绣球菌中抑制α-葡萄糖苷酶活性组分的筛选及作用机理

吴勇 王泽玉 周娜 赵福 赵佳山 李耘业 王欣 李金杰

吴勇,王泽玉,周娜,等. 绣球菌中抑制α-葡萄糖苷酶活性组分的筛选及作用机理[J]. 食品工业科技,2021,42(22):94−99. doi:  10.13386/j.issn1002-0306.2021030320
引用本文: 吴勇,王泽玉,周娜,等. 绣球菌中抑制α-葡萄糖苷酶活性组分的筛选及作用机理[J]. 食品工业科技,2021,42(22):94−99. doi:  10.13386/j.issn1002-0306.2021030320
WU Yong, WANG Zeyu, ZHOU Na, et al. Screening and Mechanism of Inhibiting α-Glucosidase Activity Fraction from Sparassis crispa[J]. Science and Technology of Food Industry, 2021, 42(22): 94−99. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030320
Citation: WU Yong, WANG Zeyu, ZHOU Na, et al. Screening and Mechanism of Inhibiting α-Glucosidase Activity Fraction from Sparassis crispa[J]. Science and Technology of Food Industry, 2021, 42(22): 94−99. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030320

绣球菌中抑制α-葡萄糖苷酶活性组分的筛选及作用机理

doi: 10.13386/j.issn1002-0306.2021030320
基金项目: 北京市教育委员会科学研究计划项目(KM202011417014)
详细信息
    作者简介:

    吴勇(1996−),男,本科,硕士研究生,研究方向:生物活性物质的制备及生理功能研究,E-mail:wy1347548274@163.com

    通讯作者:

    李金杰(1985−),女,博士,助理研究员,研究方向:生物活性物质的分析、制备及生理功能研究,E-mail:lijinjie.7785004@163.com

  • 中图分类号: TS201.4

Screening and Mechanism of Inhibiting α-Glucosidase Activity Fraction from Sparassis crispa

  • 摘要: 在体外抑制α-葡萄糖苷酶活性指导下,探究绣球菌中不同极性组分对α-葡萄糖苷酶的抑制作用及机理。采用两种不同乙醇浓度对绣球菌进行超声辅助提取,提取液经萃取、大孔吸附树脂初步纯化后,获得不同极性组分。将上述所有组分进行体外α-葡萄糖苷酶抑制活性筛选,获得抑制活性组分,计算半数抑制浓度(Half maximal inhibitory concentration,IC50)、并用酶促动力学和Lineweaver-Burk 双倒数法探讨作用机制。结果表明,在所有活性筛选组分中,用50%乙醇提取,大孔吸附树脂60%乙醇洗脱组分抑制α-葡萄糖苷酶的活性最强,其IC50为0.0927±0.0600 mg/mL,与阿卡波糖(IC50:0.0795±0.0200 mg/mL)活性相当,是竞争与非竞争的混合型抑制类型。此研究明确了绣球菌中抑制α-葡萄糖苷酶活性的主要组分,并探讨作用机制,为进一步利用绣球菌开发食用降糖产品提供了理论科学依据。
  • 图  1  HBR-1-4的抑制曲线

    Figure  1.  Inhibition curve of HBR-1-4

    图  2  HBR-2-4的抑制曲线

    Figure  2.  Inhibition curve of HBR-2-4

    图  3  阿卡波糖的抑制曲线

    Figure  3.  Inhibition curve of acarbose

    图  4  HBR-1-4的酶浓度-反应初速率图

    Figure  4.  Picture of enzyme concentration-initial velocity of HBR-1-4

    图  5  HBR-2-4的酶浓度-反应初速率图

    Figure  5.  Picture of enzyme concentration-initial velocity of HBR-2-4

    图  6  HBR-1-4对α-葡萄糖苷酶抑制作用的Lineweaver-Burk曲线

    Figure  6.  Lineweaver-burk curve of HBR-1-4 for inhibiting α-glucosidase

    图  7  HBR-2-4对α-葡萄糖苷酶抑制作用的Lineweaver-Burk曲线

    Figure  7.  Lineweaver-burk curve of HBR-2-4 for inhibiting α-glucosidase

    表  1  α-葡萄糖苷酶抑制试验反应体系

    Table  1.   Reaction system of inhibition activity against α-glucosidase

    实验组(μL)背景组(μL)对照组(μL)空白组(μL)
    待测物2525
    α-葡萄糖苷酶
    (0.2 U/mL)
    2525
    PBS252550
    PNPG(2 mmol/L)50505050
    Na2CO3(0.2 mol/L)100100100100
    下载: 导出CSV

