• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

蜂花粉过敏原识别及微生物发酵法降解过敏原的潜在应用研究进展

尹舒婷, 姜玉锁, 李强强, 吴黎明

尹舒婷,姜玉锁,李强强,等. 蜂花粉过敏原识别及微生物发酵法降解过敏原的潜在应用研究进展[J]. 食品工业科技,2022,43(14):427−434. doi: 10.13386/j.issn1002-0306.2021060122.
引用本文: 尹舒婷,姜玉锁,李强强,等. 蜂花粉过敏原识别及微生物发酵法降解过敏原的潜在应用研究进展[J]. 食品工业科技,2022,43(14):427−434. doi: 10.13386/j.issn1002-0306.2021060122.
YIN Shuting, JIANG Yusuo, LI Qiangqiang, et al. Advances in Allergen Recognition of Bee Pollen and the Potential Application in Allergen Degradation by Microbial Fermentation[J]. Science and Technology of Food Industry, 2022, 43(14): 427−434. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060122.
Citation: YIN Shuting, JIANG Yusuo, LI Qiangqiang, et al. Advances in Allergen Recognition of Bee Pollen and the Potential Application in Allergen Degradation by Microbial Fermentation[J]. Science and Technology of Food Industry, 2022, 43(14): 427−434. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060122.

蜂花粉过敏原识别及微生物发酵法降解过敏原的潜在应用研究进展

基金项目: 国家自然科学基金(32102605)。
详细信息
    作者简介:

    尹舒婷(1996−),女,硕士研究生,研究方向:蜂产品质量安全,Email:yst1206317258@126.com

    通讯作者:

    李强强(1991−),女,博士,助理研究员,研究方向:蜂产品质量安全,Email:liqiangqiang@caas.cn

    吴黎明(1973−),男,博士,研究员,研究方向:蜂产品质量安全,Email:apiswu@126.com

  • 中图分类号: TS201.1

Advances in Allergen Recognition of Bee Pollen and the Potential Application in Allergen Degradation by Microbial Fermentation

  • 摘要: 蜂花粉是蜜蜂从显花植物上采集的花粉粒,并向其中加入花蜜及唾液腺分泌物而形成的团状物。蜂花粉营养物质和活性成分十分丰富,具有极高的药用价值。然而,部分易敏人群因食用蜂花粉产生临床过敏症状,限制了蜂花粉食用安全。然而目前国内外关于蜂花粉的致敏机制研究尚不完善,制约了蜂花粉进一步开发利用。本文通过对近年来国内外关于蜂花粉致敏性及其过敏原识别的相关研究现状进行综述,并对微生物发酵法降解过敏原的潜在应用进行分析讨论,以期为后续开发高效的蜂花粉脱敏技术提供参考。
    Abstract: Bee pollen is collected from flowering plants and added with nectar and salivary gland secretions by honeybees. Bee pollen is abundant in various nutrients and active ingredients, and exerts excellent medicinal efficacy. However, some susceptible population developed clinical allergic symptoms due to eating bee pollen, which caused serious influences to the food safety and further application of bee pollen. Currently, the research on the allergenic mechanism of bee pollen is insufficient, which limits the utilization of bee pollen. The research advances of bee pollen allergenicity and allergens, as well as the microbial fermentation techniques for allergen degradation are summarized and discussed, aiming to provide a reference for the development of bee pollen allergen removal technology in the future.
  • 蜂花粉是蜜蜂从植物雄蕊上和裸子植物小孢子囊内采集的花粉粒,经过蜜蜂向其中加入花蜜及唾液腺分泌物而形成的团状物,既可经脱粉器脱落后,直接或经适当加工后使用,也可由蜜蜂携带入巢并酿制成蜂粮后,作为蜜蜂主要的食物来源。蜂花粉以其极为丰富的营养成分在国际上被称为“完全营养品”。随着应用范围的扩大,因食用蜂花粉而产生过敏症状的病例逐渐增多,蜂花粉食源性过敏引起的安全问题开始引起人们的关注。然而,近年来国内外关于蜂花粉致敏性的研究多集中于风媒花粉混入的鉴别,关于不同植物来源的蜂花粉其自身存在的致敏原识别与分离鉴定研究尚不完善,致敏性仍是蜂花粉食用安全的重要威胁之一,严重制约了蜂花粉安全利用与发展。微生物发酵法在降低食物致敏性方面具有独特优势,未来或可适用于降低蜂花粉致敏性。因此,本文对近年来国内外关于蜂花粉致敏性及其过敏原识别的研究现状进行综述,并对微生物发酵法降解过敏原的潜在应用进行分析讨论,同时对未来通过微生物发酵手段降解或消除蜂花粉中过敏原的研究提出展望。

    蜂花粉是蜜蜂从植物雄蕊上和裸子植物小孢子囊内采集的花粉粒,经过蜜蜂向其中加入花蜜及唾液腺分泌物而形成的团状物,既可经脱粉器脱落后,直接或经适当加工后使用,也可由蜜蜂携带入巢并酿制成蜂粮后,作为蜜蜂的主要食物来源。蜂花粉以其极为丰富的营养成分在国际上被称为“完全营养品”。研究表明,蜂花粉中含有200多种营养成分,包括20多种游离氨基酸及11%~35%的蛋白质,蛋白质中必需氨基酸含量高于WHO提出的优质食品氨基酸模式,并且其组成与动物机体中氨基酸的组成极其相似,故蜂花粉拥有极高的食用价值和营养价值[1-3]。此外,蜂花粉中含有大量维生素如VB1、VB2、烟酸、VB6、VH、泛酸、叶酸、VE、肌醇等,以及含有胡萝卜素,可转化为VA[4]。花粉中还含有Ca、Na、K、Fe、Mg、Cu、P、S、Se等60多种矿物质元素[5],这些元素构成动物机体组织,维持机体平衡和正常生理活动。蜂花粉中还富含脂类物质,包括月桂酸、十四烷酸、亚油酸和不饱和脂肪酸等,对于机体中物质交换、降低血液中胆固醇浓度、以及治疗和预防动脉粥样硬化等有重要的作用[6-8]。蜂花粉中碳水化合物占25%~48%,主要包括单糖(如葡萄糖和果糖)、双糖(如麦芽糖和蔗糖)和多糖(如淀粉、纤维素和果胶等),具有增强机体免疫等功效[9-11]

    蜂花粉因其丰富的营养价值、繁多的资源品种、极高的研究潜力,近年来已经成为国内外学者探究的热点。经过对蜂花粉的深入研究发现其具有极高的药用功效和食用价值。研究表明,蜂花粉具有较强的抗氧化特性,并且在一定浓度范围内,蜂花粉中的黄酮含量与自由基清除率呈现正相关[12],其提取物酚类物质具有较好的DPPH和ABTS+自由基清除能力[13-14],而蜂花粉中一些其他物质,如蜂花粉蛋白质也与蜂花粉良好的抗氧化活性有关[15]。蜂花粉对心血管系统有良好的调节作用,可降低血糖血脂、降低血液中胆固醇、预防和治疗动脉粥样硬化[16-19]。蜂花粉还有一定的抗癌抗肿瘤的作用,提高实验动物机体的免疫力,促使免疫细胞增殖,促进淋巴因子和抗体释放,抑制细胞异常生长[20-21]。蜂花粉还可防治前列腺疾病,蜂花粉中多种成分通过多途径、多靶点的机制作用于机体,抑制前列腺增生[22]

