超高效液相色谱串联质谱法测定豆类食品中的游离神经递质类氨基酸

罗葵 宋学英

罗葵,宋学英. 超高效液相色谱串联质谱法测定豆类食品中的游离神经递质类氨基酸[J]. 食品工业科技,2021,42(18):325−333. doi:  10.13386/j.issn1002-0306.2021030190
引用本文: 罗葵,宋学英. 超高效液相色谱串联质谱法测定豆类食品中的游离神经递质类氨基酸[J]. 食品工业科技,2021,42(18):325−333. doi:  10.13386/j.issn1002-0306.2021030190
LUO Kui, SONG Xueying. Determination of Free Neurotransmitter Amino Acids in Legume Food by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(18): 325−333. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030190
Citation: LUO Kui, SONG Xueying. Determination of Free Neurotransmitter Amino Acids in Legume Food by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(18): 325−333. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021030190

超高效液相色谱串联质谱法测定豆类食品中的游离神经递质类氨基酸

doi: 10.13386/j.issn1002-0306.2021030190
详细信息
    作者简介:

    罗葵(1983−),女,硕士,主管技师,研究方向:质谱与色谱分析,E-mail:sunflower713@126.com

    通讯作者:

    宋学英(1964−),女,大专,副主任技师,研究方向:色谱分析,E-mail:13521292345@163.com

  • 中图分类号: TS207.3

Determination of Free Neurotransmitter Amino Acids in Legume Food by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry

  • 摘要: 本文建立了超高效液相色谱串联三重四极杆质谱(UPLC-MS/MS)测定豆类食品中神经递质类氨基酸的分析方法。样品经超纯水超声提取,Zorbax SB-Aq RRHT色谱柱(3.0 mm×100 mm, 1.8 μm)分离,以甲醇和0.5 mmol/L乙酸铵溶液为流动相梯度洗脱,流速为0.3 mL/min。采用电喷雾离子源(ESI)正离子模式扫描,多反应监测(MRM)模式进行检测,外标法定量。结果表明,神经递质类氨基酸在各自浓度范围内线性良好,相关系数(r)为0.991~0.999,检出限(LOD, S/N≥3)为2~8 μg/kg,定量限(LOQ, S/N≥10)为8~40 μg/kg;在3个不同浓度加标水平下的平均回收率为80.30%~109.97%,相对标准偏差(RSD, n=6)为0.12%~7.20%;稳定性、精密度、重复性在峰面积上的RSD值分别为4.74%~6.98%、0.63%~7.27%、0.46%~5.17%,说明该方法简单、高效、灵敏,适用于豆类食品的快速定量检测。
  • 图  1  不同色谱柱对6种神经递质类氨基酸检测的影响

    Figure  1.  Effect of different columns on the detection of 6 neurotransmitter amino acids

    图  2  不同流动相对6种神经递质类氨基酸检测的影响

    Figure  2.  Effect of different mobile phases on the detection of 6 neurotransmitter amino acids

    图  3  柱温对6种神经递质类氨基酸响应强度的影响

    Figure  3.  Effect of column temperature on response intensity of 6 neurotransmitter amino acids

    图  4  6种神经递质类氨基酸的总离子流图(TIC)

    Figure  4.  Total ion chromatogram(TIC) of 6 neurotransmitter amino acids

    注:1:甘氨酸;2:γ-氨基丁酸;3:谷氨酸;4:谷氨酰胺;5:天冬氨酸;6:天冬酰胺。

    图  5  甘氨酸(Gly)、γ-氨基丁酸(GABA)、谷氨酸(Glu)、谷氨酰胺(Gln)、天冬氨酸(Asp)和天冬酰胺(Asn)的提取离子谱图(XIC)

    Figure  5.  Extracted ion chromatogram(XIC) of Gly, γ-GABA, Glu, Gln, Asp and Asn

    6  不同提取比例对6种神经递质类氨基酸检测的影响

    6.  Effect of different extraction ratio on response intensity of 6 neurotransmitter amino acids

    图  7  不同超声提取时间对6种神经递质类氨基酸响应强度的影响

    Figure  7.  Effect of ultrasonic extraction time on response intensity of 6 neurotransmitter amino acids

