• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

超高效液相色谱-四极杆/静电场轨道阱高分辨质谱快速测定乳及乳制品中21种真菌毒素

何卓霖, 穆蕾, 王涛, 王亮, 谢云峰

何卓霖,穆蕾,王涛,等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱快速测定乳及乳制品中21种真菌毒素[J]. 食品工业科技,2022,43(6):302−310. doi: 10.13386/j.issn1002-0306.2021070077.
引用本文: 何卓霖,穆蕾,王涛,等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱快速测定乳及乳制品中21种真菌毒素[J]. 食品工业科技,2022,43(6):302−310. doi: 10.13386/j.issn1002-0306.2021070077.
HE Zhuolin, MU Lei, WANG Tao, et al. Rapid Determination of 21 Mycotoxins in Milk and Dairy Products by Ultra Performance Liquid Chromatography-quadrupole/orbitrap High Resolution Mass Spectrometry[J]. Science and Technology of Food Industry, 2022, 43(6): 302−310. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070077.
Citation: HE Zhuolin, MU Lei, WANG Tao, et al. Rapid Determination of 21 Mycotoxins in Milk and Dairy Products by Ultra Performance Liquid Chromatography-quadrupole/orbitrap High Resolution Mass Spectrometry[J]. Science and Technology of Food Industry, 2022, 43(6): 302−310. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021070077.

超高效液相色谱-四极杆/静电场轨道阱高分辨质谱快速测定乳及乳制品中21种真菌毒素

基金项目: “十三五”国家重点研发计划项目(2017YFC1601603)。
详细信息
    作者简介:

    何卓霖(1995−),男,硕士研究生,研究方向:食品检测技术开发,E-mail:863454690@qq.com

    通讯作者:

    穆蕾(1994−),女,硕士,工程师,研究方向:食品质量与安全,E-mail:mulei1@cofco.com

    王亮(1977−),男,博士,教授,研究方向:食品工程,E-mail:1390593786@qq.com

  • 中图分类号: TS207.3

Rapid Determination of 21 Mycotoxins in Milk and Dairy Products by Ultra Performance Liquid Chromatography-quadrupole/orbitrap High Resolution Mass Spectrometry

  • 摘要: 建立利用超高效液相色谱-四极杆/静电场轨道阱高分辨质谱联用技术同时测定乳及乳制品中21种真菌毒素的方法。乳及乳制品经酸化乙腈提取后,采用Captiva-EMR Lipid净化柱净化,以C18色谱柱进行色谱分离,质谱采用全扫描/数据依赖的二级扫描模式(full scan data-dependent MS/MS acquisition mode,FullMS/ddMS2)分别在正、负离子模式下检测,外标法定量。21种真菌毒素在一定浓度范围内均具有良好的线性关系,相关系数(r)均大于0.99,定量限范围为1.0~93.8 μg/kg,在三个加标水平下,平均回收率为60.3%~107.0%,相对标准偏差(RSD)为0.4%~14.4%。应用本方法对市售粉状和液态乳及乳制品进行检测,一个水果添加酸奶样品检出黄曲霉毒素B2。该方法快速、准确,适用于乳及乳制品中多真菌毒素的快速测定,并可用于真菌毒素风险的高效筛查。
    Abstract: A method for the simultaneous determination of 21 mycotoxins in milk and dairy products using ultra performance liquid chromatography-quadrupole/orbitrap high-resolution mass spectrometry technology was established. After the milk and dairy products were extracted with acidified acetonitrile, they were purified by a Captiva-EMR Lipid purification column and chromatographically separated by a C18 column. The mass spectrometry adopt full scan data-dependent MS/MS acquisition mode (Full MS/ddMS2) detected in positive and negative ion modes, and quantified by external standard method. The 21 mycotoxins all had a good linear relationship within a certain concentration range, the correlation coefficients (r) were greater than 0.99, the limits of quantification were 1.0~93.8 μg/kg, and the average recoveries of all mycotoxins were 60.3%~107.0% at three different levels, and the relative standard deviations (RSD) ranged between 0.4%~14.4%. This method was used to detect commercially available powdered and liquid milk and dairy products. Aflatoxin B2 was detected in a fruit-added yogurt sample. The method was fast, accurate, suitable for the rapid determination of multiple mycotoxins in milk and dairy products, which could be used for efficient screening of mycotoxins risks.
  • 真菌毒素是由产毒真菌在一定条件产生的次级代谢产物,大多数有致癌、致畸、致突变的作用,对人体及动物的健康产生极大影响[1-4]。乳及乳制品中的真菌毒素来源于动物食用被真菌毒素污染的饲料,这些毒素通过食物链直接或间接地危害人和动物的健康,如奶牛食用被黄曲霉毒素、伏马毒素和呕吐毒素等真菌毒素污染的饲料后,在挤出的鲜奶中可检测到相应的真菌毒素及其代谢物[5-8]。此外,以乳类和乳蛋白为原料的各种添加制品也有真菌毒素污染的风险,如谷物或水果添加乳制品。Yang等[9]利用稳定同位素结合液相色谱串联质谱技术建立了测定液态奶中17种真菌毒素的检测方法,并在谷物和红枣添加液态奶中检测到黄曲霉毒素M1、脱氧雪腐镰烯醇、伏马菌素B1和B2、玉米赤霉烯酮等毒素。Mao等[10]利用超高效液相色谱-四极杆静电场轨道阱质谱联用技术测定生牛乳中的真菌毒素,研究表明生牛乳中除了含有国家限量的黄曲霉毒素M1外,还有玉米赤霉烯酮及其衍生物以及赭曲霉毒素等。目前我国、美国和欧盟等国家和组织都对乳及乳制品中黄曲霉毒素M1设定了较为严格的限量标准[11-13],但均未对其它种类毒素作明确规定,存在目标物种类覆盖不全面和忽视了毒素衍生物的潜在危害等问题。为更好的监测乳及乳制品中的真菌毒素,开发简单、快速、准确的多真菌毒素前处理和检测方法非常有必要。

    乳及乳制品基质复杂并且各真菌毒素结构差异较大,因此对样品前处理以及检测技术要求较高。目前常用的前处理方法有固相萃取、免疫亲和柱净化和QuEChERS法等,其中免疫亲和柱净化具有高效性、专一性和基质干扰小等优点而应用广泛,但成本较高且无法对多种真菌毒素同时净化[14-17]。仪器方法主要有高效液相色谱法、高效液相色谱-串联质谱法、气相色谱-串联质谱法等[18-21],高效液相色谱-串联质谱法检测灵敏度高,抗干扰能力强,可对食品中的真菌毒素进行准确定量因此应用较广泛。近年来,由于静电场轨道阱高分辨质谱具有高通量、高选择性和高分辨率等优势,能够在超高分辨率下测定化合物及其碎片离子的精确分子质量并且能够有效降低基质干扰,适用于多种目标化合物的筛查和定量研究[22-24],在此基础上建立的超高效液相色谱-高分辨质谱联用分析技术在痕量多组分分析检测方面得到越来越多的应用[25-26],然而应用于乳制品中多真菌毒素检测方法的报道较少,因此,开发适用于乳及乳制品中多真菌毒素的筛查技术具有非常重要的现实意义和应用价值。