    因其拥有诸多营养功效,蜂花粉在畜牧养殖方面也被大量运用。实验证明,日粮添加蜂花粉饲喂产蛋母鸡可提高其产蛋率,降低料蛋比,提高蛋的质量和品质[23]。饲喂肉鸡可促进生长,提高肉鸡肌肉品质,提高饲料转化率[24]。饲喂犊牛可使其生长性能提高,饲料中营养转化率提高[25]。蜂花粉里的多种活性物质可提高畜禽的免疫指数,增强免疫功能[26]。大量实验证明了蜂花粉作为饲料添加剂的卓越性和可行性,蜂花粉在畜牧养殖业的应用越来越广泛。

    据早期研究报道,约有1/10000~1/20000的人在食用蜂花粉或蜂花粉制品后会出现轻微过敏症状[27]。然而,近年来越来越多的蜂花粉过敏病例被报道出来。Martín等[28]报道了一例鼻炎患者摄取蜂花粉后发生过敏反应的病例,研究者在蜂花粉中检测出菊科和蔷薇科植物花粉,特异性IgE测定显示菊科植物花粉的血清特异性IgE水平最高,并且由于菊科植物花粉存在交叉反应性,研究者认为过敏反应最可能来源于菊科植物花粉中的过敏原。Jeong等[29]报道了一例相似病例,研究人员镜检蜂花粉后也在其中发现菊科类植物花粉,蜂花粉与菊科类植物同样具有较强的交叉反应性,但并未有明确证据证明过敏原仅菊类植物花粉,患者可能对蜂花粉和其他植物花粉产生了共敏反应。Nonotte等[30]报道过一名有艾蒿过敏史的患者因食用混有艾蒿花粉的蜂花粉而引发过敏反应,皮肤点刺试验表明该患者的皮肤过敏反应与蜂花粉中所含艾蒿花粉的质量成正比。随后,研究者们对10名禾本植物花粉过敏患者进行混有玉米花粉的蜂花粉皮肤点刺试验,患者的皮肤过敏反应与蜂花粉中禾本植物绝对质量成正比。Greenberger等[31]首次报道了一名接受了过敏原免疫治疗并获得成功的患者,第一次摄入蜂花粉时发生了过敏症状,显微分析发现食用的蜂花粉中含有豚草类和藤本植物花粉,酶联免疫实验证明蜂花粉与短豚草和黑麦草花粉之间存在交叉反应性。但诸多实验未证明掺杂的风媒植物花粉是否为单一过敏原,因此进一步探究蜂花粉中的过敏原组成是十分必要的。

    此外,机体本身的状态发生变化也可能是蜂花粉致敏的原因之一,一例食用蜂花粉后因运动诱发过敏反应的病例,患者此前摄入蜂花粉并无过敏症状,他在跑步前食用了蜂花粉补充剂,后剧烈跑步中出现过敏症状,皮肤点刺实验显示其对蜂花粉补充剂为阳性,推测是蜂花粉中存在豚草花粉或其他杂草花粉。运动诱发过敏的机制可能是运动增加肠胃通透性或渗透效应来降低肥大细胞脱粒的阈值[32]。Akiyasu等[33]报道了首例摄入含蜂花粉的营养补充剂后发生急性肾衰竭的病例,该病人无过敏史和其他病症,食用营养补充剂五个月后出现急性肾衰竭症状,研究者通过药物淋巴细胞刺激试验(DLST)排除补充剂中另一成分诺丽果的作用,活检显示肾小球无增生,散在白细胞尤其是嗜酸性粒细胞间质发生弥漫性纤维化和细胞浸润,认为蜂花粉导致了药物性肾脏疾病。由于此前并无此类病例的报道,关于蜂花粉副作用的信息不准确,因此摄入之前应该有相应风险评估和提醒[34]

    而部分学者则发现,蜂花粉中含有黄酮类和脂类成分具有抗过敏作用。Medeiros等[35]将蜂花粉中酚提取物(BPPE)中的黄酮类化合物作用于卵清蛋白诱导的小鼠过敏模型,分析小鼠免疫参数,发现BPPE抑制了足爪水肿和特异性抗体IgE、IgG1的产生、降低了支气管液中白细胞的总数和促红细胞生成素的水平,抑制细胞向肺腔迁移,降低小鼠过敏性休克引起的死亡率。得出结论,蜂花粉中黄酮类成分对改善变态反应是有效的,具有抗过敏作用。另有实验发现,小鼠每日口服蜂花粉可降低特异性抗体IgE的产生,同时也发现蜂花粉中的脂溶性成分可通过抑制FcɛRI介导的肥大细胞激活发挥抗过敏作用[36]。尽管蜂花粉中含有黄酮类和脂类抗敏性成分,但蜂花粉致敏问题仍然是影响蜂花粉食用安全和制约开发利用的重要共性难题。

    由此可见,蜂花粉致敏的主要原因可归结为以下四点:a.具有过敏史或过敏体质人群在食用蜂花粉后易产生过敏风险;b.蜂花粉中若混入致敏性风媒花粉可能导致食用人群产生过敏反应;c.对于无过敏史或非过敏体质人群来说,若机体免疫状态发生了变化,在食用蜂花粉后仍存在致敏风险;d.蜂花粉中混入的致敏性风媒花粉并非唯一过敏原,蜂花粉本身也可能存在多种致敏成分。然而,目前关于蜂花粉本身过敏原的研究十分有限,使对蜂花粉的质量安全控制及进一步开发利用难度增加。

    目前国内外诸多研究认为,绝大多数蜂花粉引起的过敏反应是由致敏性风媒花粉,如豚草等禾本植物花粉,及桦树等木本植物花粉中过敏原的混入导致的。花粉过敏原通常是分子量为10~70 kDa的糖蛋白或水溶性蛋白质[37],并且不同植物来源的花粉中致敏蛋白的种类和数量有所不相同。近年来,科学家利用免疫印迹法(Western-blotting)、十二烷基硫酸钠-聚丙烯酰胺凝胶电泳法(SDS-PAGE)等已从豚草花粉中鉴定提取出12种过敏原[38-39],从桦树花粉中鉴定出7种过敏原[40](见表1),这为蜂花粉后续过敏原研究提供了一定的科学依据。

    表  1  豚草花粉(Ambrosia artemisiifolia)和桦树花粉(Betula verrucosa)中已鉴定出的过敏原[38,40]
    Table  1.  Identified allergens in Ambrosia artemisiifolia and Betula verrucose pollens[38,40]
    过敏原化学名称分子量(kDa)
    Ambrosia artemisiifolia
    Amb a 1Pectate lyase38
    Amb a 2renamed to Amb a 1.05, number not available for future submissions
    Amb a 3Plastocyanine11
    Amb a 4Defensin-like protein linked to polyproline-rich region28~30
    Amb a 55
    Amb a 6Non-specific lipid transfer protein type 110
    Amb a 7Plastocyanin12
    Amb a 8Profilin14
    Amb a 9Polcalcin9
    Amb a 10Polcalcin-like protein (4 EF-hands)17
    Amb a 11Cysteine protease37 kDa (natural purified mature protein),
    52 kDa (natural purified zymogen)
    Amb a 12Enolase48
    Betula verrucosa
    Bet v 1Pathogenesis-related protein, PR-10, Bet v 1 family member17
    Bet v 2Profilin15
    Bet v 3Polcalcin-like protein (4 EF-hand)24
    Bet v 4Polcalcin7~8
    Bet v 6PhenylCoumaran benzylic ether reductase35
    Bet v 7Cyclophilin18
    Bet v 8Glutathione-S-transferase27
    下载: 导出CSV 
    | 显示表格