    表  1  6种神经递质类氨基酸的质谱采集参数

    Table  1.   MS acquisition parameters of 6 neurotransmitter amino acids

    化合物保留时间
    (min)
    母离子
    (m/z)
    子离子
    (m/z)
    碰撞能量
    (V)
    去簇电压
    (eV)
    甘氨酸
    1.59
    76
    30*1760
    4814
    谷氨酸
    1.31
    148
    84*2040
    13012.5
    谷氨酰胺
    1.61
    147
    130*1460
    8424
    天冬氨酸
    1.30
    134
    88*12.545
    11612.5
    天冬酰胺
    1.58
    133
    74*18.545
    11612.5
    γ-氨基
    丁酸
    1.60
    104
    87*15.550
    6925
    注:*为定量离子。
    下载: 导出CSV

    表  2  6种神经递质类氨基酸的线性关系、检出限与定量限

    Table  2.   Liner relationships, LODs and LOQs of 6 neurotransmitter amino acids

    目标化合物线性回归方程r线性范围
    (μg/L)
    检出限
    (μg/kg)
    定量限
    (μg/kg)
    谷氨酸Y=18906.95X−3220190.999100~2000840
    甘氨酸Y=390.77X+8455.370.99110~20028
    谷氨酰胺Y=60770X+2025740.9951~10028
    天冬氨酸Y=14301.19X+60089.20.9995~50028
    天冬酰胺Y=1559.33X+6928670.991100~2000840
    γ-氨基丁酸Y=31693.1X+1613600.99310~20028
    下载: 导出CSV

    表  3  6种神经递质类氨基酸的加标回收率和相对标准偏差RSD(n=6)

    Table  3.   Spiked recoveries and RSDs of 6 neurotransmitter amino acids(n=6)

    目标
    化合物
    原始量(μg/g)
    低浓度 中浓度 高浓度
    加入量
    (μg/g)
    回收率
    (%)
    RSD
    (%)
    加入量
    (μg/g)
    回收率
    (%)
    RSD
    (%)
    加入量
    (μg/g)
    回收率
    (%)
    RSD
    (%)
    谷氨酸343.158096.760.40 20083.910.81 40083.510.95
    甘氨酸17.82888.295.962080.304.964082.957.20
    谷氨酰胺21.99294.362.98895.061.424085.324.05
    天冬氨酸35.178100.681.164086.410.798082.540.29
    天冬酰胺355.188099.072.0220097.043.74400106.070.85
    γ-氨基丁酸33.018109.970.1220103.750.694095.091.09
    下载: 导出CSV

    表  4  稳定性、精密度和重复性试验的相对标准偏差RSD(n=6)

    Table  4.   The RSDs of stability, precision and repeatability tests (n=6)

    化合物稳定性
    RSD(%)
    精密度
    RSD(%)
    重复性
    RSD(%)
    甘氨酸5.157.272.99
    γ-氨基丁酸4.742.590.46
    谷氨酸5.720.631.07
    谷氨酰胺5.475.072.49
    天冬氨酸6.981.491.02
    天冬酰胺5.645.025.17
    下载: 导出CSV