    乳及乳制品中含有大量蛋白质、脂质以及水分会对真菌毒素检测造成干扰,快速、高效的前处理方法是检测乳及乳制品中真菌毒素的关键,利用多功能净化柱的前处理方法能够有效去除蛋白质和脂质干扰,减少样品处理时间。本研究围绕液态和粉状乳及乳制品,针对其中蛋白质、脂质、乳糖、水分等的含量特点,通过优化萃取溶液和筛选多功能净化柱结合超高效液相色谱-四极杆/静电场轨道阱高分辨质谱,建立乳及乳制品中21种真菌毒素快速测定的方法,该方法具有前处理简单、分析时间短和灵敏度高等优点,可实现乳及乳制品中多真菌毒素的快速测定,为真菌毒素的有效监测提供有力的技术支持。

    黄曲霉毒素混合标准液:黄曲霉毒素B1(AFTB1) 2 µg/mL、黄曲霉毒素B2(AFTB2) 0.5 µg/mL、黄曲霉毒素G1(AFTG1) 2 µg/mL、黄曲霉毒素G2(AFTG2) 0.5 µg/mL、黄曲霉毒素M1(AFTM1) 0.5 µg/mL、黄曲霉毒素M2(AFTM2) 10 µg/mL;呕吐毒素混合标准液:呕吐毒素(DON) 100 µg/mL、3-乙酰脱氧雪腐镰刀菌烯醇(3-AC-DON) 100 µg/mL、15-乙酰脱氧雪腐镰刀菌烯醇(15-AC-DON) 100 µg/mL、T-2毒素(T-2) 100 µg/mL、HT-2毒素(HT-2) 100 µg/mL、伏马毒素B1(FB1) 50 µg/mL、伏马毒素B2(FB2) 50 µg/mL、伏马毒素B3(FB3) 50 µg/mL、赭曲霉毒素A(OTA) 10 µg/mL、赭曲霉毒素B(OTB) 10 µg/mL 美国Romer公司;玉米赤霉烯酮混合标准溶液:玉米赤霉酮(ZAN) 100 µg/mL、赤霉烯酮(ZEN) 100 µg/mL、α-赤霉醇(α-ZAL) 100 µg/mL、β-玉米赤霉醇(β-ZAL) 100 µg/mL、α-玉米赤霉烯醇(α-ZEL) 100 µg/mL、β-玉米赤霉烯醇(β-ZEL) 100 µg/mL 上海安谱科技实验股份有限公司;实验用液态乳制品(如纯牛奶、酸奶、水果和谷物添加奶等)和粉状乳制品(如婴幼儿配方乳粉、脱脂乳粉等) 均购自市场超市;甲醇、乙腈 色谱纯,美国sigma公司;甲酸 色谱纯,霍尼韦尔贸易(上海)有限公司;甲酸 98%,国药集团化学试剂有限公司;超纯水 Mili Q纯水机制得。

    Captiva-EMR Lipid 净化柱(600 mg,6 cc) 安捷伦科技有限公司;Oasis PRIME-HLB 净化柱(200 mg,6 cc)、CORTECS-UPLC-C18柱(2.1 mm×100 mm,1.6 μm) 上海安谱实验科技股份有限公司;Accucore C18柱(2.1 mm×100 mm,2.6 μm) 美国 Thermo Fisher Scientific 公司;Q-Exactive四极杆/静电场轨道阱高分辨率质谱仪配备Transcend Ⅰ 液相色谱仪 美国Thermo Fisher Scientific公司;4-20R台式高速冷冻离心机 湖南可成仪器设备有限公司;ZX-DC型氮吹仪 北京众信佳仪科技有限公司;Milli-Q Advantage超纯水系统 美国Millipore公司;Dragon Lab QL902涡旋振荡器、SB-120DTN超声波清洗机 宁波新芝生物科技股份有限公司。

    分别移取一定体积的21种真菌毒素储备液于5 mL容量瓶中,加入适量80%乙腈水溶液稀释并定容至刻度线,得到21种真菌毒素混合标准中间溶液,各真菌毒素的浓度见表1,充分混匀后于−20 ℃冰箱内避光保存。

    表  1  真菌毒素混合标准中间液浓度
    Table  1.  Concentration of mycotoxins mixed standard intermediate solution
    真菌毒素浓度(μg/L)真菌毒素浓度(μg/L)真菌毒素浓度(μg/L)
    AFTB1100HT-275β-ZAL20
    AFTB225FB140α-ZEL20
    AFTG1100FB240β-ZEL20
    AFTG225FB340ZAN20
    AFTM16015-AC-DON938ZEN20
    AFTM2503-AC-DON938OTA10
    T-225α-ZAL20OTB20
    下载: 导出CSV 
    | 显示表格

    准确称取(2.00±0.05)g液态或粉状乳及乳制品,置于50 mL聚丙烯离心管中,粉状样品先加入2 mL水后涡旋振荡使其充分混匀,所有样品再加入8 mL乙腈-甲酸(98:2,v:v)溶液,涡旋1 min,30 ℃、50赫兹超声提取20 min,8000 r/min离心10 min,取上清液于10 mL聚丙烯离心管中,涡旋30 s,取5 mL上清液过Captiva-EMR Lipid净化柱净化,加正压,控制流速在每秒3滴,使提取液流出净化柱,加入1 mL乙腈-水(80:20,v:v)淋洗液洗脱,加正压吹干,合并淋洗液,置于40 ℃水浴中氮气吹至近干,加入250 μL乙腈-水-甲酸(30:70:0.1,v:v:v)复溶,涡旋振荡1 min,超声5 min,将复溶液转移至2 mL离心管中,12000 r/min离心10 min,取上清液于带有内插管的进样瓶中。

    加标阴性样品前处理:准确称取(2.00±0.05)g液态或粉状乳及乳制品,置于50 mL聚丙烯离心管中,粉状样品先加入2 mL水后涡旋振荡使其充分混匀,根据需要加入一定体积的混合标准中间溶液,其余步骤均与上述步骤相同,利用加标阴性样品进行方法学验证。

    21种真菌毒素依据其化学性质分别在正、负离子模式下进行数据采集,色谱条件如下:色谱柱:CORTECS-UPLC-C18柱(2.1 mm×100 mm,1.6 μm);流速:0.2 mL/min;进样量:10 μL;流动相A:含0.1%甲酸水溶液;流动相B:甲醇。梯度洗脱条件如表2

    表  2  梯度洗脱程序
    Table  2.  Gradient elution program
    测试
    类型
    时间(min)流动相比例测试
    类型
    时间(min)流动相比例
    A(%)B(%)A(%)B(%)
    正离子
    模式
    17030负离子
    模式
    1973
    6.5455524555
    8.5455593070
    10208010199
    12208011199
    12.1703011.1973
    16.1703015973
    下载: 导出CSV 
    | 显示表格