    蜂花粉中除了致敏性风媒花粉的混入导致易感人群产生过敏反应外,其自身植物源花粉同样存在致敏风险。以我国最大宗蜂花粉——油菜蜂花粉为例,其自身植物源花粉(油菜花粉)也存在多种过敏原[41-42]。 Puumalainen等[41]利用SDS-PAGE、酶联免疫法(ELISA),并结合基质辅助激光解吸电离飞行时间质谱技术(MALDI-TOF)从芥菜型油菜(Brassica juncea)、甘蓝型油菜(Brassica napusBrassica oleifera)、白菜型油菜(Brassica rapa )花粉中鉴定出6种过敏原(见表2)。Singh等[42]利用SDS-PAGE结合ELISA和免疫印迹法(Western blot)从白菜型油菜(Brassica campestris)、甘蓝型油菜(Brassica napus)、芥菜型油菜(Brassica juncea)和黑芥(Brassica nigra)花粉中测定出分子量为15~90 kDa的8种致敏蛋白质,但并未鉴定出其致敏蛋白的氨基酸序列而无法进一步研究其致敏属性。近期,笔者团队基于蛋白质组学分析技术,从油菜蜂花粉中检出了一种已知的油菜花粉过敏原即Polcalcin(Bra r 5),而其余5种已知过敏原尚未检出。但基于与其他植物中致敏蛋白(如Profilin家族、Oleosin家族等)同源序列比对后发现,油菜蜂花粉中仍存在诸多同源性较高的未知潜在过敏原。此外,不同植物来源蜂花粉中过敏原种类和数量均有不同。目前国内外对蜂花粉自身植物源花粉的过敏原研究尚不完善。基于以往对致敏性风媒花粉过敏原研究技术,未来可对不同植物来源蜂花粉的过敏原识别进行更深入的探索。

    表  2  油菜花粉中已鉴定出的过敏原[41]
    Table  2.  Identified allergens in Brassica napus pollen[41]
    过敏原化学名称分子量(kDa)
    Brassica
    Bra j 12S albumin seed storage protein14
    Bra n 12S albumin seed storage protein15
    Bra o 3Non-specific lipid transfer protein type 19
    Bra r 12S albumin, napins10~14
    Bra r 2Prohevein homologue25
    Bra r 5Polcalcin8
    下载: 导出CSV 
    | 显示表格

    诸如蜂花粉等食物类引起的食源性过敏已经成为亟待解决的全球性问题,如何使用安全卫生科学有效的手段降低食物致敏性是学者们近年来关注的热点。为此科学家们提出许多加工手段以期从食物本身源头性降低致敏威胁[43]。其中发酵法在降低食物致敏性中具有独特的优势,它通过微生物代谢水解蛋白质过敏原[44]。同时,发酵提高了食品原料的营养价值和理化性质[45-46]。不少研究使用微生物发酵法将食物中的致敏蛋白分解变性,以达到降低或消除过敏原的目的,而不同食物选用合适的菌种、温度、配比和时间可将致敏性降至较低水平甚至消除。微生物发酵技术在之前的研究中曾被用于改善蜂花粉的口感、风味和营养价值[47],但目前并未研究其是否作用于蜂花粉过敏原的降解。

    由于蜂花粉来源于植物花粉,蜂花粉中部分致敏蛋白与植物类食物中致敏蛋白存在共性。笔者团队目前的关于蜂花粉过敏原的研究中发现蜂花粉中致敏蛋白主要来源于Profilin、Oleosin等家族(数据尚未公开发表)。而植物类食物中的一部分致敏蛋白同样来源于这些致敏家族,致敏蛋白之间存在一定的同源性和氨基酸序列相似性。因此,利用微生物发酵改善植物类食物的食源致敏性可为微生物发酵改善蜂花粉致敏性的研究提供依据。以下将对一些较普遍的植物类致敏性食物中过敏原的微生物发酵降解技术进行概述与分析,希望从中找到微生物发酵降解食物过敏原的共性与规律,为后续微生物发酵降解蜂花粉中过敏原的方法开发提供技术支持。

    关于花生中的致敏蛋白目前已发现17种(见表3),包括Ara h1~Ara h18(Ara h4更名为Ara h3.02)[48],其中Ara h1、Ara h2、Ara h3和Ara h6为主要致敏蛋白,可引起大部分敏感人群产生过敏反应[49]。周阳[50]利用间接酶联免疫法检测发酵对花生蛋白致敏性的影响,研究发现,使用枯草芽孢杆菌发酵花生样品在前8 h样品与IgE结合能力缓慢上升,而8 h后则显著下降,至44 h时,样品与IgE结合能力降为0,Ara h1蛋白含量为0,很可能使花生完全脱敏;使用纳豆芽孢杆菌发酵样品,44 h内与IgE结合能力逐渐下降,但降低幅度有限,最多降低48%,纳豆芽孢杆菌发酵也能使Ara h1蛋白含量显著下降。皮潇文[51]将花生浆样品高温蒸汽处理后用纳豆芽孢杆菌发酵,花生样品的总体致敏性最高可降低77.3%,纳豆芽孢杆菌发酵可产生大量蛋白酶,将花生中大部分致敏蛋白分解为小分子,而无法完全消除可能是因为小分子物质仍保留特异性IgE结合位点。花生中存在来自Profilin家族和Oleosin家族的致敏蛋白,与笔者团队所研究得到的蜂花粉中潜在的致敏蛋白具有同源性,因此以上对花生中致敏蛋白的降解方法可能适用于蜂花粉中的致敏蛋白,具体发酵工艺及降解机制需进一步探究。

    表  3  花生中已鉴定出的过敏原[48]
    Table  3.  Identified allergens in peanut[48]
    过敏原化学名称分子量(kDa)
    Arachis hypogaea
    (Peanut, groundnut)
    Ara h 1Cupin (Vicillin-type, 7S globulin)64
    Ara h 2Conglutin (2S albumin)17
    Ara h 3Cupin (Legumin-type, 11S globulin, Glycinin)60,37 (fragment)
    Ara h 4Renamed to Ara h 3.02,number not available for future submissions
    Ara h 5Profilin15
    Ara h 6Conglutin (2S albumin)15
    Ara h 7Conglutin (2S albumin)15
    Ara h 8Pathogenesis-related protein, PR-10, Bet v 1 family member17
    Ara h 9Nonspecific lipid-transfer protein type 19.8
    Ara h 10Oleosin16
    Ara h 11Oleosin14
    Ara h 12Defensin8 kDa (reducing),12 kDa (non-reducing),5.184 kDa (mass)
    Ara h 13Defensin8 kDa (reducing),11 kDa (non-reducing),5.472 kDa (mass)
    Ara h 14Oleosin17.5
    Ara h 15Oleosin17
    Ara h 16Non-specific Lipid Transfer Protein 28.5 kDa by SDS PAGE reducing
    Ara h 17Non-specific Lipid Transfer Protein 111 kDa by SDS-PAGE reducing
    Ara h 18Cyclophilin - peptidyl-prolyl cis-trans isomerase21
    下载: 导出CSV 
    | 显示表格

