荔枝多酚微胶囊的制备工艺优化及其特性分析

张汉辉 程杏安 李俊杰 黄相 东方云 刘欣 刘展眉 蒋旭红

张汉辉,程杏安,李俊杰,等. 荔枝多酚微胶囊的制备工艺优化及其特性分析[J]. 食品工业科技,2021,42(23):201−208. doi:  10.13386/j.issn1002-0306.2021030258
引用本文: 张汉辉,程杏安,李俊杰,等. 荔枝多酚微胶囊的制备工艺优化及其特性分析[J]. 食品工业科技,2021,42(23):201−208. doi:  10.13386/j.issn1002-0306.2021030258
ZHANG Hanhui, CHENG Xingan, LI Junjie, et al. Optimization of Preparation Process of Lichi Polyphenols Microcapsules and Its Characteristic Analysis[J]. Science and Technology of Food Industry, 2021, 42(23): 201−208. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030258
Citation: ZHANG Hanhui, CHENG Xingan, LI Junjie, et al. Optimization of Preparation Process of Lichi Polyphenols Microcapsules and Its Characteristic Analysis[J]. Science and Technology of Food Industry, 2021, 42(23): 201−208. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030258

荔枝多酚微胶囊的制备工艺优化及其特性分析

doi: 10.13386/j.issn1002-0306.2021030258
基金项目: 广东省普通高校省级重点科研项目(2018GKZDXM010)
详细信息
    作者简介:

    张汉辉(1996−),男,硕士研究生,研究方向:生物化工,E-mail:zhanghanhui23@163.com

    通讯作者:

    程杏安(1981−),男,博士,副教授,研究方向:天然产物化学,E-mail: anzai_28@163.com

    蒋旭红(1969−),女,博士,教授,研究方向:功能高分子材料及天然产物化学,E-mail: jiangxh69@163.com

  • 中图分类号: TS255.1

Optimization of Preparation Process of Lichi Polyphenols Microcapsules and Its Characteristic Analysis

  • 摘要: 以海藻酸钠和壳聚糖为壁材,通过复凝聚法制备荔枝多酚微胶囊,提高荔枝多酚的稳定性。选取微胶囊包埋率为优化指标,利用正交试验得出最佳制备工艺,并对微胶囊的体外释放性能、温度稳定性及抗氧化活性进行研究。结果表明,荔枝多酚微胶囊的最佳制备工艺为:海藻酸钠质量分数3.5%,氯化钙质量分数3%,壳聚糖质量分数2.0%,包埋时间1 h,荔枝多酚质量分数0.8%,所得荔枝多酚微胶囊粒径均一,包埋率为95.74%;该微胶囊在模拟肠液(pH6.86)中具有良好的靶向释放性,3 h后多酚释放率为19.66%,ABTS+自由基清除率为20.30%;且在相同的温度条件下,荔枝多酚微胶囊较未包埋的荔枝多酚具有较高的多酚保留率,提高了2.09%~3.34%,表明荔枝多酚的微胶囊化可有效提高荔枝多酚的温度稳定性。
  • 图  1  没食子酸的标准曲线

    Figure  1.  Standard curves of gallic acid

    图  2  海藻酸钠质量分数对微胶囊包埋率的影响

    Figure  2.  Effects of mass fraction of alginate sodium on the embedding rate of microcapsles

    图  3  氯化钙质量分数对微胶囊包埋率的影响

    Figure  3.  Effects of mass fraction of calcium chloride on the embedding rate of microcapsles

    图  4  壳聚糖质量分数对微胶囊包埋率的影响

    Figure  4.  Effects of mass fraction of chitosan on the embedding rate of microcapsles

    图  5  包埋时间对微胶囊包埋率的影响

    Figure  5.  Effects of embedding time on the embedding rate of microcapsles

    图  6  荔枝多酚质量分数对微胶囊包埋率的影响

    Figure  6.  Effects of mass fraction of Lichi polyphenols on the embedding rate of microcapsles

    图  7  微胶囊全貌(a)、微胶囊(b)、胶囊内部结构(c)的电镜图

    Figure  7.  SEM of lichi polyphenols microcapsules

    图  8  胶囊在pH2.00、6.86、11.00的溶胀性能

    Figure  8.  Swelling properties of microcapsules at pH2.00、6.86、11.00

    图  9  胶囊在pH2.00、6.86、11.00的多酚释放率(a)、ABTS+清除率(b)