    离子源:加热电喷雾离子(HESI)源;扫描方式:正/负离子模式扫描;采集模式:全扫描/数据依赖二级扫描(Full MS/ddMS2);离子源温度:350 ℃;毛细管加热温度:320 ℃;鞘气(N2)流速:40 unit;辅助气(N2)流速15 unit;喷雾电压:(±)3.00 kV;Full MS扫描分辨率(R):70000;自动增益控制进入轨道阱中的离子数(AGC target):3×106;最大驻留时间:100 ms;扫描范围:100~1000 m/z;ddMS2扫描分辨率(R):17500;自动增益控制进入轨道阱中的离子数(AGC target):1×105;最大驻留时间:50 ms;Top N:5;碰撞池能量(NCE):20、30、40;实验室所用气体均为高纯氮气。

    结合高分辨质谱的精确质量数,采用保留时间和两个碎片离子进行定性,一级母离子进行定量,21种真菌毒素的保留时间、分子离子准确质量以及碎片离子准确质量等见表3

    表  3  21种真菌毒素的保留时间和选择离子的准确分子量
    Table  3.  Retention time of 21 mycotoxins and accurate molecular weight of selected ions
    名称离子峰类型理论精确质荷比(m/z)测量精确质荷比(m/z)相对质量偏差(×10−6碎片离子1(m/z)碎片离子2(m/z)保留时间(min)
    AFTB1[M+H]+313.07066313.071111.44285.07611270.052679.68
    AFTB2[M+H]+315.08631315.086610.95287.09186259.060249.22
    AFTG1[M+H]+329.06558329.065770.58243.06554283.060558.42
    AFTG2[M+H]+331.08123331.081912.05313.07135245.081417.86
    AFTM1[M+H]+329.06558329.065770.57273.07593259.060367.68
    AFTM2[M+H]+331.08123331.080083.47273.07608285.075966.70
    T-2[M+NH4]+467.22756484.254641.07305.13736185.0956612.34
    HT-2[M+NH4]+425.21699442.242133.12263.12665215.1059111.90
    FB1[M+H]+722.39575722.393373.29704.38312352.3201311.75
    FB2[M+H]+706.40083706.39853.30336.32513688.3881213.15
    FB3[M+H]+706.40083706.39853.30336.32523688.3881212.82
    15-AC-DON[M+H]+339.14383339.143684.42321.12293137.059726.28
    3-AC-DON[M+H]+339.14383339.143684.42231.10149279.122536.28
    α-ZAL[M-H]-321.17075321.170321.34277.18048303.159709.45
    β-ZAL[M-H]-321.17075321.170411.06277.1806303.1598211.29
    α-ZEL[M-H]-319.15510319.154541.75275.16489160.0165611.76
    β-ZEL[M-H]-319.15510319.154631.47275.16495160.0165110.13
    ZAN[M-H]-319.15510319.15461.57275.16501205.0868211.91
    ZEN[M-H]-317.13945317.139071.20131.05017175.0399212.14
    OTA[M-H]-402.07499402.074072.29358.08435211.0163412.21
    OTB[M-H]-368.11396368.111057.91324.12436280.0982410.06
    下载: 导出CSV 
    | 显示表格

    精确吸取“1.2.1”标准中间溶液200 μL,置于带内插管的进样瓶中,按质谱色谱条件进样,通过一级全扫描获得目标物的精确质量数和保留时间,同时结合数据依赖性二级扫描模式获得目标物的二级特征质谱图和二级碎片离子,将信息输入软件TraceFinder中,建立质谱数据库,利用目标物的精确质量数和保留时间进行定量和定性,同时结合二级扫描质谱图为准确定性提供保障。

    针对液态和粉状的乳及乳制品中蛋白质、脂质、乳糖、水分等的含量特点,分别优化萃取液配比以实现21种真菌毒素同时提取。对于粉状乳制品,分别使用10 mL乙腈:水:甲酸=80:18:2(v:v:v)的提取液提取和先加入2 mL水溶解样品再加入8 mL乙腈:甲酸=98:2(v:v)提取,21种真菌毒素的回收率如图1所示。相比粉状乳制品,液态样品水分含量较高,分别考察使用8 mL乙腈:水:甲酸=80:18:2(v:v:v)的提取液和8 mL乙腈:甲酸=98:2(v:v)提取,21种真菌毒素的回收率如图2。实验结果表明,对于粉状乳制品应先加2 mL水溶解再加8 mL乙腈:甲酸=98:2(v:v)提取,液态样品直接加入8 mL乙腈:甲酸=98:2(v:v)提取即可,以上两种针对不同类型乳制品的提取方法均可实现21种真菌毒素的统一前处理并保证各毒素目标物回收率均满足要求。

    图  1  提取液对粉状乳制品中各真菌毒素回收率的影响
    Figure  1.  Effects of extract on the recovery rate of mycotoxins in powdered dairy products
    图  2  提取液对液态乳制品中各真菌毒素回收率的影响
    Figure  2.  Effects of extract on the recovery rate of mycotoxins in liquid dairy products

    乳及乳制品经提取液提取后仍含有大量的蛋白质、脂质、矿物质等,会对真菌毒素的检测造成干扰,且不同真菌毒素的理化性质相差较大,因此选择合适的净化方式非常重要。目前针对多种真菌毒素同时净化的方法主要有QuEChER法[5,27]和多功能净化柱法[5,28],QuEChER法需要几种净化剂单一或组合对样品进行净化,存在对部分真菌毒素的吸附作用容易造成毒素损失[22,27];而常用的MycoSpin 400多功能净化柱填料对于赭曲霉毒素A、伏马毒素FB1、伏马毒素FB2及3-乙酰基脱氧雪腐镰刀菌烯醇等毒素具有吸附作用,使得毒素的回收率降低,影响定量结果[28-29]。本研究选取两种多功能净化柱并考察其对于21种真菌毒素的净化效率,Captiva-EMR Lipid净化柱具有较高选择性,能够高效去除蛋白质和脂质,且Captiva-EMR Lipid净化柱不需活化,减少样品处理时间[29-30];Oasis PRIME-HLB一种新型的反相固相萃取(SPE)小柱,不需要平衡活化可直接上样,属于过滤型去除杂质的固相小柱,极大简化SPE流程[31-32]。比较使用Captiva-EMR Lipid柱和Oasis PRIME-HLB柱的净化后响应信号,发现使用Captiva-EMR Lipid柱净化21种真菌毒素的回收率均可满足要求,两种净化柱对真菌毒素回收率影响结果如图3所示。

    图  3  不同净化柱对各真菌毒素回收率的影响
    Figure  3.  Effects of different purification columns on the recovery rate of each mycotoxin

    对比CORTECS-UPLC-C18柱(2.1 mm×100 mm,1.6 μm)与Accucore C18柱(2.1 mm×100 mm,2.6 μm)的分离效果。结果表明, CORTECS-UPLC-C18柱峰型更加对称,且色谱柱填料粒径较小,能达到较好的分离效果。

    分别考察在水相中添加0.1%甲酸和5 mmol/L甲酸铵的分离效果。结果表明,目标化合物在0.1%甲酸水-甲醇流动相中分离度较好。在流动相中加入适量的甲酸可以提高分析物的离子响应强度和分离度。以0.1%甲酸水-甲醇流动相时,各目标化合物的质谱响应强度高、保留时间稳定,峰型较好。21种真菌毒素提取离子流色谱图见图4