    表  5  豆类食品中6种神经递质类氨基酸的含量

    Table  5.   Content of 6 neurotransmitter amino acids in legume foods

    目标
    化合物
    样品一 样品二 样品三 样品四
    含量
    (μg/g)
    变异
    系数(%)
    含量
    (μg/g)
    变异
    系数(%)
    含量
    (μg/g)
    变异
    系数(%)
    含量
    (μg/g)
    变异
    系数(%)
    谷氨酸490.06±24.494.99 532.51±16.943.18 443.43±16.363.69 653.63±26.364.03
    甘氨酸14.96±0.865.7356.89±3.756.5835.21±1.985.6315.26±0.845.52
    谷氨酰胺11.11±0.524.719.37±0.373.9922.47±1.868.289.15±0.748.12
    天冬氨酸71.54±2.733.8279.81±1.962.4695.06±4.654.8976.77±5.407.03
    天冬酰胺595.27±55.839.382880.17±117.424.08472.08±46.079.76699.10±11.881.70
    γ-氨基丁酸48.3±2.214.5759.6±2.894.8419.79±1.065.356.37±0.528.18
    下载: 导出CSV
  • [1] Kölker S. Metabolism of amino acid neurotransmitters: The synaptic disorder underlying inherited metabolic diseases[J]. Journal of Inherited Metabolic Disease,2018,41:1055−1063. doi:  10.1007/s10545-018-0201-4
    [2] Vaseghi S, Nasehi M, Zarrindast M R. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems[J]. Neuroscience and Biobehavioral Reviews,2021,120:173−221. doi:  10.1016/j.neubiorev.2020.10.018
    [3] Razak M A, Begum P S, Viswanath B, et al. Multifarious beneficial effect of nonessential amino acid, glycine: A review[J]. Oxidative Medicine and Cellular Longevity, 2017: 1-8.
    [4] Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: From neurotoxicity to ischemic tolerance[J]. Current Opinion in Pharmacology,2017,35:111−119. doi:  10.1016/j.coph.2017.07.014
    [5] Jiang S H, Hu L P, Wang X, et al. Neurotransmitters: Emerging targets in cancer[J]. Oncogene,2020,39:503−515. doi:  10.1038/s41388-019-1006-0
    [6] Dalangin R, Kim A, Campbell R E. The role of amino acids in neurotransmission and fluorescent tools for their detection[J]. International Journal of Molecular Sciences,2020,21(17):6197−6233. doi:  10.3390/ijms21176197
    [7] He W, Wu G. Metabolism of amino acids in the brain and their roles in regulating food intake[J]. Advances in Experimental Medicine and Biology,2020,1265:167−185.
    [8] Ribeiro F M, Vieira L B, Pires R G, et al. Metabotropic glutamate receptors and neurodegenerative diseases[J]. Pharmacological Research,2017,115:179−191. doi:  10.1016/j.phrs.2016.11.013
    [9] Spurny B, Seiger R, Moser P, et al. Hippocampal GABA levels correlate with retrieval performance in an associative learning paradigm[J]. Neuroimage,2020,204:116244−116251. doi:  10.1016/j.neuroimage.2019.116244
    [10] Ngo D H, Vo T S. An updated review on pharmaceutical properties of gamma-aminobutyric acid[J]. Molecules,2019,24(15):2678−2791. doi:  10.3390/molecules24152678
    [11] 李科, 俞兰秀, 刘小雨, 等. γ-氨基丁酸改善睡眠作用机制的研究进展[J]. 食品工业科技,2019,40(14):353−358. [Li K, Yu L, Liu X, et al. Research progress on improving sleep mechanism of γ-aminobutyric acid[J]. Science and Technology of Food Industry,2019,40(14):353−358.
    [12] 漆明. 氨基酸类神经递质与智力及癫痫的关系[J]. 医学信息,2019,32(20):36−39. [Qi Ming. Relationship between amino acid neurotransmitters and intelligence and epilepsy[J]. Medical Information,2019,32(20):36−39.
    [13] 杜瑞平, 张兴夫, 高民. 甘氨酸的免疫调节作用及其分子机制[J]. 动物营养学报,2015,27(3):663−670. [Du R, Zhang X, Gao M. Immune regulation and molecular mechanism of glycine[J]. Chinese Journal of Animal Nutrition,2015,27(3):663−670. doi:  10.3969/j.issn.1006-267x.2015.03.001