    大豆营养丰富,蛋白质的氨基酸组成和动物蛋白质相似,氨基酸比例接近人体,易于机体消化吸收,是重要的粮食作物之一,同时也是目前八大致敏食物之一,大豆中目前鉴定出16种抗原蛋白,IUIS命名的有8种(见表4),主要过敏原为两种储藏蛋白即大豆球蛋白和β-伴大豆球蛋白[52-53]。豆粕是大豆抽取豆油后的产物,豆粕中存在大豆过敏蛋白,影响机体对豆粕中营养物质的吸收和利用,发酵法是豆粕加工中常用的方法,而多菌种混合发酵更优于单菌种发酵[54]。赖晗等[55]用枯草芽孢杆菌、干酪乳杆菌和酵母菌混合发酵,混合比例为2:1:1,温度30 ℃,接种量为发酵物总量的12%,优先将枯草芽孢杆菌发酵24 h后加入干酪乳杆菌和乳酸菌继续发酵48 h,SDS-PAGE电泳评估显示豆粕中致敏蛋白含量显著降低。Yang等[56]使用同样的发酵方法,豆粕样品与IgE结合能力显著降低,研究者认为微生物使大豆蛋白降解为低分子多肽,破坏致敏蛋白序列,从而降低其致敏性。大豆中存在来自Profilin家族的致敏蛋白,与蜂花粉中致敏蛋白具有同源性,因此在未来研究中可借鉴上述发酵工艺用以降解蜂花粉中的致敏蛋白。

    表  4  大豆中已鉴定出的过敏原[52-53]
    Table  4.  Identified allergens in soybean[52-53]
    过敏原化学名称分子量(kDa)
    Glycine max
    (Soybean)
    Gly m 1Hydrophobic protein from soybean7
    Gly m 2Defensin8
    Gly m 3Profilin14
    Gly m 4Pathogenesis-related protein, PR-10, Bet v 1
    family member
    17
    Gly m 5Beta-conglycinin (vicilin, 7S globulin)subunits
    Gly m 6Glycinin (legumin, 11S globulin)subunits
    Gly m 7Seed biotinylated protein76.2
    Gly m 82S albumin28
    下载: 导出CSV 
    | 显示表格

    小麦致敏较复杂,不同的小麦品种过敏原不同,致敏机制不同,而引起的症状也不同,小麦中蛋白按溶解度的不同分为四类:清蛋白、球蛋白、醇溶蛋白和麦谷蛋白,是小麦过敏原的来源[57]。IUIS命名的过敏原有28种(见表5),其中Tri a 19是小麦主要过敏原,Tri a 14可引起面包师哮喘症,Tri a 25是一种硫氧化蛋白,虽然被IUIS命名委员会收录为过敏原,但有研究表明,硫氧化蛋白可缓解过敏反应,因此Tri a 25的过敏原性存在一定争议[58]。李玺等[59]用酵母菌发酵面团,发酵初期面筋蛋白交联结构改变,二硫键含量降低,过敏原性增加,随着时间的延长,发酵产生的酒精溶解大量醇溶蛋白,以及蛋白酶分解面团中蛋白,小麦结构被破坏,致敏性降低。Carlo等[60]探究酵母乳酸菌水解小麦和黑麦过敏原的能力,研究发现发酵导致样品面包中与IgE结合的低分子量蛋白/多肽的含量显著减少,推测是发酵产生的消化酶将IgE结合蛋白水解,使小麦致敏性下降。小麦中存在来自Thioredoxin家族、Profilin家族的致敏蛋白,与蜂花粉中致敏蛋白具有同源性,因此以上对小麦中致敏蛋白的发酵降解工艺可为后续开发蜂花粉致敏蛋白的降解技术提供参考。

    表  5  小麦中已鉴定出的过敏原[54-55]
    Table  5.  Identified allergens in wheat[54-55]
    过敏原化学名称分子量(kDa)
    Triticum aestivum (Wheat)
    Tri a 12Profilin14
    Tri a 14Non-specific lipid transfer protein 19
    Tri a 15Monomeric alpha-amylase inhibitor 0.28
    Tri a 17Beta-amylase56
    Tri a 18Agglutinin isolectin 1
    Tri a 19Omega-5 gliadin, seed storage protein65
    Tri a 20Gamma gliadin35 to 38
    Tri a 21Alpha-beta-gliadin
    Tri a 25Thioredoxin
    Tri a 26High molecular weight glutenin88
    Tri a 27Thiol reductase homologue27
    Tri a 28Dimeric alpha-amylase inhibitor 0.1913
    Tri a 29Tetrameric alpha-amylase inhibitor CM1/CM213
    Tri a 30Tetrameric alpha-amylase inhibitor CM316
    Tri a 31Triosephosphate-isomerase
    Tri a 321-cys-peroxiredoxin
    Tri a 33Serpin
    Tri a 34Glyceraldehyde-3-phosphate-dehydrogenase
    Tri a 35Dehydrin
    Tri a 36Low molecular weight glutenin GluB3-2340
    Tri a 37Alpha purothionin12
    Tri a 39Serine protease inhibitor-like protein
    Tri a 40Chloroform/methanol-soluble (CM) 17 protein [alpha-amylase inhibitor]15.96
    Tri a 41Mitochondrial ubiqutin ligase activator of NFKB1
    Tri a 42Hypothetical protein from cDNA
    Tri a 43Hypothetical protein from cDNA
    Tri a 44Endosperm transfer cell specific PR60 precursor
    Tri a 45Elongation factor 1 (EIF1)
    下载: 导出CSV 
    | 显示表格

    蜂花粉具有极高的营养价值和药用功效,然而蜂花粉致敏问题成为威胁其食用安全的主要因素之一。国内外学者对蜂花粉致敏性研究目前多集中于风媒花粉混入的鉴别中,而关于不同植物来源的蜂花粉中过敏原的识别研究尚不完善,严重制约蜂花粉的质量安全控制与深加工利用。加强蜂花粉中过敏原的分离鉴定,深入研究其致敏机理,可为蜂花粉脱敏技术开发提供理论基础。

    微生物发酵技术作为一种安全健康有效的食品加工技术,目前已广泛应用于诸多过敏食物的致敏蛋白降解中,并且已经取得了较为可观的成效。芽孢杆菌、酵母菌、乳酸菌等多用于发酵植物类食物,降解其过敏原,降低致敏性。蜂花粉中存在与其他植物类食物(如花生、大豆、小麦等)相同致敏家族的过敏原,如Profilin家族、Oleosin家族、Thioredoxin家族等,因此植物类致敏蛋白与蜂花粉致敏蛋白之间存在一定的同源性与氨基酸序列相似性。通过微生物发酵降解植物类食物中过敏原的研究,可为后续开发利用微生物发酵降解蜂花粉中过敏原的技术提供一定的依据与指导。在未来研究中,建立降低或消除蜂花粉过敏原的微生物发酵法,以及探究微生物发酵对蜂花粉中过敏原的降解机制,将对蜂花粉的安全利用发挥重要作用。

  • 表  1   豚草花粉(Ambrosia artemisiifolia)和桦树花粉(Betula verrucosa)中已鉴定出的过敏原[38,40]

    Table  1   Identified allergens in Ambrosia artemisiifolia and Betula verrucose pollens[38,40]

    过敏原化学名称分子量(kDa)
    Ambrosia artemisiifolia
    Amb a 1Pectate lyase38
    Amb a 2renamed to Amb a 1.05, number not available for future submissions
    Amb a 3Plastocyanine11
    Amb a 4Defensin-like protein linked to polyproline-rich region28~30
    Amb a 55
    Amb a 6Non-specific lipid transfer protein type 110
    Amb a 7Plastocyanin12
    Amb a 8Profilin14
    Amb a 9Polcalcin9
    Amb a 10Polcalcin-like protein (4 EF-hands)17
    Amb a 11Cysteine protease37 kDa (natural purified mature protein),
    52 kDa (natural purified zymogen)
    Amb a 12Enolase48
    Betula verrucosa
    Bet v 1Pathogenesis-related protein, PR-10, Bet v 1 family member17
    Bet v 2Profilin15
    Bet v 3Polcalcin-like protein (4 EF-hand)24
    Bet v 4Polcalcin7~8
    Bet v 6PhenylCoumaran benzylic ether reductase35
    Bet v 7Cyclophilin18
    Bet v 8Glutathione-S-transferase27
    下载: 导出CSV