    图  4  21种真菌毒素提取离子流色谱图
    Figure  4.  Extracted ion current chromatogram of the 21 mycotoxins

    离子源采用HESI源,对比了2.8、3.0、3.5 kV的喷雾电压对目标化合物电离程度的影响。结果表明,喷雾电压为3.0 kV时,目标化合物较易电离,在此喷雾电压条件下有很好的离子化效率。

    能量直接影响目标化合物二级谱图信息的丰富程度。碰撞能量低,目标化合物分子离子的响应强度高,但得到的二级碎片信息少。增大碰撞能量,会导致目标化合物分子离子的响应逐渐减弱,碎片离子增多。对于不同正、负离子,本实验考察了10~50和−10~−50 eV碰撞电压的影响。为得到信息更为全面的MS/MS谱图,选取三种不同碰撞能采集的谱图进行叠加,作为最终的MS/MS谱图,最终选取的正离子模式的碰撞能为20、30、40 eV,负离子模式的碰撞能为−20、−30、−40 eV。

    在优化质谱采集参数时,同时考察21种毒素在正、负离子模式下的响应值,发现6种黄曲霉毒素、3种伏马毒素、2种脱氧雪腐镰刀菌烯醇类以及T-2与HT-2毒素在正离子模式响应较强,其余毒素则在负离子模式下响应较强,并且T-2与HT-2毒素的母离子[M+NH4]+峰响应较[M+H]+峰更强。

    通过空白基质配标校准曲线的斜率与溶剂配标校准曲线的斜率百分比值定义方法的基质效应(信号增强或抑制),该比值代表了干扰物对目标分析物离子化效率的影响。21种真菌毒素基质效应结果见图5,从图5可以看出,黄曲霉毒素G1、G2,伏马毒素类在乳及乳制品中基质增强效应明显,玉米赤霉烯酮、T-2毒素、HT-2毒素在乳及乳制品中基质抑制效应明显,其它毒素的基质效应尚在可接受范围(80%~120%)。为补偿基质效应的影响,选用基质配标法进行目标物的定量分析,外标法定量。

    图  5  21种真菌毒素的基质效应
    Figure  5.  Matrix effects of 21 mycotoxins

    取空白样品基质溶液准确配制不同质量浓度的真菌毒素混合标准溶液,采用逐级稀释方法获得21种真菌毒素的定量限,以3倍信噪比(S/N)确定化合物检出限(LOD)、10倍信噪比确定不同化合物的定量限(LOQ)。经高分辨质谱检测,以峰面积(Y)为纵坐标,质量浓度(X,μg/L)为横坐标绘制标准曲线,结果如表4所示,在质量浓度范围内21种真菌毒素色谱峰面积与质量浓度呈良好线性关系,相关系数r均大于0.99,检出限(LOD)为0.3~31.2 μg/kg,定量限为(LOQ)为1.0~93.8 μg/kg。

    表  4  21种真菌毒素的线性范围、检出限和定量限
    Table  4.  Linear range, detection limit and quantification limit of 21 mycotoxins
    名称线性范围(μg/L)线性方程相关系数rLOD(μg/kg)LOQ(μg/kg)
    AFTB120~800Y=5.977×106X+1.196×1080.99663.310.0
    AFTB25~200Y=5.095×106X+2.735×1070.99420.82.5
    AFTG120~800Y=3.963×106X+1.208×1080.99563.310.0
    AFTG25~200Y=3.103×106X+3.892×1070.99350.82.5
    AFTM112.5~500Y=4.314×106X−2.409×1070.99242.06.2
    AFTM210~400Y=1.032×106X+3.086×1070.99531.65.0
    T-25~200Y=2.912×105X−2.112×1060.99700.82.5
    HT-215~600Y=7.587×104X−1.452×1060.99422.57.5
    FB17.5~300Y=4.931×106X−5.75×1070.99651.23.8
    FB27.5~300Y=4.098×106X−3.734×1070.99891.23.8
    FB37.5~300Y=5.259×106X−4.503×1070.99881.23.8
    15-AC-DON187.5~7500Y=1.031×106X+1.694×1080.999831.293.8
    3-AC-DON187.5~7500Y=1.064×106X+7.926×1070.999031.293.8
    α-ZAL4~160Y=7.864×106X−3.484×1070.99260.62.0
    β-ZAL4~160Y=7.235×106X−2.195×1070.99820.62.0
    α-ZEL4~160Y=1.945×107X−8.406×1070.99350.62.0
    β-ZEL4~160Y=7.876×106X−3.527×1060.99240.62.0
    ZAN4~160Y=1.738×106X−2.144×1060.99530.62.0
    ZEN4~160Y=1.244×106X+6.455×1050.99500.62.0
    OTA2~80Y=3.692×106X−7.673×1060.99410.31.0
    OTB4~160Y=6.3223×106X−2.733×1070.99270.62.0
    下载: 导出CSV 
    | 显示表格

    取乳粉、液态乳及乳制品空白样品基质,分别添加低、中、高3个浓度水平的混合标准溶液,按“1.2.2”进行样品前处理,每个水平测定6次,计算回收率和相对标准偏差(RSD),21种真菌毒素的回收率为60.3%~107.0%,RSD<15%,结果见表5。符合GB/T 27404-2008《实验室质量控制规范食品理化检测》的技术要求[33],方法具有良好的准确度和精密度,适用于乳及乳制品中21种真菌毒素的日常监测。

    表  5  21种真菌毒素的加标回收率和相对标准偏差(n=6)
    Table  5.  Standard addition recovery rates and relative standard deviations of 21 mycotoxins (n=6)
    名称加标浓度(μg/kg)粉状 液态名称加标浓度(μg/kg)粉状 液态
    回收率(%)RSD(%)回收率(%)RSD(%)回收率(%)RSD(%)回收率(%)RSD(%)
    AFTB110.066.610.1 66.52.315-AC-DON93.894.09.2 100.71.5
    20.079.010.375.02.9187.5101.914.4107.04.0
    50.077.77.762.32.1468.887.69.265.03.0
    AFTB22.5101.53.668.61.73-AC-DON93.892.513.194.11.4
    5.083.011.280.84.6187.5100.614.380.13.1
    12.590.05.269.53.3468.887.69.260.33.2
    AFTG110.073.37.868.61.5α-ZAL2.067.27.385.011.3
    20.074.17.775.93.04.076.711.170.83.1
    50.082.27.662.62.410.066.13.578.25.5
    AFTG22.566.87.367.51.0β-ZAL2.065.26.684.211.2
    5.085.113.179.22.74.071.613.471.03.0
    12.599.72.964.32.110.066.13.582.23.0
    AFTM16.2563.78.0 87.50.4α-ZEL2.062.14.5 88.93.2
    12.567.68.175.93.34.067.213.671.52.8
    31.382.27.665.13.910.061.52.679.01.3
    AFTM25.063.34.165.56.5β-ZEL2.066.28.484.213.5
    10.079.411.478.19.04.077.810.861.71.0
    25.089.813.168.53.610.073.43.968.25.8
    T-22.570.213.985.13.5ZAN2.063.97.779.710.8
    5.062.94.479.67.84.069.313.766.42.8
    12.569.58.963.21.110.061.52.669.53.9
    HT-27.587.58.383.58.4ZEN2.063.75.076.611.6
    15.067.09.371.18.24.069.711.062.22.0
    37.587.07.669.34.710.061.52.165.41.9
    FB13.865.99.474.34.8OTA1.069.86.581.44.9
    7.571.713.370.21.12.073.713.066.51.0
    18.866.810.767.02.45.067.53.368.93.8
    FB23.864.48.091.93.5OTB2.076.86.197.55.3
    7.564.88.876.25.94.083.110.680.24.2
    18.875.44.663.21.110.079.92.667.42.9
    FB33.864.16.983.81.6
    7.572.98.073.13.5
    18.873.56.160.70.9
    下载: 导出CSV 
    | 显示表格