    表  2  绣球菌不同极性组分的α-葡萄糖苷酶抑制活性

    Table  2.   α-Glucosidase inhibitory activity of different polar components of S. crispa

    编号得率(%)浓度(mg/mL)抑制率(%)编号得率(%)浓度(mg/mL)抑制率(%)
    HBR-126.545.034.55±0.06HBR-228.385.037.78±0.08
    HBR-1-Y2.780.516.77±0.09HBR-2-Y1.020.517.14±0.04
    HBR-1-122.380.59.66±0.12HBR-2-125.020.59.47±0.08
    HBR-1-20.410.52.34±0.09HBR-2-21.540.52.45±0.06
    HBR-1-30.290.50.97±0.05HBR-2-30.180.51.06±0.02
    HBR-1-40.350.571.13±0.05HBR-2-40.310.590.31±0.02
    HBR-1-50.330.52.45±0.09HBR-2-50.300.52.66±0.04
    阿卡波糖0.590.89±0.07
    下载: 导出CSV

    表  3  绣球菌活性组分及阿卡波糖对α-葡萄糖苷酶的半抑制浓度IC50

    Table  3.   IC50 of inhibition activity against α-glucosidase of active fractions and acarbose

    编号IC50(mg/mL)
    HBR-1-40.2666±0.0500
    HBR-2-40.0927±0.0600
    阿卡波糖0.0795±0.0200
    下载: 导出CSV

    表  4  HBR-1-4和HBR-2-4对α-葡萄糖苷酶的抑制动力学参数

    Table  4.   Kinetic parameters of inhibition of α-glucosidase of HBR-1-4 and HBR-2-4