    Figure  9.  Release curve(a) and ABTS+ scavenging activity(b) of polyphenols microcapsules at pH2.00、6.86、11.00

    图  10  胶囊在pH2.00、6.86、11.00的一级动力学拟合曲线

    Figure  10.  Fitting curves of first-order kinetic model of microcapsules at pH2.00、6.86、11.00

    图  11  荔枝多酚及其微胶囊在30、40、50 ℃的稳定性

    Figure  11.  Stability of lichi polyphenol and its microcapsules at 30, 40, 50 ℃

    表  1  正交试验因素与水平

    Table  1.   Coded levels of independent variables used for orthogonal array design

    水平因素
    A海藻酸钠(%)B荔枝多酚(%)C壳聚糖(%)
    12.50.61.0
    23.00.81.5
    33.51.52.0
    下载: 导出CSV

    表  2  数学拟合模型

    Table  2.   Model fitting equations

    释放模型数学拟合模型释放机理
    零级动力学Q=a+bt恒速释放
    一级动力学Q=Q(1−e−kt一级释放
    Higuchi模型Q=kt1/2Fick扩散
    注:其中Q为释放率;Q为完全释放量;t为释放时间;a、b分别为拟合方程的截距及斜率。
    下载: 导出CSV

    表  3  微胶囊制备正交试验设计及结果

    Table  3.   Orthogonal array design and experimental results

    试验号海藻酸钠(%)荔枝多酚(%)壳聚糖(%)误差列包埋率(%)
    12.51.51.0190.08
    22.50.81.5291.08
    32.50.62.0390.48
    43.01.51.5393.93
    53.00.82.0196.37
    63.00.61.0288.19
    73.51.52.0296.35
    83.50.81.0395.96
    93.50.61.5191.27
    K190.5593.4591.4192.57
    K292.8394.4792.0991.87
    K394.5389.9894.4093.46
    R3.984.492.991.59
    下载: 导出CSV