    目前乳及乳制品中真菌毒素的检测方法对比如表6所示,本研究前处理采用Captiva-EMR Lipid柱净化,四极杆/静电场轨道阱高分辨质谱测定,样品前处理能够高效去除蛋白质和脂质,减少样品处理时间,与表6所列方法对比,目标物种类覆盖更全面,首次对乳及乳制品中的呕吐毒素衍生物进行定量分析,该方法具有较高的适用性和推广性。

    表  6  乳及乳制品中多真菌毒素检测方法对比
    Table  6.  Test results of multiple mycotoxins in milk and dairy products
    基质毒素种类净化方法检测方法回收率检出限范围参考文献
    乳及乳制品6种玉米赤
    霉烯酮类
    QuEChERS方法净化高效液相色谱-串联质谱法91.8%~114.5%0.05~0.1 μg/kg[23]
    牛奶和奶粉6黄曲霉毒素QuEChERS方法净化液相色谱-质谱联用技术57.00%~99.86%1.0~5.0 ng/mL[34]
    乳制品伏马毒素B1、B2免疫亲和柱净化液相色谱-质谱联用技术80.3%~96.7%0.5 μg/kg[35]
    牛奶15种真菌毒素液液萃取液相色谱-质谱联用技术82.6%~94.4%0.02~10.14 ng/mL[36]
    牛奶AFTM1、AFTB1固相微萃取超高效液相色谱-四极杆
    飞行时间串联质谱
    88.24%~105.35%AFTM1 0.049 μg/kg,
    AFTB1 0.023 μg/kg
    [37]
    下载: 导出CSV 
    | 显示表格

    应用建立的方法对从超市购买的36份乳及乳制品进行检测,包括乳粉样品18份,液态乳样品18份,其中一份水果添加液态酸奶样品检出黄曲霉毒素B2,含量为18.29 μg/kg,其余样品均未检出真菌毒素,阳性样品中黄曲霉毒素B2的提取离子流色谱图如图6,二级质谱图如图7所示。阳性样品表明该酸奶在原料采集以及生产加工过程中存在真菌毒素污染风险,可能是由乳制品中的添加原料引入,从而危害人体健康。为确保乳及乳制品的质量,除了其中乳类原料,关注其他成分的质量安全以及良好的生产规范都是十分必要的。

    图  6  标准溶液(a)、阳性样品(b)中黄曲霉毒素B2的提取离子流色谱图
    Figure  6.  Extracted ion chromatogram of aflatoxin B2 in (a) standard solution and (b) positive sample
    图  7  标准溶液(a)、阳性样品(b)中黄曲霉毒素B2二级质谱图
    Figure  7.  MS2 spectra of aflatoxin B2 in (a) the standard solution and (b) the positive sample

    Q-Exactive高分辨质谱技术有较高分辨率和高质量精度,可实现目标物的准确定性,在检测复杂基质时能够在较高分辨率下测定化合物及其碎片离子的精确分子量,具有较强的抗干扰能力。本文基于高分辨质谱技术的优势,针对粉状和液态乳及乳制品中不同成分的含量特点,通过优化萃取溶液和筛选净化柱,建立了乳及乳制品中21种真菌毒素快速筛查方法。样品中的真菌毒素经酸化乙腈提取后,通过Captiva-EMR Lipid净化柱净化,超高效液相色谱-四极杆/静电场轨道阱高分辨质谱联用法进行测定。加标回收实验验证了方法准确度和精密度,且具有良好的回收率,能够快速、准确、高效的实现乳制品中21种真菌毒素的筛查,具有较高的实用性和推广性,为乳及乳制品中多真菌毒素的快速筛查分析提供可靠技术支持,为食品安全管理机构制定有效的风险管理政策提供科学依据,保障乳及乳制品质量安全。

  • 图  1   提取液对粉状乳制品中各真菌毒素回收率的影响

    Figure  1.   Effects of extract on the recovery rate of mycotoxins in powdered dairy products

    图  2   提取液对液态乳制品中各真菌毒素回收率的影响

    Figure  2.   Effects of extract on the recovery rate of mycotoxins in liquid dairy products

    图  3   不同净化柱对各真菌毒素回收率的影响

    Figure  3.   Effects of different purification columns on the recovery rate of each mycotoxin

    图  4   21种真菌毒素提取离子流色谱图

    Figure  4.   Extracted ion current chromatogram of the 21 mycotoxins

    图  5   21种真菌毒素的基质效应

    Figure  5.   Matrix effects of 21 mycotoxins

    图  6   标准溶液(a)、阳性样品(b)中黄曲霉毒素B2的提取离子流色谱图

    Figure  6.   Extracted ion chromatogram of aflatoxin B2 in (a) standard solution and (b) positive sample

    图  7   标准溶液(a)、阳性样品(b)中黄曲霉毒素B2二级质谱图

    Figure  7.   MS2 spectra of aflatoxin B2 in (a) the standard solution and (b) the positive sample

    表  1   真菌毒素混合标准中间液浓度

    Table  1   Concentration of mycotoxins mixed standard intermediate solution

    真菌毒素浓度(μg/L)真菌毒素浓度(μg/L)真菌毒素浓度(μg/L)
    AFTB1100HT-275β-ZAL20
    AFTB225FB140α-ZEL20
    AFTG1100FB240β-ZEL20
    AFTG225FB340ZAN20
    AFTM16015-AC-DON938ZEN20
    AFTM2503-AC-DON938OTA10
    T-225α-ZAL20OTB20
    下载: 导出CSV

    表  2   梯度洗脱程序

    Table  2   Gradient elution program

    测试
    类型
    时间(min)流动相比例测试
    类型
    时间(min)流动相比例
    A(%)B(%)A(%)B(%)
    正离子
    模式
    17030负离子
    模式
    1973
    6.5455524555
    8.5455593070
    10208010199
    12208011199
    12.1703011.1973
    16.1703015973
    下载: 导出CSV

    表  3   21种真菌毒素的保留时间和选择离子的准确分子量

    Table  3   Retention time of 21 mycotoxins and accurate molecular weight of selected ions