    编号浓度(mg/mL)拟合方程R2Km(mmol/L)Vmax(△A/min)
    对照组y=56.737x+18.8290.99563.010.053
    HBR-1-40.1y=105.57x+26.8840.99163.930.037
    HBR-1-40.2y=155.14x+32.8390.98804.720.030
    HBR-1-40.4y=207.02x+36.6550.99445.650.027
    HBR-2-40.04y=164.8x+24.8950.99976.620.040
    HBR-2-40.08y=219.4x+31.7970.99926.900.031
    HBR-2-40.12y=357.34x+42.0620.99988.500.024
    下载: 导出CSV
  • [1] BANG S, CHAE H, LEE C, et al. New aromatic compounds from the fruiting body of Sparassis crispa (Wulf.) and their inhibitory activities on proprotein convertase subtilisin/kexin type 9 mRNA expression[J]. Journal of Agricultural and Food Chemistry,2017,65(30):6152−6157. doi:  10.1021/acs.jafc.7b02657
    [2] HIROKAZU K, KANAKO H, SHINJI T, et al. Novel bioactive compound from the Sparassis crispa mushroom[J]. Bioscience Biotechnology and Biochemistry,2007,71(7):1804−1806. doi:  10.1271/bbb.70192
    [3] 高渊, 杨亚茹, 常明昌, 等. 基于代谢组学研究绣球菌多糖对高脂血症大鼠的降血脂作用[J]. 食品科学,2020,42(11):168−175. [GAO Y, YANG Y R, CHANG M C, et al. Metabonomic study on hypolipidemic effect of Sparassis crispa polysaccharides on hyperlipidemia rats[J]. Food Science,2020,42(11):168−175. doi:  10.7506/spkx1002-6630-20200513-146
    [4] OHNO N, MIURA N N, NAKAJIMA M, et al. Antitumor 1,3-beta-glucan from cultured fruit body of Sparassis crispa[J]. Biological & Pharmaceutical Bulletin,2000,23(7):866−872.
    [5] YAMAMOTO K, KIMURA T. Dietary Sparassis crispa (hanabiratake) ameliorates plasma levels of adiponectin and glucose in type 2 diabetic mice[J]. Journal of Health Science,2010,56(5):541−546. doi:  10.1248/jhs.56.541
    [6] CHOIL W S, SHIN P G, BOK Y Y, et al. Anti-inflammatory effects of Sparassis crispa extracts[J]. Journal of Mushroom Science and Production,2013,11(1):46−51. doi:  10.14480/JM.2013.11.1.046
    [7] 陈洋炜, 郑莛予, 高云杉, 等. 绣球菌低分子量多糖的制备工艺优化及其分子量的测定[J]. 食品工业科技,2020,41(4):161−165,178. [CHEN Y W, ZHENG T Y, GAO Y S, et al. Optimization of preparation process and molecular weight determination of low molecular weight polysaccharide from Sparassis crispa[J]. Science and Technology of Food Industry,2020,41(4):161−165,178.
    [8] 黄子建. 响应面法优化绣球菌副产物多糖提取工艺的研究[J]. 福建农业科技,2019(10):21−26. [HANG Z J. Study on optimization of extraction process of polysaccharides from byproducts of Sparassis crispa by using response surface method[J]. Fujian Agricultural Science and Technology,2019(10):21−26.
    [9] 杨亚茹, 郝正祺, 常明昌, 等. 绣球菌酸性多糖的分离纯化、结构鉴定及抗氧化活性研究[J]. 食用菌学报,2019,26(3):105−112. [YANG Y R, HAO Z Q, CHANG M C, et al. Isolation, purification, structural identification and antioxidant activity of acidic polysaccharide in Sparassis crispa[J]. Acta Edulis Fungi,2019,26(3):105−112.
    [10] 林衍铨. 绣球菌的生产现状与保健功效[J]. 食用真菌,2021,29(1):16−19. [LIN Y Q. Production status and health effect of Sparassis crispa[J]. Edible and Medicinal Mushrooms,2021,29(1):16−19.
    [11] 丁有红, 崔岚, 苏健, 等. 中老年人群高三酰甘油腰围表型与空腹血糖受损、糖尿病的关系研究[J]. 预防医学,2021,33(2):125−129. [DING Y H, CUI L, SU J, et al. Association of hypertriglyceridemic waist phenotype with impaired fasting glucose and diabetes in middle-aged and elderly population[J]. Preventive Medicine,2021,33(2):125−129.
    [12] 张义朋, 何奔. 2型糖尿病中降糖药与心力衰竭风险[J]. 临床心血管病杂志,2021,37(1):16−21. [ZHANG Y P, HE B. Antidiabetic agent and heart failure risk in type 2 diabetes mellitus[J]. Journal of Clinical Cardiology,2021,37(1):16−21.
    [13] 孙凯峰, 包怡红. 黑木耳发酵产物对HepG2细胞脂质代谢及糖代谢的影响[J]. 中国食品学报,2021,21(1):30−37. [SUN K F, BAO Y H. Fermentation products of auricularia auricular on lipid metabolism and glucose metabolism in HepG2 cells[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(1):30−37.
    [14] 慎凯峰, 刘奇, 朱琦. 复方青钱柳、铁皮石斛、灵芝提取物降糖功能研究[J]. 海峡药学,2020,32(6):18−21. [SHEN K F, LIU Q, ZHU Q. Study on the auxiliary hypoglycemic efficacy of combined extract of Cyclocarya paliurus, Ganoderma, and Dendrobium[J]. Strait Pharmaceutical Journal,2020,32(6):18−21. doi:  10.3969/j.issn.1006-3765.2020.06.006
    [15] CHATTERJEE S, KHUNTI K, DAVIES M J. Type 2 diabetes[J]. American Journal of Plant Sciences,2017,389:2239−2251.
    [16] 苏青. α-葡萄糖苷酶抑制剂与常见药物联用的不良反应[J]. 药品评价,2018,15(23):5−8. [Su Q. Adverse drug reactions of α-glucosidase inhibitors combined with other drugs[J]. Drug Evaluation,2018,15(23):5−8.
    [17] 孙静. 胰岛素联合α-葡萄糖苷酶抑制剂治疗老年2型糖尿病的临床疗效[J]. 北方药学,2020,17(5):100−101. [SUN J. Clinical efficacy of insulin combined with α-glucosidase inhibitors in the treatment of elderly type 2 diabetes mellitus[J]. Bei Fang Yao Xue,2020,17(5):100−101. doi:  10.3969/j.issn.1672-8351.2020.05.074
    [18] 阎成炟, 郭崇真, 林建阳. 新型α-葡萄糖苷酶抑制剂筛选及药理作用研究进展[J]. 药物评价研究,2021,44(2):440−445. [YAN C D, GUO C Z, LIN J Y. Research progress of screen and pharmacological effect for novel α-glucosidase[J]. Drug Evaluation Research,2021,44(2):440−445.
    [19] 程鹏, 李玉慧, 郭瑞臣. 阿卡波糖药理研究进展及其临床应用[J]. 药学研究,2020,39(2):107−110. [CHENG P, LI Y H, GUO R C. Progressin pharmacological research of acarbose and its clinical applications[J]. Journal of Pharmaceutical Research,2020,39(2):107−110.
    [20] 中岛三博, 长岛公司. 一种生理机能活性剂及其应用: 中国, 111700920 A[P]. 2020-09-25

