food Chemistry,2019,300:125162. doi:  10.1016/j.foodchem.2019.125162
    [23] Bose U, Broadbent J A, Byrne K, et al. Optimisation of protein extraction for in-depth profiling of the cereal grain proteome[J]. Journal of Proteomics,2019,197:23−33. doi:  10.1016/j.jprot.2019.02.009
    [24] Mechmeche M, Kachouri F, Chouabi M, et al. Optimization of extraction parameters of protein isolate from tomato seed using response surface methodology[J]. Food Analytical Methods,2017,10(3):809−819. doi:  10.1007/s12161-016-0644-x
    [25] Kumar M, Tomar M, Potkule J, et al. Advances in the plant protein extraction: Mechanism and recommendations[J]. Food Hydrocolloids,2021,115(January):106595.
    [26] Hanmoungjai P, Pyle D L, Niranjan K. Enzyme-assisted water-extraction of oil and protein from rice bran[J]. Journal of Chemical Technology and Biotechnology,2002,77(7):771−776. doi:  10.1002/jctb.635
    [27] Rommi K, Hakala T K, Holopainen U, et al. Effect of enzyme-aided cell wall disintegration on protein extractability from intact and dehulled rapeseed(Brassica rapa L. and Brassica napus L.) press cakes[J]. Journal of Agricultural and Food Chemistry,2014,62(32):7989−7997. doi:  10.1021/jf501802e
    [28] Görgüç A, Özer P, Yılmaz F M. Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q-TOF/MS[J]. Journal of Food Processing and Preservation,2020,44(1):1−11.
    [29] Ngoh Y Y, Gan C Y. Enzyme-assisted extraction and identification of antioxidative and α-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto)[J]. Food Chemistry,2016,190:331−337. doi:  10.1016/j.foodchem.2015.05.120
    [30] Tirgar M, Silcock P, Carne A, et al. Effect of extraction method on functional properties of flaxseed protein concentrates[J]. Food Chemistry,2017,215:417−424. doi:  10.1016/j.foodchem.2016.08.002
    [31] Vernès L, Abert-Vian M, El Maâtaoui M, et al. Application of ultrasound for green extraction of proteins from Spirulina. Mechanism, optimization, modeling, and industrial prospects[J]. Ultrasonics Sonochemistry,2019,54(February):48−60.
    [32] Zhang Y, Wang B, Zhang W, et al. Effects and mechanism of dilute acid soaking with ultrasound pretreatment on rice bran protein extraction[J]. Journal of Cereal Science,2019,87(December 2018):318−324.
    [33] Khan S H, Butt M S, Sharif M K, et al. Functional properties of protein isolates extracted from stabilized rice bran by microwave, dry heat, and parboiling[J]. Journal of Agricultural and Food Chemistry,2011,59(6):2416−2420. doi:  10.1021/jf104177x
    [34] Xue D, Farid M M. Pulsed electric field extraction of valuable compounds from white button mushroom (Agaricus bisporus)[J]. Innovative Food Science and Emerging Technologies,2015,29:178−186. doi:  10.1016/j.ifset.2015.03.012
    [35] Yu X, Gouyo T, Grimi N, et al. Pulsed electric field pretreatment of rapeseed green biomass (stems) to enhance pressing and extractives recovery[J]. Bioresource Technology,2016,199:194−201.
    [36] Zhou Y, He Q, Zhou D. Optimization extraction of protein from mussel by high-intensity pulsed electric fields[J]. Journal of Food Processing and Preservation,2017,41(3).
    [37] Zhao J, Zhou T, Zhang Y, et al. Optimization of arachin extraction from defatted peanut (Arachis hypogaea) cakes and effects of ultra-high pressure (UHP) treatment on physiochemical properties of arachin[J]. Food and Bioproducts Processing,2015,95(17):38−46.
    [38] Jung S, Mahfuz A A. Low temperature dry extrusion and high-pressure processing prior to enzyme-assisted aqueous extraction of full fat soybean flakes[J]. Food Chemistry,2009,114(3):947−954. doi:  10.1016/j.foodchem.2008.10.044
    [39] Mattice K D, Marangoni A G. Comparing methods to produce fibrous material from zein[J]. Food Research International,2020:128.