    名称离子峰类型理论精确质荷比(m/z)测量精确质荷比(m/z)相对质量偏差(×10−6碎片离子1(m/z)碎片离子2(m/z)保留时间(min)
    AFTB1[M+H]+313.07066313.071111.44285.07611270.052679.68
    AFTB2[M+H]+315.08631315.086610.95287.09186259.060249.22
    AFTG1[M+H]+329.06558329.065770.58243.06554283.060558.42
    AFTG2[M+H]+331.08123331.081912.05313.07135245.081417.86
    AFTM1[M+H]+329.06558329.065770.57273.07593259.060367.68
    AFTM2[M+H]+331.08123331.080083.47273.07608285.075966.70
    T-2[M+NH4]+467.22756484.254641.07305.13736185.0956612.34
    HT-2[M+NH4]+425.21699442.242133.12263.12665215.1059111.90
    FB1[M+H]+722.39575722.393373.29704.38312352.3201311.75
    FB2[M+H]+706.40083706.39853.30336.32513688.3881213.15
    FB3[M+H]+706.40083706.39853.30336.32523688.3881212.82
    15-AC-DON[M+H]+339.14383339.143684.42321.12293137.059726.28
    3-AC-DON[M+H]+339.14383339.143684.42231.10149279.122536.28
    α-ZAL[M-H]-321.17075321.170321.34277.18048303.159709.45
    β-ZAL[M-H]-321.17075321.170411.06277.1806303.1598211.29
    α-ZEL[M-H]-319.15510319.154541.75275.16489160.0165611.76
    β-ZEL[M-H]-319.15510319.154631.47275.16495160.0165110.13
    ZAN[M-H]-319.15510319.15461.57275.16501205.0868211.91
    ZEN[M-H]-317.13945317.139071.20131.05017175.0399212.14
    OTA[M-H]-402.07499402.074072.29358.08435211.0163412.21
    OTB[M-H]-368.11396368.111057.91324.12436280.0982410.06
    下载: 导出CSV

    表  4   21种真菌毒素的线性范围、检出限和定量限

    Table  4   Linear range, detection limit and quantification limit of 21 mycotoxins

    名称线性范围(μg/L)线性方程相关系数rLOD(μg/kg)LOQ(μg/kg)
    AFTB120~800Y=5.977×106X+1.196×1080.99663.310.0
    AFTB25~200Y=5.095×106X+2.735×1070.99420.82.5
    AFTG120~800Y=3.963×106X+1.208×1080.99563.310.0
    AFTG25~200Y=3.103×106X+3.892×1070.99350.82.5
    AFTM112.5~500Y=4.314×106X−2.409×1070.99242.06.2
    AFTM210~400Y=1.032×106X+3.086×1070.99531.65.0
    T-25~200Y=2.912×105X−2.112×1060.99700.82.5
    HT-215~600Y=7.587×104X−1.452×1060.99422.57.5
    FB17.5~300Y=4.931×106X−5.75×1070.99651.23.8
    FB27.5~300Y=4.098×106X−3.734×1070.99891.23.8
    FB37.5~300Y=5.259×106X−4.503×1070.99881.23.8
    15-AC-DON187.5~7500Y=1.031×106X+1.694×1080.999831.293.8
    3-AC-DON187.5~7500Y=1.064×106X+7.926×1070.999031.293.8
    α-ZAL4~160Y=7.864×106X−3.484×1070.99260.62.0
    β-ZAL4~160Y=7.235×106X−2.195×1070.99820.62.0
    α-ZEL4~160Y=1.945×107X−8.406×1070.99350.62.0
    β-ZEL4~160Y=7.876×106X−3.527×1060.99240.62.0
    ZAN4~160Y=1.738×106X−2.144×1060.99530.62.0
    ZEN4~160Y=1.244×106X+6.455×1050.99500.62.0
    OTA2~80Y=3.692×106X−7.673×1060.99410.31.0
    OTB4~160Y=6.3223×106X−2.733×1070.99270.62.0
    下载: 导出CSV

    表  5   21种真菌毒素的加标回收率和相对标准偏差(n=6)

    Table  5   Standard addition recovery rates and relative standard deviations of 21 mycotoxins (n=6)

    名称加标浓度(μg/kg)粉状 液态名称加标浓度(μg/kg)粉状 液态
    回收率(%)RSD(%)回收率(%)RSD(%)回收率(%)RSD(%)回收率(%)RSD(%)
    AFTB110.066.610.1 66.52.315-AC-DON93.894.09.2 100.71.5
    20.079.010.375.02.9187.5101.914.4107.04.0
    50.077.77.762.32.1468.887.69.265.03.0
    AFTB22.5101.53.668.61.73-AC-DON93.892.513.194.11.4
    5.083.011.280.84.6187.5100.614.380.13.1
    12.590.05.269.53.3468.887.69.260.33.2
    AFTG110.073.37.868.61.5α-ZAL2.067.27.385.011.3
    20.074.17.775.93.04.076.711.170.83.1
    50.082.27.662.62.410.066.13.578.25.5
    AFTG22.566.87.367.51.0β-ZAL2.065.26.684.211.2
    5.085.113.179.22.74.071.613.471.03.0
    12.599.72.964.32.110.066.13.582.23.0
    AFTM16.2563.78.0 87.50.4α-ZEL2.062.14.5 88.93.2
    12.567.68.175.93.34.067.213.671.52.8
    31.382.27.665.13.910.061.52.679.01.3
    AFTM25.063.34.165.56.5β-ZEL2.066.28.484.213.5
    10.079.411.478.19.04.077.810.861.71.0
    25.089.813.168.53.610.073.43.968.25.8
    T-22.570.213.985.13.5ZAN2.063.97.779.710.8
    5.062.94.479.67.84.069.313.766.42.8
    12.569.58.963.21.110.061.52.669.53.9
    HT-27.587.58.383.58.4ZEN2.063.75.076.611.6
    15.067.09.371.18.24.069.711.062.22.0
    37.587.07.669.34.710.061.52.165.41.9
    FB13.865.99.474.34.8OTA1.069.86.581.44.9
    7.571.713.370.21.12.073.713.066.51.0
    18.866.810.767.02.45.067.53.368.93.8
    FB23.864.48.091.93.5OTB2.076.86.197.55.3
    7.564.88.876.25.94.083.110.680.24.2
    18.875.44.663.21.110.079.92.667.42.9
    FB33.864.16.983.81.6
    7.572.98.073.13.5
    18.873.56.160.70.9
    下载: 导出CSV