    表  2   油菜花粉中已鉴定出的过敏原[41]

    Table  2   Identified allergens in Brassica napus pollen[41]

    过敏原化学名称分子量(kDa)
    Brassica
    Bra j 12S albumin seed storage protein14
    Bra n 12S albumin seed storage protein15
    Bra o 3Non-specific lipid transfer protein type 19
    Bra r 12S albumin, napins10~14
    Bra r 2Prohevein homologue25
    Bra r 5Polcalcin8
    下载: 导出CSV

    表  3   花生中已鉴定出的过敏原[48]

    Table  3   Identified allergens in peanut[48]

    过敏原化学名称分子量(kDa)
    Arachis hypogaea
    (Peanut, groundnut)
    Ara h 1Cupin (Vicillin-type, 7S globulin)64
    Ara h 2Conglutin (2S albumin)17
    Ara h 3Cupin (Legumin-type, 11S globulin, Glycinin)60,37 (fragment)
    Ara h 4Renamed to Ara h 3.02,number not available for future submissions
    Ara h 5Profilin15
    Ara h 6Conglutin (2S albumin)15
    Ara h 7Conglutin (2S albumin)15
    Ara h 8Pathogenesis-related protein, PR-10, Bet v 1 family member17
    Ara h 9Nonspecific lipid-transfer protein type 19.8
    Ara h 10Oleosin16
    Ara h 11Oleosin14
    Ara h 12Defensin8 kDa (reducing),12 kDa (non-reducing),5.184 kDa (mass)
    Ara h 13Defensin8 kDa (reducing),11 kDa (non-reducing),5.472 kDa (mass)
    Ara h 14Oleosin17.5
    Ara h 15Oleosin17
    Ara h 16Non-specific Lipid Transfer Protein 28.5 kDa by SDS PAGE reducing
    Ara h 17Non-specific Lipid Transfer Protein 111 kDa by SDS-PAGE reducing
    Ara h 18Cyclophilin - peptidyl-prolyl cis-trans isomerase21
    下载: 导出CSV

    表  4   大豆中已鉴定出的过敏原[52-53]

    Table  4   Identified allergens in soybean[52-53]

    过敏原化学名称分子量(kDa)
    Glycine max
    (Soybean)
    Gly m 1Hydrophobic protein from soybean7
    Gly m 2Defensin8
    Gly m 3Profilin14
    Gly m 4Pathogenesis-related protein, PR-10, Bet v 1
    family member
    17
    Gly m 5Beta-conglycinin (vicilin, 7S globulin)subunits
    Gly m 6Glycinin (legumin, 11S globulin)subunits
    Gly m 7Seed biotinylated protein76.2
    Gly m 82S albumin28
    下载: 导出CSV

    表  5   小麦中已鉴定出的过敏原[54-55]

    Table  5   Identified allergens in wheat[54-55]

    过敏原化学名称分子量(kDa)
    Triticum aestivum (Wheat)
    Tri a 12Profilin14
    Tri a 14Non-specific lipid transfer protein 19
    Tri a 15Monomeric alpha-amylase inhibitor 0.28
    Tri a 17Beta-amylase56
    Tri a 18Agglutinin isolectin 1
    Tri a 19Omega-5 gliadin, seed storage protein65
    Tri a 20Gamma gliadin35 to 38
    Tri a 21Alpha-beta-gliadin
    Tri a 25Thioredoxin
    Tri a 26High molecular weight glutenin88
    Tri a 27Thiol reductase homologue27
    Tri a 28Dimeric alpha-amylase inhibitor 0.1913
    Tri a 29Tetrameric alpha-amylase inhibitor CM1/CM213
    Tri a 30Tetrameric alpha-amylase inhibitor CM316
    Tri a 31Triosephosphate-isomerase
    Tri a 321-cys-peroxiredoxin
    Tri a 33Serpin
    Tri a 34Glyceraldehyde-3-phosphate-dehydrogenase
    Tri a 35Dehydrin
    Tri a 36Low molecular weight glutenin GluB3-2340
    Tri a 37Alpha purothionin12
    Tri a 39Serine protease inhibitor-like protein
    Tri a 40Chloroform/methanol-soluble (CM) 17 protein [alpha-amylase inhibitor]15.96
    Tri a 41Mitochondrial ubiqutin ligase activator of NFKB1
    Tri a 42Hypothetical protein from cDNA
    Tri a 43Hypothetical protein from cDNA
    Tri a 44Endosperm transfer cell specific PR60 precursor
    Tri a 45Elongation factor 1 (EIF1)
    下载: 导出CSV
  • [1] 牛德芳, 王波, 陈玉勇, 等. 油菜蜂花粉及其蜂粮的营养成分[J]. 食品工业科技,2019,40(9):218−223. [NIU D F, WANG B, CHEN Y Y, et al. Analysis of the nutrient of rape bee pollen and rape bee bread[J]. Science and Technology of Food Industry,2019,40(9):218−223.

    NIU D F, WANG B, CHEN Y Y, et al. Analysis of the nutrient of rape bee pollen and rape bee bread[J]. Science and Technology of Food Industry, 2019, 40(9): 218-223.

    [2]

    LI Q Q, WANG K, MARCUCCI M C, et al. Nutrient-rich bee pollen: A treasure trove of active natural metabolites[J]. Journal of Functional Foods,2018,49:472. doi: 10.1016/j.jff.2018.09.008

    [3]

    KHALIFA S A M, ELASHAL M H, YOSRI N, et al. Bee pollen: Current status and therapeutic potential[J]. Nutrients,2021,13(6):1876. doi: 10.3390/nu13061876

    [4] 赵国建, 赵悦菡, 徐悦, 等. 蜂花粉营养活性成分研究进展[J]. 特产研究,2020,42(2):90−94. [ZHAO G J, ZHAO Y H, XU Y, et al. Research progress on components of bee pollen and its pharmacological activity[J]. Special Wild Economic Animal and Plant Research,2020,42(2):90−94.

    ZHAO G J, ZHAO Y H, XU Y, et al. Research progress on components of bee pollen and its pharmacological activity[J]. Special Wild Economic Animal and Plant Research, 2020, 42(2): 90-94.

    [5] 曾志将, 谢国秀, 樊兆斌. 蜜蜂花粉中矿物质元素形态研究[J]. 蜜蜂杂志,2004(8):3−4. [ZENG Z J, XIE G X, FAN Z B. Study on the element speciation analysis in honeybee pollen[J]. Journal of Bee,2004(8):3−4. doi: 10.3969/j.issn.1003-9139.2004.08.001

    ZENG Z J, XIE G X, FAN Z B. Study on the element speciation analysis in honeybee pollen[J]. Journal of Bee, 2004(8): 3-4. doi: 10.3969/j.issn.1003-9139.2004.08.001

    [6] 李志, 李琳, 石晓峰. 油菜花粉化学成分和药理作用的研究进展[J]. 甘肃医药,2018,37(5):394−398. [LI Z, LI L, SHI X F. Research progress of chemical constituents and pharmacological effects of rape pollen[J]. Gansu Medical Journal,2018,37(5):394−398.

    LI Z, LI L, SHI X F. Research progress of chemical constituents and pharmacological effects of rape pollen[J]. Gansu Medical Journal, 2018, 37(5): 394-398.