    [14] 曹丽, 石岩硕, 庞国勋. 谷氨酰胺在神经系统疾病的临床应用研究进展[J]. 解放军医药杂志,2020,32(6):113−116. [Cao L, Shi Y, Pang G. Research progress on clinical application of glutamine in nervous system diseases[J]. Medical & Pharmaceutical Journal of Chinese People’s Liberation Army,2020,32(6):113−116. doi:  10.3969/j.issn.2095-140X.2020.06.025
    [15] 呼佩霓, 杨娉婷. γ-氨基丁酸及其受体与免疫及自身免疫病关系的研究进展[J]. 中华风湿病学杂志,2020,24(8):557−561. [Hu P, Yang P. Research progress on the relationship between gaba and its receptor and immune and autoimmune diseases[J]. Chinese Journal of Rheumatology,2020,24(8):557−561. doi:  10.3760/cma.j.cn141217-20191008-00338
    [16] 李莉华. γ-氨基丁酸在胰岛中的作用[J]. 医疗装备,2019,32(14):184−186. [Li L. The role of γ-aminobutyric acid in pancreatic islets[J]. Medical Equipment,2019,32(14):184−186. doi:  10.3969/j.issn.1002-2376.2019.14.122
    [17] 杨曦, 刘玉洁, 马慧娟. γ-氨基丁酸与糖尿病[J]. 国际内分泌代谢杂志,2017,37(1):45−57. [Yang X, Liu Y, Ma H. γ-aminobutyric acid and diabetes[J]. International Journal of Endocrinology and Metabolism,2017,37(1):45−57. doi:  10.3760/cma.j.issn.1673-4157.2017.01.13
    [18] 陈琦, 袁莉. γ-氨基丁酸能信号系统与胰岛素抵抗[J]. 国际内分泌代谢杂志,2020,40(2):113−116. [Chen Q, Yuan L. Relationship between γ-aminobutyric acid signaling system and insulin resistance[J]. International Journal of Endocrinology and Metabolism,2020,40(2):113−116. doi:  10.3760/cma.j.cn121383-20190906-09009
    [19] Brodsky V Y, Malchenko L A, Konchenko D S, et al. Glutamic acid-amino acid, neurotransmitter and drug-is responsible for protein synthesis rhythm in hepatocyte populations in vitro and in vivo[J]. Biochemistry (Moscow),2016,81(8):892−898. doi:  10.1134/S0006297916080101
    [20] 李晓宇, 朱旭冬, 陈琪. 甘氨酸在心血管疾病中的保护作用[J]. 生物化学与生物物理进展,2015,42(9):810−816. [Li X, Zhu X, Chen Q. Protective effect of glycine in cardiovascular disease[J]. Progress in Biochemistry and Biophysics,2015,42(9):810−816.
    [21] Miyajima M. Amino acids: Key sources for immunometabolites and immunotransmitters[J]. International Immunology, 32(7): 435-446.
    [22] Wendołowicz A, Stefańska E, Ostrowska L. Influence of selected dietary components on the functioning of the human nervous system[J]. Roczniki Państwowego Zakładu Higieny,2018,69(1):15−21.
    [23] Briguglio M, Dell'Osso B, Panzica G, et al. Dietary neurotransmitters: A narrative review on current knowledge[J]. Nutrients,2018,10(5):591−606. doi:  10.3390/nu10050591
    [24] 王红波, 魏蜜, 徐媛. 富含γ-氨基丁酸豆类功能食品的研究进展[J]. 中国调味品,2019,44(6):190−197. [Wang H, Wei M, Xu Y, et al. Research progress of beans functional food being rich in γ-aminobutyric acid[J]. China Condiment,2019,44(6):190−197. doi:  10.3969/j.issn.1000-9973.2019.06.044
    [25] Fonseca B M, Cristóvão A C, Alves G. An easy-to-use liquid chromatography method with fluorescence detection for the simultaneous determination of five neuroactive amino acids in different regions of rat brain[J]. Journal of Pharmacological and Toxicological Methods,2018,91:72−79. doi:  10.1016/j.vascn.2018.02.002
    [26] 黄小兰, 何旭峰, 杨勤, 等. 不同产地地参中17种氨基酸的测定与分析[J]. 食品科学,2021,42(2):255−261. [Huang X, He X, Yang Q, et al. Determination of 17 amino acids in the dried rhizome of Lycopus lucidus Turcz. var.hirtus Regel from different habitats[J]. Food Science,2021,42(2):255−261. doi:  10.7506/spkx1002-6630-20200108-090