    表  6   乳及乳制品中多真菌毒素检测方法对比

    Table  6   Test results of multiple mycotoxins in milk and dairy products

    基质毒素种类净化方法检测方法回收率检出限范围参考文献
    乳及乳制品6种玉米赤
    霉烯酮类
    QuEChERS方法净化高效液相色谱-串联质谱法91.8%~114.5%0.05~0.1 μg/kg[23]
    牛奶和奶粉6黄曲霉毒素QuEChERS方法净化液相色谱-质谱联用技术57.00%~99.86%1.0~5.0 ng/mL[34]
    乳制品伏马毒素B1、B2免疫亲和柱净化液相色谱-质谱联用技术80.3%~96.7%0.5 μg/kg[35]
    牛奶15种真菌毒素液液萃取液相色谱-质谱联用技术82.6%~94.4%0.02~10.14 ng/mL[36]
    牛奶AFTM1、AFTB1固相微萃取超高效液相色谱-四极杆
    飞行时间串联质谱
    88.24%~105.35%AFTM1 0.049 μg/kg,
    AFTB1 0.023 μg/kg
    [37]
    下载: 导出CSV
  • [1] 范楷, 唐占敏, 聂冬霞, 等. 超高效液相色谱串联质谱测定常见农产品中40种真菌毒素[J]. 食品安全质量检测学报,2020,11(19):7019−7029. [FAN K, TANG Z M, NIE D X, et al. Determination of 40 mycotoxins in common agricultural products by ultra performance liquid chromatography tandem mass spectrometry[J]. J Food Saf Qual,2020,11(19):7019−7029.
    [2] 宫小明, 任一平, 董静, 等. 超高效液相色谱串联质谱法测定花生、粮油中18种真菌毒素[J]. 分析测试学报,2011,30(1):6−12. [GONG X M, REN Y P, DONG J, et al. Determination of 18 mycotoxins in peanuts and grain oils by ultra performance liquid chromatography-tandem mass spectrometry[J]. J Instrum Anal,2011,30(1):6−12. doi: 10.3969/j.issn.1004-4957.2011.01.002
    [3]

    HAITAO SHI. Mycotoxin contamination of food and feed in China: Occurrence, detection techniques, toxicological effects and advances in mitigation technologies[J]. Food Control,2018,91:202−215. doi: 10.1016/j.foodcont.2018.03.036

    [4] 侯广月, 杜营, 杨帆, 等. 谷物及其制品中真菌毒素的前处理及检测技术研究进展[J]. 中国果菜,2019,39(12):64−70. [HOU G Y, DU Y, YANG F, et al. Research progress on pretreatment and detection technology of mycotoxins in cereals and their products[J]. China Fruits and Vegetables,2019,39(12):64−70.
    [5] 胡文尧, 龙美名, 胡玉斐, 等. 食品中真菌毒素样品前处理方法的研究进展[J]. 色谱,2020,38(3):307−316. [HU W Y, LONG M M, HU Y F, et al. Research progress in pretreatment methods of mycotoxins in food[J]. Chinese Journal of Chromatography,2020,38(3):307−316.
    [6]

    MARIA L, FERNANDEZ C, MARCIA L, et al. Tadeo. Mycotoxins in fruits and their processed products: Analysis, occurrence and health implications[J]. Journal of Advanced Research,2010,1(2):113−122. doi: 10.1016/j.jare.2010.03.002

    [7] 贾玮, 董旭阳, 石琳, 等. 高分辨质谱法在乳品外源性风险物质筛查分析中的应用[J]. 现代食品科技,2018,34(8):246−254. [JIA W, DONG X Y, SHI L, et al. Application of high resolution mass spectrometry in screening and analysis of exogenous risk substances in dairy products[J]. Modern Food Science and Technology,2018,34(8):246−254.
    [8]

    JANINE W. Development of a multi-toxin method for investigating the carryover of zearalenone, deoxynivalenol and their metabolites into milk of dairy cows[J]. 2015, 32(3): 371-380.

    [9]

    YANG S. Risk screening of mycotoxins and their derivatives in dairy products using a stable isotope dilution assay and LC-MS/MS[J]. Journal of Separation Science,2020,44(4):782−792.

    [10]

    MAO J F. Multi-mycotoxins analysis in raw milk by ultra high performance liquid chromatography coupled to quadrupole orbitrap mass spectrometry[J]. Food Control,2018,84:305−311. doi: 10.1016/j.foodcont.2017.08.009

    [11] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 2761-2017食品安全国家标准 食品中真菌毒素限量[S]. 北京: 中国标准出版社, 2017.

    State Health and Family Planning Commission, State Food and Drug Administration. GB 2761-2017 National food safety standard limits of mycotoxins in foods[S]. Beijing: China Standards Press, 2017.

    [12]

    Official Journal of the European Union. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs[S]. 2006.

    [13]

    FDA. Draft guidance for industry: Action levels for poisonous or deleterious substances in human food and animal feed [EB/OL]. 2000. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-action-levels-poisonous-or-deleterious-substances-human-food-and-animal-feed.

    [14] 刘家阳, 张月辉, 贾宏新. 凝胶渗透色谱净化-超高效液相色谱-串联质谱法同时检测玉米粉中10种真菌毒素[J]. 中国食品卫生杂志,2016,28(6):763−768. [LIU J Y, ZHANG Y H, JIA H X. Simultaneous detection of 10 mycotoxins in corn flour by gel permeation chromatography purification-ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Food Hygiene,2016,28(6):763−768.
    [15] 邵亮亮, 应美蓉, 杜京霖, 等. 复合免疫亲和柱净化高效液相色谱法同时测定小麦中的4种真菌毒素[J]. 食品科技,2021,46(2):328−334. [SAHO L L, YING M R, DU J L, et al. Simultaneous determination of four mycotoxins in wheat by high performance liquid chromatography with combined immunoaffinity column purification[J]. Food Science and Technology,2021,46(2):328−334.
    [16] 杨明, 伊鋆, 胡筱静, 等. QuEChERS/高效液相色谱-串联质谱测定婴幼儿配方奶粉中14种β-受体激动剂[J]. 中国乳品工业,2019,47(11):52−55. [YANG M, YI J, HU X J, et al. Determination of 14 β-receptor agonists in infant formula milk powder by QuEChERS/high performance liquid chromatography-tandem mass spectrometry[J]. China Dairy Industry,2019,47(11):52−55. doi: 10.3969/j.issn.1001-2230.2019.11.012
    [17] 王晓, 王秀嫔, 李培武, 等. 农产品中真菌毒素样品前处理和检测方法研究进展[J]. 化学试剂,2019,41(4):325−332. [WANG X, WANG X P, LI P W, et al. Research progress on sample pretreatment and detection methods of mycotoxins in agricultural products[J]. Chemical Reagents,2019,41(4):325−332.
    [18] 朱群英, 索莉莉, 胡美华. 液质联用同位素内标法同时测定小麦粉中7种真菌毒素[J]. 现代预防医学,2014,41(23):4362−4365. [ZHU Q Y, SUO L L, HU M H. Simultaneous determination of 7 mycotoxins in wheat flour by liquid mass spectrometry with isotope internal standard method[J]. Modern Preventive Medicine,2014,41(23):4362−4365.
    [19] 杨帅, 穆蕾, 杨悠悠, 等. 高效液相色谱-串联质谱法同时测定小麦粉中28种真菌毒素[J]. 中国粮油学报,2020,35(6):159−164. [YANG S, MU L, YANG Y Y, et al. Simultaneous determination of 28 mycotoxins in wheat flour by high performance liquid chromatography-tandem mass spectrometry[J]. Journal of the Chinese Cereals and Oils Association,2020,35(6):159−164. doi: 10.3969/j.issn.1003-0174.2020.06.024
    [20] 林缨, 陈佳, 吴弼东, 等. 固相萃取-气相色谱-串联质谱法检测粮食作物中的T-2与HT-2毒素[J]. 军事医学,2013,37(5):381−384. [LIN Y, CHEN J, WU B D, et al. Determination of T-2 and HT-2 toxins in food crops by solid phase extraction-gas chromatography-tandem mass spectrometry[J]. Military Medicine,2013,37(5):381−384.
    [21]

    RODRIGUEZ Y, MOLTO J C, MA E J, et al. Development of microextraction techniques in combination with GC-MS/MS for the determination of mycotoxins and metabolites in human urine[J]. Journal of Separation Science,2017,40(7):1572−1582. doi: 10.1002/jssc.201601131

    [22] 胡巧茹, 曹鹏, 丛中笑, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱对粮谷产品中20种真菌毒素的快速筛查和确证[J]. 色谱,2019,37(11):1241−1248. [HU Q R, CAO P, CONG Z X, et al. Rapid screening and confirmation of 20 mycotoxins in cereal products by ultra-performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry[J]. Chinese Journal of Chromatography,2019,37(11):1241−1248. doi: 10.3724/SP.J.1123.2019.03041
    [23] 谢瑜杰. 乳及乳制品中6种玉米赤霉烯酮类化合物残留量测定[D]. 邯郸: 河北工程大学, 2019.