    [7]

    NAGAI T, INOUE R, INOUE H, et al. Scavenging capacities of pollen extracts from Cistus ladaniferus on autoxidation, superoxide radicals, hydroxyl radicals, and DPPH radicals[J]. Nutrition Research,2002,22(4):519−526. doi: 10.1016/S0271-5317(01)00400-6

    [8] 潘建国, 段怡, 吴惠勤, 等. 油菜蜂花粉中脂肪酸的GC-MS分析[J]. 分析测试学报,2003(1):74−76. [PAN J G, DUAN Y, WU H Q, et al. Analysis of fatty acids in rape pollen by GC-MS[J]. Journal of Instrumental Analysis,2003(1):74−76. doi: 10.3969/j.issn.1004-4957.2003.01.022

    PAN J G, DUAN Y, WU H Q, et al. Analysis of fatty acids in rape pollen by GC-MS[J]. Journal of Instrumental Analysis, 2003(1): 74-76. doi: 10.3969/j.issn.1004-4957.2003.01.022

    [9]

    ZHU L Y, LI J, WEI C H, et al. A polysaccharide from Fagopyrum esculentum Moench bee pollen alleviates microbiota dysbiosis to improve intestinal barrier function in antibiotic-treated mice[J]. Food Funct,2020,11:10519−10533. doi: 10.1039/D0FO01948H

    [10] 王博. 八种蜂花粉多糖的分析及抗肿瘤活性研究[D]. 长春: 东北师范大学, 2013.

    WANG B. Structure analysis of polysaccharides from eight types of bee pollen and their antitumor activities[D]. Changchun: Northeast Normal University, 2013.

    [11]

    RZEPECKA-STOJKO A, STOJKO J, KUREK-GÓRECKA A, et al. Polyphenols from bee pollen: Structure, absorption, metabolism and biological activity[J]. Molecules,2015,20(12):21732−21749. doi: 10.3390/molecules201219800

    [12] 雷润梅, 旦增诺宗, 刘睿, 等. 油菜蜂花粉酚类物质的抗氧化能力比较[J]. 食品科技,2017,42(10):223−229. [LEI R M, DAN Z N Z, LIU R, et al. Comparison of antioxidant activity of phenolic compounds from rape bee comparison of antioxidant activity of phenolic compounds from rape bee pollen[J]. Food Science and Technology,2017,42(10):223−229.

    LEI R M, DAN Z N Z, LIU R, et al. Comparison of antioxidant activity of phenolic compounds from rape bee comparison of antioxidant activity of phenolic compounds from rape bee pollen[J]. Food Science and Technology, 2017, 42(10): 223-229.

    [13] 徐元元, 王悦, 杨二林, 等. 3种蜂花粉酚类化合物组成及抗氧化活性研究[J]. 西北大学学报(自然科学版),2021,51(2):303−313. [XU Y Y, WANG Y, YANG E L, et al. Phenolic composition and antioxidant activities of three kinds of bee pollen[J]. Journal of Northwest University (Natural Science Edition),2021,51(2):303−313.

    XU Y Y, WANG Y, YANG E L, et al. Phenolic composition and antioxidant activities of three kinds of bee pollen[J]. Journal of Northwest University (Natural Science Edition), 2021, 51(2): 303-313.

    [14] 李奉. 荞麦蜂花粉中化学成分研究[D]. 西安: 西北大学, 2018.

    LI Z. Chemical constituents from F. esculentum bee pollen[D]. Xi’an: Northwest University, 2018.

    [15] 邓建军, 杨海霞, 曹炜, 等. 油菜蜂花粉蛋白的分离提取及其抗氧化活性[J]. 食品与发酵工业,2011,37(10):218−222. [DENG J J, YANG H X, CAO W, et al. Study on extraction and antioxidant activity analysis of rape bee pollen protein[J]. Food and Fermentation Industries,2011,37(10):218−222.

    DENG J J, YANG H X, CAO W, et al. Study on extraction and antioxidant activity analysis of rape bee pollen protein[J]. Food and Fermentation Industries, 2011, 37(10): 218-222.

    [16]

    ATTLA Y A, HANOUN A E, DIN F, et al. Effect of bee pollen levels on productive, reproductive and blood traits of NZW rabbits[J]. J Anim Physiol Anim Nutr (Berl),2011,95(3):294−303.

    [17]

    HABIB F K, ROSS M, BUCK A C, et al. In vitro evaluation of the pollen extract, cernitin T-60, in the regulation of prostate cell growth[J]. Br J Urol,1990,66:393−397. doi: 10.1111/j.1464-410X.1990.tb14961.x

    [18] 彭国霞. 茶花粉的抗氧化、保肝及其降血糖功能的研究[D]. 西安: 西北大学, 2018.

    PENG G X. Research on the antioxidant, hepatoprotective and hypolycemic of Camellia japonica bee pollen[D]. Xi’an: Northwest University, 2018.

    [19]

    ANNA R S, AGATA K D, ROBERT K, et al. Protective effect of polyphenol-rich extract from bee pollen in a high-fat diet[J]. Molecules,2018,23(4):805. doi: 10.3390/molecules23040805

    [20] 褚珊珊, 左绍远. 蜂花粉多糖生物活性研究进展[J]. 蜜蜂杂志,2018,38(7):8−10. [CHU S S, ZUO S Y. Research progress on the bioactivity of polysaccharide from bee pollen[J]. Journal of Bee,2018,38(7):8−10. doi: 10.3969/j.issn.1003-9139.2018.07.006

    CHU S S, ZUO S Y. Research progress on the bioactivity of polysaccharide from bee pollen[J]. Journal of Bee, 2018, 38(7): 8-10. doi: 10.3969/j.issn.1003-9139.2018.07.006

    [21]

    TANATORN S, PAPASSARA S, PIROONPORN S, et al. Hydrolysates from bee pollen could induced apoptosis in human bronchogenic carcinoma cells (ChaGo-K-1)[J]. J Food Sci Technol,2021,58:752−763. doi: 10.1007/s13197-020-04592-2

    [22] 郭欣欣. 油菜蜂花粉抗前列腺增生的机制及其临床研究[D]. 上海: 上海交通大学, 2019.

    GUO X X. Study on the mechanism and clinical of rape bee pollen against benign prostatic hyperplasia[D]. Shanghai: Shanghai JiaoTong University, 2019.

    [23] 杜迎雪, 刘振国, 张卫星, 等. 饲粮添加油菜蜂花粉对芦花鸡生产性能、蛋品质和血清生化指标的影响[J]. 动物营养学报,2019,31(6):2915−2926. [DU Y X, LIU Z G, ZHANG W X, et al. Effects of dietary rape bee pollen on performance, egg quality and serum biochemical indexes of Luhua hens[J]. Chinese Journal of Animal Nutrition,2019,31(6):2915−2926.

    DU Y X, LIU Z G, ZHANG W X, et al. Effects of dietary rape bee pollen on performance, egg quality and serum biochemical indexes of Luhua hens[J]. Chinese Journal of Animal Nutrition, 2019, 31(6): 2915-2926.

    [24] 廖吕燕, 陈小权, 李健, 等. 油菜花粉超微粉对肉鸡生长性能、血液生化、激素指标和屠宰性能的影响[J]. 中国兽医学报,2018,38(11):2181−2187. [LIAO L Y, CHEN X Q, LI J, et al. Effects of ultramicro powder from rape bee pollen on growth performance, serum biochemical parameters, serum hormones and slaughter trait of broiler chickens[J]. Chinese Journal of Veterinary Science,2018,38(11):2181−2187.