    [40] Chiang A. Protein-protein interaction of soybean protein from extrusion processing[J]. 2007(December): 105.
    [41] Zhang J, Liu L, Zhu S, et al. Texturisation behaviour of peanut-soy bean/wheat protein mixtures during high moisture extrusion cooking[J]. International Journal of Food Science and Technology,2018,53(11):2535−2541. doi:  10.1111/ijfs.13847
    [42] Akdogan H. High moisture food extrusion[J]. International Journal of Food Science and Technology,1999,34(3):195−207. doi:  10.1046/j.1365-2621.1999.00256.x
    [43] 王强, 张金闯. 高水分挤压技术的研究现状、机遇及挑战[J]. 中国食品学报,2018,18(7):1−9. [Wang Q, Zhang J C. Research status, opportunities and challenges of high moisture extrusion technology[J]. Journal of Chinese Institute of Food Science and Technology,2018,18(7):1−9.
    [44] Zhang J, Liu L, Jiang Y, et al. Converting peanut protein biomass waste into《double Green》 meat substitutes using a high-moisture extrusion process: A multiscale method to explore a process forforming a meat-like fibrous structure[J]. Journal of Agricultural and Food Chemistry,2019,67(38):10713−10725. doi:  10.1021/acs.jafc.9b02711
    [45] Liu K S, Hsieh F H. Protein-protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels[J]. JAOCS, Journal of the American Oil Chemists’ Society,2007,84(8):741−748. doi:  10.1007/s11746-007-1095-8
    [46] Hong B, Xie T, Gao Y, et al. The effect of raw material system on fibrous structure for high moisture textured protein[J]. Journal of the Chinese Cereals and Oils Association,2016,31(2):23−27.
    [47] Pietsch V L, Karbstein H P, Emin M A. Kinetics of wheat gluten polymerization at extrusion-like conditions relevant for the production of meat analog products[J]. Food Hydrocolloids,2018,85(June):102−109.
    [48] Liu K S, Hsieh F H. Protein-protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems[J]. Journal of Agricultural and Food Chemistry,2008,56(8):2681.
    [49] Wittek P, Zeiler N, Karbstein H P, et al. High moisture extrusion of soy protein: investigations on the formation of anisotropic product structure[J]. Foods,2021,10(1):102. doi:  10.3390/foods10010102
    [50] Sandoval Murillo J L, Osen R, Hiermaier S, et al. Towards understanding the mechanism of fibrous texture formation during high-moisture extrusion of meat substitutes[J]. Journal of Food Engineering,2019,242(August 2018):8−20.
    [51] Zhang J, Liu L, Liu H, et al. Changes in conformation and quality of vegetable protein during texturization process by extrusion[J]. Critical Reviews in Food Science and Nutrition,2019,59(20):3267−3280. doi:  10.1080/10408398.2018.1487383
    [52] Pietsch V L, Bühler J M, Karbstein H P, et al. High moisture extrusion of soy protein concentrate: Influence of thermomechanical treatment on protein-protein interactions and rheological properties[J]. Journal of Food Engineering,2019,251(December 2018):11−18.
    [53] 魏益民, 赵多勇, 康立宁, 等. 高水分大豆蛋白组织化生产工艺和机理分析[J]. 农业工程学报,2006,22(10):193−197. [Wei Y M, Zhao D Y, Kang L N, et al. Processing and mechanism of high moisture textured soy protein[J]. Transactions of the Chinese Society of Agricultural,2006,22(10):193−197. doi:  10.3321/j.issn:1002-6819.2006.10.043
    [54] 陈锋亮, 魏益民, 张波. 物料含水率对大豆蛋白挤压产品组织化质量的影响[J]. 中国农业科学,2010,43(4):805−811. [Chen F L, Wei Y M, Zhang B. Effect of moisture content on quality of texturization of product extruded from soy protein isolate[J]. Scientia Agricultura Sinica,2010,43(4):805−811. doi:  10.3864/j.issn.0578-1752.2010.04.018
    [55] Chiang J H, Loveday S M, Hardacre A K, et al. Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues[J]. Food Structure,2019:19.