    XIE Y J. Determination of 6 zearalenone residues in milk and dairy products[D]. Handan: Hebei University of Engineering, 2019.

    [24] 李蓉, 何春梅, 杨璐齐, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法测定焙烤食品及其原料中11种真菌毒素[J]. 色谱,2017,35(8):808−815. [LI R, HE C M, YANG L Q, et al. Determination of 11 mycotoxins in baked foods and raw materials by ultra performance liquid chromatography-quadrupole/orbitrap high resolution mass spectrometry[J]. Chinese Journal of Chromatography,2017,35(8):808−815. doi: 10.3724/SP.J.1123.2017.03035
    [25] 陈溪, 吴慈, 王龙祥, 等. 基于超高效液相色谱-高分辨质谱技术的水中112种药品和个人护理用品的高通量筛查和定量方法[J]. 色谱,2018,36(11):1147−1157. [CHEN X, WU C, WANG L X, et al. A high-throughput screening and quantification method for 112 drugs and personal care products in water based on ultra performance liquid chromatography-high resolution mass spectrometry technology[J]. Chinese Journal of Chromatography,2018,36(11):1147−1157. doi: 10.3724/SP.J.1123.2018.06029
    [26] 贾玮, 樊子便, 杜安, 等. 基于质谱特征碎裂片段的乳制品中真菌毒素非定向筛查方法研究[J]. 分析测试学报,2020,39(6):705−714. [JIA W, FAN Z B, DU A, et al. Research on non-directed screening method of mycotoxins in dairy products based on fragmented fragments of mass spectrometry[J]. Chinese Journal of Analysis Testing,2020,39(6):705−714. doi: 10.3969/j.issn.1004-4957.2020.06.002
    [27] 赵英莲, 张梓琪, 赵鑫, 等. QuEChERS技术在食品真菌毒素检测中的研究进展[J]. 中国酿造,2020,39(1):1−5. [ZHAO Y L, ZHANG Z Q, ZHAO X, et al. Research progress of QuEChERS technology in food mycotoxin detection[J]. China Brewing,2020,39(1):1−5. doi: 10.11882/j.issn.0254-5071.2020.01.001
    [28] 叶金, 吴宇, 辛媛媛, 等. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱快速精准测定粮食中多种真菌毒素[J]. 分析测试学报,2017,36(4):449−456. [YE J, WU Y, XIN Y Y, et al. Rapid and accurate determination of multiple mycotoxins in food by ultra performance liquid chromatography-quadrupole/orbitrap high resolution mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2017,36(4):449−456. doi: 10.3969/j.issn.1004-4957.2017.04.002
    [29] 张崇威, 吴志明, 李华岑, 等. Captiva EMR-Lipid固相萃取/超高效液相色谱-串联质谱法快速筛查动物源食品中51种药物残留[J]. 分析测试学报,2020,39(2):174−181. [ZAHNG C W, WU Z M, LI H C, et al. Captiva EMR-Lipid solid phase extraction/ultra high performance liquid chromatography-tandem mass spectrometry for rapid screening of 51 drug residues in animal-derived foods[J]. Journal of Analysis and Testing,2020,39(2):174−181. doi: 10.3969/j.issn.1004-4957.2020.02.002
    [30]

    BEATRIZ A L. Development and validation of a methodology based on Captiva EMR-lipid clean-up and LC-MS/MS analysis for the simultaneous determination of mycotoxins in human plasma[J]. Talanta,2020:206.

    [31] 易珊珊, 杜鑫. PRIME-HLB固相萃取/超高效液相色谱-串联质谱法同时快速检测粮食中4种真菌毒素的含量[J]. 云南师范大学学报(自然科学版),2020,40(5):47−52. [YI S S, DU X. PRIME-HLB solid phase extraction/ultra high performance liquid chromatography-tandem mass spectrometry for simultaneous rapid detection of four mycotoxins in food[J]. Journal of Yunan Normal University (Natural Sciences Edition),2020,40(5):47−52.
    [32]

    HUANG L C, ZHANG N, ZHENG B Q, et al. Simultaneous determination of aflatoxin M1, ochratoxin A, zearalenone and α-zearalenol in milk by UHPLC-MS/MS[J]. Food Chemistry,2014,146(mar.1):242−249.

    [33] 全国认证认可标准化技术委员会. GB/T 27404-2008, 实验室质量控制规范 食品理化检测[S]. 北京: 中国标准出版社, 2009.

    National Certification and Accreditation Standardization Technical Committee. GB/T 27404-2008 Laboratory quality control specification, food physical and chemical testing[S]. Beijing: China Standards Press, 2009.

    [34] 曹叶中, 蔡文. 基于HPLC-MS测定牛奶和奶粉中黄曲霉毒素方法的优化[J]. 安徽农业科学,2021,49(2):201−203. [CAO Y Z, CAI W. Optimization of the determination method of aflatoxin in milk and milk powder based on HPLC-MS[J]. Journal of Anhui Agricultural Sciences,2021,49(2):201−203. doi: 10.3969/j.issn.0517-6611.2021.02.054
    [35] 施雅. UPLC-MS/MS测定乳制品中伏马毒素B1、B2残留[J]. 食品工业,2019,40(11):312−315. [SHI Y. UPLC-MS/MS determination of fumonisins B1 and B2 residues in dairy products[J]. Food Industry,2019,40(11):312−315.
    [36]

    FLORES M E, ELENA G P. An LC-MS/MS method for multi-mycotoxin quantification in cow milk[J]. Food Chemistry,2017,218:378−385. doi: 10.1016/j.foodchem.2016.09.101

    [37]

    DU L J. Determination of aflatoxin M1 and B1 in milk and jujube by miniaturized solid-phase extraction coupled with ultra high performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry[J]. Journal of Separation Science,2018,41(19):3677−3685. doi: 10.1002/jssc.201800185

图(7)  /  表(6)
计量
  • 文章访问数:  260
  • HTML全文浏览量:  107
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-06
  • 网络出版日期:  2022-01-16
  • 刊出日期:  2022-03-14

目录

/

返回文章
返回
x 关闭 永久关闭