    LIAO L Y, CHEN X Q, LI J, et al. Effects of ultramicro powder from rape bee pollen on growth performance, serum biochemical parameters, serum hormones and slaughter trait of broiler chickens[J]. Chinese Journal of Veterinary Science, 2018, 38(11): 2181-2187.

    [25] 张国锋, 刁其玉, 屠焰, 等. 蜂花粉及其多糖对犊牛体增质量、物质消化与血清指标的影响[J]. 畜牧兽医学报,2010,41(8):981−987. [ZHANG G F, DIAO Q Y, TU Y, et al. Effects of bee pollen and its polysaccharides on growth performance, nutrient digestibility and serum[J]. Acta Veterinaria et Zootechnica Sinica,2010,41(8):981−987.

    ZHANG G F, DIAO Q Y, TU Y, et al. Effects of bee pollen and its polysaccharides on growth performance, nutrient digestibility and serum[J]. Acta Veterinaria et Zootechnica Sinica, 2010, 41(8): 981-987.

    [26] 廖吕燕, 陈小权, 李健, 等. 油菜花粉超微粉对肉鸡免疫功能和抗氧化能力的影响[J]. 中国兽医学报,2018,38(12):2398−2403. [LIAO L Y, CHEN X Q, LI J, et al. Effects of rape pollen ultramicro powder on immune function and antioxidant capacity of broiler chickens[J]. Chinese Journal of Veterinary Science,2018,38(12):2398−2403.

    LIAO L Y, CHEN X Q, LI J, et al. Effects of rape pollen ultramicro powder on immune function and antioxidant capacity of broiler chickens[J]. Chinese Journal of Veterinary Science, 2018, 38(12): 2398-2403.

    [27] 魏文挺, 郑火青, 胡福良. 蜂花粉过敏研究进展[J]. 中国蜂业,2011,62(Z3):46−49. [WEI W T, ZHENG H Q, HU F L. Advances in anaphylaxis of bee pollen[J]. Apiculture of China,2011,62(Z3):46−49.

    WEI W T, ZHENG H Q, HU F L. Advances in anaphylaxis of bee pollen[J]. Apiculture of China, 2011, 62(Z3): 46-49.

    [28]

    MARTÍN-MUÑOZ M F, BARTOLOME B, CAMINOA M, et al. Bee pollen: A dangerous food for allergic children. Identification of responsible allergens[J]. Allergologia et Immunopathologia,2010,38(5):263−265. doi: 10.1016/j.aller.2009.12.003

    [29]

    JEONG-HEE C, YOUNG-SOOK J, JAE-WON O, et al. Bee pollen-induced anaphylaxis: A case report and literature review[J]. Allergy Asthma Immunol Res,2015,7(5):513−517. doi: 10.4168/aair.2015.7.5.513

    [30]

    NONOTTE-VARLY C. Allergenicity of artemisia contained in bee pollen is proportional to its mass[J]. Eur Ann Allergy Clin Immunol,2015,47:218−224.

    [31]

    GREENBERGER P A, FLAIS M J. Bee pollen-induced anaphylactic reaction in an unknowingly sensitized subject[J]. Annals of Allergy Asthma & Immunology,2001,86(2):239−242.

    [32]

    MCNAMARA K B, PIEN M L. Exercise-induced anaphylaxis associated with the use of bee pollen[J]. Annals of Allergy, Asthma & Immunology,2019,122(1):118−119.

    [33]

    AKIYASU T, PAUDYAL B, PAUDYAL P, et al. A case report of acute renal failure associated with bee pollen contained in nutritional supplements[J]. Ther Apher Dial,2010,14(1):93−97. doi: 10.1111/j.1744-9987.2009.00707.x

    [34]

    PITSIOS C, CHLIVA C, MIKOS N, et al. Bee pollen sensitivity in airborne pollen allergic individuals[J]. Annals of Allergy Asthma & Immunology,2006,97(5):703−706.

    [35]

    MEDEIROS K, FIGUEIREDO C, FIGUEREDO T B, et al. Anti-allergic effect of bee pollen phenolic extract and myricetin in ovalbumin-sensitized mice[J]. Journal of Ethnopharmacology,2008,119(1):41−46. doi: 10.1016/j.jep.2008.05.036

    [36]

    ISHIKAWA Y, TOKURA T, USHIO H, et al. Lipid-soluble components of honeybee-collected pollen exert antiallergic effect by inhibiting IgE-mediated mast cell activation in vivo[J]. Phytother Res,2009,23(11):1581−1586. doi: 10.1002/ptr.2824

    [37] 陈淼林. 植物花粉过敏原的起源进化和功能预测[D]. 上海: 上海交通大学, 2016.

    CHEN M L. Origin and functional prediction of pollen allergens in plants[D]. Shanghai: Shanghai JiaoTong University, 2016.

    [38] 刘玲, 肖小军, 李兵, 等. 三裂叶豚草花粉致敏蛋白组分的分离、纯化及鉴定[J]. 中华临床免疫和变态反应杂志,2014,8(1):15−17, 90. [LIU L, XIAO X J, LI B, et al. Isolation, purification, and identification of allergens of Ambrosia trifida pollen[J]. Chinese Journal of Allergy and Clinical Immunology,2014,8(1):15−17, 90.

    LIU L, XIAO X J, LI B, et al. Isolation, purification, and identification of allergens of Ambrosia trifida pollen[J]. Chinese Journal of Allergy and Clinical Immunology, 2014, 8(1): 15-17, 90.

    [39]

    CHEN K W, MARUSCIAC L, TAMAS P T, et al. Ragweed pollen allergy: Burden, characteristics, and management of an imported allergen source in Europe[J]. Int Arch Allergy Immunol,2018,176:163−180. doi: 10.1159/000487997

    [40]

    IPSEN H, LOWENSTEIN H. Isolation and immunochemical characterization of the major allergen of birch pollen (Betula verrucosa)[J]. J Allergy Clin Immunol,1983,72(2):150−159. doi: 10.1016/0091-6749(83)90523-7

    [41]

    PUUMALAINEN T J, POIKONEN S, KOTOVUORI A, et al. Napins, 2S albumins, are major allergens in oilseed rape and turnip rape[J]. Journal of Allergy and Clinical Immunology,2006,117(2):426−432. doi: 10.1016/j.jaci.2005.10.004

    [42]

    SINGH A, SHAHI S, KATIYAR R K, et al. Hypersensitivity to pollen of four different species of brassica: A clinico-immunologic evaluation in patients of respiratory allergy in India[J]. Asia Pacific Allergy,2014,4(4):197−205. doi: 10.5415/apallergy.2014.4.4.197

    [43] 黄婷, 布冠好, 陈复生. 食物蛋白过敏原及其脱敏方法的研究进展[J]. 粮食与油脂,2015,28(8):4−7. [HUANG T, BU G H, CHEN F S. Research progress in protein allergens in food and the methods of reducing allergenicity[J]. Cereals & Oils,2015,28(8):4−7. doi: 10.3969/j.issn.1008-9578.2015.08.002

    HUANG T, BU G H, CHEN F S. Research progress in protein allergens in food and the methods of reducing allergenicity[J]. Cereals & Oils, 2015, 28(8): 4-7. doi: 10.3969/j.issn.1008-9578.2015.08.002

    [44]

    PI X, YANG Y, SUN Y, et al. Recent advances in alleviating food allergenicity through fermentation[J]. Critical Reviews in Food Science and Nutrition,2021(1):1−14.