    NAKAJIMA M, NAGASHIMA K. A kind of physiological surfactant and application thereof: CN, 111700920 A[P]. 2020-09-25.
    [21] SON S H, CHO M G, PARK H R. Sparassis crispa fruit body dry powder with antidiabetic effect and its manufacturing method: KR, 2013067927 A[P]. 2013-06-25.
    [22] SATO Y, UNO T, IMAI K. The physiologically active composition derived from Sparassis crispa: JP, 2008230991 A[P]. 2008-10-02.
    [23] 沙纯荣. 一种绣球菌饮品: 中国, 101305826 A[P]. 2008-11-19

    SHA C R. A beverage containing Sparasis crispa (Wulf) Fr. for treating diabetes, nephropathy and gastrointestinal disorders: CN, 101305826 A[P]. 2008-11-19.
    [24] YOSHIKAWA, K, HASHIMOTO T, HIRASAWA A. Unsaturated fatty acids derived from Sparassis crispa fruiting body and/or mycelium for inhibiting diabetes mellitus: JP, 2010059106 A[P]. 2010-03-18.
    [25] KANG W Y, ZHANG L. α-g lucosidase inhitory of extracts of five genera of Gesneriacceae[J]. Natural Product Research Development,2010,22:122−125.
    [26] 温正辉, 凌梅娣, 余思萍, 等. 蒲桃不同药用部位乙醇提取物对α-葡萄糖苷酶和α-淀粉酶活性的抑制作用研究[J]. 中国药房,2019,30(23):3246−3251. [WEN Z H, LING M D, YU S P, et al. Study on inhibitory effects of ethanol extract of different medicinal parts from Syzygium jambos on the activities of α-glycosidase and α-amylase[J]. China Pharmmcy,2019,30(23):3246−3251.
    [27] 赖小燕, 姜泽东, 倪辉. 茶花粉黄酮对α-葡萄糖苷酶抑制作用的研究[J]. 食品工业科技,2016,37(5):353−357. [LAI X Y, JIANG Z D, NI H, et al. Study on the inhibitory effect of flavonoids in camellia powder on α-glucosidase[J]. Science and Technology of Food Industry,2016,37(5):353−357.
    [28] DENG Y T, LIN S Y, SHYUR L F, et al. Pu-erh tea polysaccharides decrease blood sugar by inhibition of α- glucosidase activity in vitro and in mice[J]. Food Funct,2015,6(5):1539−1542. doi:  10.1039/C4FO01025F
    [29] 肖会芝. 天然多酚对胰蛋白酶和α-葡萄糖苷酶抑制机制的研究[D]. 重庆: 重庆大学, 2016

    XIAO H Z. Comparative evaluation of natural polyphenols inhibiting α-glucosidase and trypsin[D]. Chongqing: Chongqing University, 2016
    [30] 冯学珍, 覃慧逢, 赵丽婷, 等. 食用海藻中α-葡萄糖苷酶抑制剂的筛选及抑制动力学[J]. 食品工业,2019,40(6):195−198. [FENG X Z, QIN H F, ZHAO L T, et al. Screening of fraction with inhibiting activity against α-glucosidase from edible algal and its inhibition kinetic behaviors[J]. Food Industry,2019,40(6):195−198.
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  12
  • HTML全文浏览量:  2
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-29
  • 网络出版日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。