    [56] Ning L, Villota R. Influence of 7S and 11S globulins on the extrusion performance of soy protein concentrates[J]. Journal of Food Processing and Preservation,1994(18):421−436.
    [57] Zhang J, Chen Q, Liu L, et al. High-moisture extrusion process of transglutaminase-modified peanut protein: Effect of transglutaminase on the mechanics of the process forming a fibrous structure[J]. Food Hydrocolloids,2021:112.
    [58] Zhang J, Liu L, Jiang Y, et al. High-moisture extrusion of peanut protein-/carrageenan/sodium alginate/wheat starch mixtures: Effect of different exogenous polysaccharides on the process forming a fibrous structure[J]. Food Hydrocolloids,2020,99(July 2019):105311.
    [59] Dankar I, Haddarah A, Omar F E L, et al. 3D printing technology: The new era for food customization and elaboration[J]. Trends in Food Science and Technology,2018,75(July 2017):231−242.
    [60] Wong K V, Hernandez A. A review of additive manufacturing[J]. ISRN Mechanical Engineering,2012,2012:1−10.
    [61] Liu Z, Zhang M, Bhandari B, et al. 3D printing: Printing precision and application in food sector[J]. Trends in Food Science and Technology,2017,69:83−94. doi:  10.1016/j.jpgs.2017.08.018
    [62] Godoi F C, Prakash S, Bhandari B R. 3D printing technologies applied for food design: Status and prospects[J]. Journal of Food Engineering,2016,179:44−54. doi:  10.1016/j.jfoodeng.2016.01.025
    [63] Chen Y, Zhang M, Phuhongsung P. 3D printing of protein-based composite fruit and vegetable gel system[J]. LWT,2021,141(September 2020):110978.
    [64] Chen J, Mu T, Goffin D, et al. Application of soy protein isolate and hydrocolloids based mixtures as promising food material in 3D food printing[J]. Journal of Food Engineering,2019,261(April):76−86.
    [65] Liu Y, Liu D, Wei G, et al. 3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate[J]. Innovative Food Science and Emerging Technologies,2018,49(July):116−126.
    [66] Liu Y, Yu Y, Liu C, et al. Rheological and mechanical behavior of milk protein composite gel for extrusion-based 3D food printing[J]. LWT,2019,102(August 2018):338−346.
    [67] Liu L, Meng Y, Dai X, et al. 3D printing complex egg white protein objects: Properties and optimization[J]. Food and Bioprocess Technology,2019,12(2):267−279. doi:  10.1007/s11947-018-2209-z
    [68] Nor Afizah M, Rizvi S S H. Functional properties of whey protein concentrate texturized at acidic pH: Effect of extrusion temperature[J]. LWT-Food Science and Technology,2014,57(1):290−298. doi:  10.1016/j.lwt.2014.01.019
    [69] Ruttarattanamongkol K, Nor Afizah M, Rizvi S S H. Stability and rheological properties of corn oil and butter oil emulsions stabilized with texturized whey proteins by supercritical fluid extrusion[J]. Journal of Food Engineering,2015,166:139−147. doi:  10.1016/j.jfoodeng.2015.06.005
    [70] Steijn A C M Van, Steenbergen W C, Goot A J Van Der. A cell for making an anisotropic-structured product from a starting material when being subjected to a shear force and heated and a method[P]. 2021.
    [71] Pietrzak K, Isreb A, Alhnan M A. A flexible-dose dispenser for immediate and extended release 3D printed tablets[J]. European Journal of Pharmaceutics and Biopharmaceutics,2015,96:380−387. doi:  10.1016/j.ejpb.2015.07.027
    [72] Hertzler S R, Lieblein-Boff J C, Weiler M, et al. Plant proteins: Assessing their nutritional quality and effects on health and physical function[J]. Nutrients,2020,12(12):1−27.
    [73] Estell M, Hughes J, Grafenauer S. Plant protein and plant-based meat alternatives: Consumer and nutrition professional attitudes and perceptions[J]. Sustainability (Switzerland),2021,13(3):1−18.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  20
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-07
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。