    [45]

    CHEN L, SONG P, JIA F, et al. Reducing the allergenicity from food by microbial fermentation[J]. Advanced Materials Research,2012:524−527.

    [46]

    EL-GHAISH S, AHMADOVA A, HADJI-SFAXI I, et al. Potential use of lactic acid bacteria for reduction of allergenicity and for longer conservation of fermented foods[J]. Trends in Food Science & Technology,2011,22(9):509−516.

    [47]

    YAN S, LI Q Q, XUE X F, et al. Analysis of improved nutritional composition of bee pollen (Brassica campestris L.) after different fermentation treatments[J]. International Journal of Food Science & Technology, 54(6): 2169-2181.

    [48]

    PI X W, WAN Y, YANG Y L, et al. Research progress in peanut allergens and their allergenicity reduction[J]. Trends in Food Science & Technology,2019,93:212−220.

    [49] 刘胜男, 孟继秋, 王珊, 等. 花生致敏蛋白免疫学检测方法研究进展[J]. 粮食与油脂,2020,33(11):14−16. [LIU S N, MENG J Q, WANG S, et al. Research progress on immunological methods in peanut allergenic proteins detection[J]. Cereals & Oils,2020,33(11):14−16. doi: 10.3969/j.issn.1008-9578.2020.11.005

    LIU S N, MENG J Q, WANG S, et al. Research progress on immunological methods in peanut allergenic proteins detection[J]. Cereals & Oils, 2020, 33(11): 14-16. doi: 10.3969/j.issn.1008-9578.2020.11.005

    [50] 周阳. 微生物发酵对花生蛋白中致敏因子的影响研究[D]. 郑州: 河南工业大学, 2014.

    ZHOU Y. Effect of microbial fermentation on the allergens in peanut protein[D]. Zhengzhou: Henan University of Technology, 2014.

    [51] 皮潇文. 高压蒸汽处理联合纳豆芽孢杆菌发酵对花生过敏性及其理化指标的影响[D]. 南昌: 南昌大学, 2019.

    PI X W. Effects of autoclaving combined with fermentation by Bacillus nattoon the allergenicity, physical and chemical properties of peanut[D]. Nanchang: Nanchang University, 2019.

    [52] 李堂昊, 布冠好, 陈复生. 大豆主要过敏原β-伴大豆球蛋白及其抗原表位的研究进展[J]. 大豆科学,2019,38(5):806−812. [LI T H, BU G H, CHEN F S. Development in major allergen β-conglycinin and its antigen epitopes of soybean[J]. Soybean Science,2019,38(5):806−812.

    LI T H, BU G H, CHEN F S. Development in major allergen β-conglycinin and its antigen epitopes of soybean[J]. Soybean Science, 2019, 38(5): 806-812.

    [53] 赵小明. 大豆过敏原检测研究[J]. 现代食品,2018(20):53−55. [ZHAO X M. Soybean allergen detection research[J]. Modern Food,2018(20):53−55.

    ZHAO X M. Soybean allergen detection research[J]. Modern Food, 2018(20): 53-55.

    [54] 林文辉, 虞宗敢. 发酵豆粕生产工艺与产品质量及其稳定性的关系[J]. 渔业现代化,2010,37(3):51−54. [LIN W H, YU Z G. The relationship between the fermentation methods and the production quality as well as the stability of the quality during the fermented soybean manufacture processes[J]. Fishery Modernization,2010,37(3):51−54. doi: 10.3969/j.issn.1007-9580.2010.03.012

    LIN W H, YU Z G. The relationship between the fermentation methods and the production quality as well as the stability of the quality during the fermented soybean manufacture processes[J]. Fishery Modernization, 2010, 37(3): 51-54. doi: 10.3969/j.issn.1007-9580.2010.03.012

    [55] 赖晗, 程友飞, 杨安树, 等. 发酵工艺条件对豆粕中过敏蛋白降解的影响[J]. 食品科技,2019,44(1):228−233. [LAI H, CHENG Y F, YANG A S, et al. Effect of fermentation conditions on the degradation of allergenic proteins in soybean meal[J]. Food Science and Technology,2019,44(1):228−233.

    LAI H, CHENG Y F, YANG A S, et al. Effect of fermentation conditions on the degradation of allergenic proteins in soybean meal[J]. Food Science and Technology, 2019, 44(1): 228-233.

    [56]

    YANG A S, ZUO L L, CHENG Y F, et al. Degradation of major allergens and allergenicity reduction of soybean meal through solid-state fermentation with microorganisms[J]. Food & Function,2018,9(3):1899−1909.

    [57] 路雪蕊, 张卉, 欧阳伶俐, 等. 小麦蛋白过敏原的研究进展[J]. 食品安全质量检测学报,2015,6(7):2783−2788. [LU X R, ZHANG H, OU Y L L, et al. Research progress of wheat protein allergens[J]. Journal of Food Safety & Quality,2015,6(7):2783−2788.

    LU X R, ZHANG H, OU Y L L, et al. Research progress of wheat protein allergens[J]. Journal of Food Safety & Quality, 2015, 6(7): 2783-2788.

    [58]

    BUCHANAN B B, FRICK O L. Thioredoxin and food allergy[J]. Journal of Allergy & Clinical Immunology,2007,119(2):513−514.

    [59] 李玺, 田阳, 唐杰, 等. 酵母菌和植物乳杆菌发酵对小麦过敏原性的影响[J]. 食品工业科技,2017,38(2):235−239, 312. [LI X, TIAN Y, TANG J, et al. The influence of fermentation on wheat allergy by yeast and Lactobacillus[J]. Science and Technology of Food Industry,2017,38(2):235−239, 312.

    LI X, TIAN Y, TANG J, et al. The influence of fermentation on wheat allergy by yeast and Lactobacillus[J]. Science and Technology of Food Industry, 2017, 38(2): 235-239, 312.

    [60]

    CARLO G R, MARIA A, ROSSANA C, et al. Use of selected sourdough lactic acid bacteria to hydrolyze wheat and rye proteins responsible for cereal allergy[J]. European Food Research and Technology,2006,223(3):405−411. doi: 10.1007/s00217-005-0220-x

  • 期刊类型引用(5)

    1. 陈聪,薛桥丽,胡永金,魏美娟,陈中爱. 云南木姜子醇提物抑菌活性及其稳定性研究. 食品工业科技. 2023(16): 147-154 . 本站查看
    2. 段雪娟,黄煜强,张潼,韩雅莉,吴克刚,黄庶识. 肉桂醛熏蒸对金黄色葡萄球菌胞内生物大分子的影响. 中国食品学报. 2023(10): 90-100 . 百度学术
    3. 张文艳,李俊杰,艾玲松,李茂东,赵仲霞,师睿. 青花椒总生物碱对金黄色葡萄球菌抑菌活性研究. 工业微生物. 2023(06): 50-54 . 百度学术
    4. 王建梅,王国盼,陆安静,秦琳,鲁艳柳,白朝钧,何芋岐,谭道鹏. 金钗石斛提取物对5种耐药菌的体外抑菌活性评价. 遵义医科大学学报. 2022(03): 334-338 . 百度学术
    5. 黄藩,王迎春,叶玉龙,龚雪蛟,黄颖博,熊元元. 变温萎凋技术对贡眉白茶品质的影响. 中国农学通报. 2022(19): 159-164 . 百度学术

    其他类型引用(6)

表(5)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  38
  • PDF下载量:  35
  • 被引次数: 11
出版历程
  • 收稿日期:  2021-06-16
  • 网络出版日期:  2022-04-28
  • 刊出日期:  2022-07-14

目录

/

返回文章
返回
x 关闭 永久关闭