    表  4  胶囊在pH2.00、6.86、11.00中的释放动力学模型

    Table  4.   Release kinetics model of microcapsules at pH2.00、6.86、11.00

    释放环境释放模型方程拟合方程R2
    pH2.00零级动力学Q=0.025t+4.2150.381
    一级动力学Q=7.447(1−e−0.092t)0.985
    Higuchi模型Q=0.480t1/2+2.6320.659
    pH6.86零级动力学Q=0.075t+9.3420.495
    一级动力学Q=19.350(1−e−0.063t0.995
    Higuchi模型Q=1.354t1/2+5.1180.767
    pH11.00零级动力学Q=0.095t+4.5900.652
    一级动力学Q=18.582(1−e−0.028t)0.925
    Higuchi模型Q=1.541t1/2+0.3430.821
    下载: 导出CSV
  • [1] 苏钻贤, 杨胜男, 陈厚彬, 等. 2020年我国荔枝主产区的生产形势分析[J]. 南方农业学报,2020,51(7):1598−1605. [SU Z X, YANG S N, CHEN H B, et al. Analysis of the production situation for litchi in main planting areas of China in 2020[J]. Journal of southern Agriculture,2020,51(7):1598−1605.
    [2] 蒋黎艳, 罗思玲, 周旭, 等. 荔枝多酚的提取和纯化技术研究进展[J]. 果树学报,2020,37(1):130−139. [JIANG L Y, LUO S L, ZHOU X, et al. Advances in extraction and purification of lichi polyphenols[J]. Journal of Fruit Science,2020,37(1):130−139.
    [3] DENG M, DENG Y Y, DONG L H, et al. Effect of storage conditions on phenolic profiles and antioxidant activity of litchi pericarp[J]. Molecules,2018,23(9):2276−2281.
    [4] MATTIOLI R, FRANCIOSO A, DERME M, et al. Anti-inflammatory activity of a polyphenolic extract from Arabidopsis thaliana in in vitro and in vivo models of alzheimer's disease[J]. International Journal of Molecular Sciences,2019,20(3):708−726.
    [5] KILARI E K, PUTTA S. Delayed progression of diabetic cataractogenesis and retinopathy by litchi chinensis in STZ-induced diabetic rats[J]. Cutan Ocul Toxicol,2017,36(1):52−59.
    [6] GONG Y H, FANG F, ZHANG X, et al. B type and complex A/B type epicatechin trimers isolated from litchi pericarp aqueous extract show high antioxidant and anticancer activity[J]. International Journal of Molecular Sciences,2018,19(1):301−319.
    [7] 谢三都, 蔡聪育, 陈惠卿. 超声波提取荔枝壳粗多酚的工艺研究[J]. 福建轻纺,2012(1):39−42. [XIE S D, CAI C Y, CHEN H Q. Study on ultrasonic extraction of crude polyphenols from litchi shell[J]. The Light & Textile Industries of Fujian,2012(1):39−42.
    [8] 董丽红, 张瑞芬, 肖娟, 等. 荔枝果肉不同酚类成分群的分离及其抗氧化活性[J]. 中国农业科学,2016,49(20):4004−4015. [DONG L H, ZHANG R F, XIAO J, et al. Separation and antioxidant activity of different phenolic compound fractions from lichi pulp[J]. Scientia Agricultura Sinica,2016,49(20):4004−4015.
    [9] 楠极, 栗丽萍. 番石榴叶多酚提取液稳定性的研究[J]. 食品研究与开发,2016,37(18):32−35. [NAN J, LI L P. Study on stability of polyphenols extracting solution in guava laeaves[J]. Food Research and Development,2016,37(18):32−35.
    [10] BOUAYED J, DEUBER H, HOFMANN L, et al. Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns[J]. Food Chemistry,2012,131(4):1466−1472.
    [11] MADENE A, JACQUOT M, SCHER J, et al. Flavour encapsulation and controlled release-a review[J]. International Journal of Food Science & Technology,2006,41(1):1−21.
    [12] DIAS M I, FERRERIRA I C F R, BARREIRO M F. Microencapsulation of bioactives for food applications[J]. Food Funct,2015,6(4):1035−1052.
    [13] 叶春苗. 喷雾干燥技术及其在食品加工中的应用[J]. 农产品加工,2017(4):63−64. [YE C M. Spray drying technology and its application in food processing[J]. Farm Products Processing,2017(4):63−64.
    [14] 刘婷, 但卫华, 但年华, 等. 微胶囊的制备及其表征方法[J]. 材料导报,2013,27(21):81−84. [LIU T, DAN W H, DAN N H, et al. Preparation technology and characterization of microcapsule[J]. Materials Reports,2013,27(21):81−84.
    [15] DONG D, QI Z L, HUA Y F, et al. Microencapsulation of flaxseed oil by soya proteins–gum arabic complex coacervation[J]. International Journal of Food Science & Technology,2015,50(8):1787−1791.
    [16] GRATZIANDIA O, LASA A, PEDRAZ J L, et al. Preparation and characterization of resveratrol loaded pectin/alginate blend gastro-resistant microparticles[J]. Molecules (Basel, Switzerland),2018,23(8):1886−1895.
    [17] 石静文, 马春丽, 梁佳祺, 等. 响应面法优化苹果多酚微胶囊工艺[J]. 食品工业科技,2019,40(15):155−160, 291. [SHI J W, MA C L, LIANG J Q, et al. Optimization of the processing technology of apple-polyphenol microcapsules by response surface methodology[J]. Science and Technology of Food Industry,2019,40(15):155−160, 291.
    [18] 邓姣, 刘鑫, 成文豪, 等. pH值响应型负载白藜芦醇微胶囊的制备与抗氧化活性分析[J]. 食品科学,2019,40(20):54−59. [DENG J, LIU X, CHENG W H, et al. Preparation and antioxidant activity of pH responsive micocapsules loaded with resveratrol[J]. Food Science,2019,40(20):54−59.
    [19] 高瑾, 梁宏闪, 赵靖昀, 等. 玉米醇溶蛋白/多酚相互作用及复合物制备与表征[J]. 食品科学,2021:1−10. [GAO J, LIANG H S, ZHAO J Y, et al. Interactions between zein/polyphenols and characterization of their complex[J]. Food Science,2021:1−10.
    [20] 陈文彬, 严文静, 徐幸莲, 等. α-生育酚壳聚糖纳米粒的制备、表征及体外缓释抗氧化性能[J]. 食品科学,2017,38(22):216−223. [CHEN W B, YAN W J, XU X L, et al. Preparation, characterization and in vitro sustained antioxidant activity α-tocopherol-loaded chitosan nanoparticles[J]. Food Science,2017,38(22):216−223.
    [21] YANG J, WANG Y F, LI M, et al. pH-sensitive chitosan-sodium phytate core-shell hollow beads and nanocapsules for the encapsulation of active ingredients[J]. J Agric Food Chem,2019,67(10):2894−2905.
    [22] 翟爱华, 刘远洋, 张敬尧, 等. 油脂天然抗氧化剂微胶囊缓释动力学研究[J]. 中国粮油学报,2013,28(2):69−72, 6. [HUO A H, LIU Y Y, ZHANG J Y, et al. Study on the sutstained-release kinetics model of oil of natural antioxidants microcapsules[J]. Journal of the Chinese Cereals and Oils Association,2013,28(2):69−72, 6.
    [23] SHAO P, QIU Q, XIAO J, et al. Chemical stability and in vitro release properties of β-carotene in emulsions stabilized by Ulva fasciata polysaccharide[J]. Int J Biol Macromol,2017,102:225−231.
    [24] GRANT G T, MORRIS E R, REES D A, et al. Biological interactions between polysaccharides and divalent cations: The egg-box model[J]. Febs Letters,1973,32(1):195−198.
    [25] ZHANG R S, LEI L, SONG Q Q, et al. Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release[J]. Colloids Surf B Biointerfaces,2019,175:569−575.
    [26] HILL M, TWIGG M, SHERIDAN E A, et al. Alginate/Chitosan particle-based drug delivery systems for pulmonary applications[J]. Pharmaceutics,2019,11(8):379−390.
    [27] ROMO I, ABUGOCH L, TAPIA C. Soluble complexes between chenopodins and alginate/chitosan: Intermolecular interactions and structural-physicochemical properties[J]. Carbohydrate Polymers,2020,227:115334−115345.
    [28] ČALIJIA B, MILIC J, CEKIC N, et al. Chitosan oligosaccharide as prospective cross-linking agent for naproxen-loaded Ca-alginate microparticles with improved pH sensitivity[J]. Drug Dev Ind Pharm,2013,39(1):77−88.
    [29] 张雨, 张鲁琪, 焦学娟, 等. 4A沸石对海藻酸钠/壳聚糖微球性能的影响[J]. 精细化工,2019,36(3):387−392. [ZHANG Y, ZHANG L Q, JIAO X J, et al. Effect of 4A zeolite on the properties of sodium alginate/chitosan microspheres[J]. Fine Chemicals,2019,36(3):387−392.
    [30] 崔莉, 贾军芳, 熊子豪, 等. 羧甲基壳聚糖/海藻酸钠半互穿网络水凝胶的制备及性能研究[J]. 高分子学报,2014(3):361−368. [CUI L, JIA J F, XIONG Z H, et al. Preparation and properties of carboxymethyl chitosan and sodium alginate semi-interpenetrating hydrogels[J]. Acta Polymerica Sinica,2014(3):361−368.
    [31] 彭志刚, 刘高峰, 冯茜, 等. 氨基磺酸乙基纤维素微胶囊的制备及缓释性能[J]. 现代化工,2019,39(1):119−22, 24. [PENG Z G, LIU G F, FENG X, et al. Preparation of ethyl cellulose sulfamate microcapsules and release properties[J]. Modern Chemical Industry,2019,39(1):119−22, 24.
    [32] 刘军波, 邹礼根, 赵芸. 蓝莓花青素加工环境稳定性研究[J]. 食品与生物技术学报,2018,37(10):1073−1079. [LIU J B, ZOU L G, ZHAO Y. Study on the stability of blueberry anthocyanin in processing environment[J]. Journal of Food Science and Biotechnology,2018,37(10):1073−1079.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  10
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-22
  • 网络出版日期:  2021-10-20
  • 刊出日期:  2021-12-01

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升