    [27] 黄元河, 黄玉镯, 潘乔丹, 等. 柱前衍生化HPLC法测定叶游离氨基酸成分及风味评价[J]. 食品工业科技,2021,42(1):292−296, 303. [Huang Y, Huang Y, Pan Q, et al. Determination of free amino acid compositon in phrynium rheedeiby by pre-column derivatization HPLC and flavor quality evaluation[J]. Science and Technology of Food Industry,2021,42(1):292−296, 303.
    [28] Gu H, Carroll P A, Du J, Quantitative method to investigate the balance between metabolism and proteome biomass: Starting from glycine[J]. Angewandte Chemie Internatioanl Edition, 2016, 55(50): 15646-15650.
    [29] 白洁, 王妲, 刘泽平, 等. 柱前衍生-高效液相色谱法同时测定血清中氨基酸类及单胺类神经递质[J]. 色谱,2020,48(8):923−928. [Bai J, Wang D, Liu Z, et al. Simultaneous determination of amino acid and monoamine neurotransmitters in serum by high performance liquid chromatography coupled with precolumn derivatization[J]. Chinese Journal of Chromatography,2020,48(8):923−928.
    [30] 臧彬如, 周改莲, 单国顺, 等. 超高效液相色谱串联三重四极杆质谱法测定梅花鹿茸中总游离氨基酸与游离氨基酸含量[J]. 医药导报,2020,39(11):1520−1527. [Zang B, Zhou G, Shan G, et al. Determination of total free amino acids and free amino acids in sika deer velvet antler by UPLC-QqQ-MS/MS[J]. Herald of Medicine,2020,39(11):1520−1527.
    [31] Shadlaghani A, Farzaneh M, Kinser D, et al. Direct electrochemical detection of glutamate, acetylcholine, choline, and adenosine using non-enzymatic electrodes[J]. Sensors,2019,19(3):447−462. doi:  10.3390/s19030447
    [32] 武春阳, 马佳呈, 张楠. 氨基酸分析仪法批量测定小鼠皮质和海马中氨基酸类神经递质和牛磺酸的含量[J]. 神经药理学报,2019,9(5):10−16. [Wu C, Ma J, Zhang N, et al. Batch determination of amino acid neurotransmitters and taurine in mouse cortex and hippocampus by amino acid analyzer[J]. Acta Neuropharmacologica,2019,9(5):10−16. doi:  10.3969/j.issn.2095-1396.2019.05.003
    [33] 钱小丽. 河鲀发酵鱼酱游离氨基酸分析[J]. 中国调味品,2021,46(3):139−143. [Qian X. Analysis of free amino acid in fermented pufferfish sauce[J]. China Condimen,2021,46(3):139−143. doi:  10.3969/j.issn.1000-9973.2021.03.028
    [34] 宋卫得, 苏征, 惠希东, 等. 离子色谱-积分脉冲安培检测法同时测定酱油中20种氨基酸和6种糖[J]. 色谱,2019,37(9):996−1003. [Song W, Su Z, Hui X, et al. Simultaneous determination of twenty amino acids and six carbohydrates in soy sauce by ion chromatography with integrated pulsed amperometric detection[J]. Chinese Journal of Chromatography,2019,37(9):996−1003. doi:  10.3724/SP.J.1123.2019.03030
    [35] 周美, 王瑜, 李春燕, 等. 李子发酵前后挥发性成分及游离氨基酸的变化分析[J]. 理化检验-化学分册,2021,57(3):210−217. [Zhou M, Wang Y, Li C, et al. Analysis on the changes of volatile components and free amino acids in Prunus salicina Lindl before and after fermentation[J]. Physical Testing and Chemical Analysis Part B: Chemical Analysis,2021,57(3):210−217.
    [36] 左勇, 陈静, 张晶. 甜面酱中挥发性风味物质及游离氨基酸分析[J]. 中国调味品,2021,46(2):8−12. [Zuo Y, Chen J, Zhang J. Analysis of volatile flavor components and free amino acids in sweet soybean paste[J]. China Condiment,2021,46(2):8−12. doi:  10.3969/j.issn.1000-9973.2021.02.002
    [37] 李洪安, 李夏嘉龙, 邓泽元, 等. 响应面法优化野金柴总黄酮超声辅助提取工艺及其不同组分抗氧化能力研究[J]. 食品工业科技,2020,41(23):136−141, 154. [Li H, Li X J L, Deng Z, et al. Optimization of ultrasonic-assisted extraction of total flavonoids in Lithocarpus polystachyus Rehd by response surface methodology and their antioxidant activities[J]. Science and Technology of Food Industry,2020,41(23):136−141, 154.
    [38] 徐悦, 郭亚男, 李顺秀, 等. 超声对燕麦蛋白氧化聚集体结构及特性的影响[J]. 食品工业科技,2020,41(11):85−91, 116. [Xu Y, Guo Y, Li S, et al. Effect of ultrasound on the structure and properties of oat protein oxidized aggregates[J]. Science and Technology of Food Industry,2020,41(11):85−91, 116.
    [39] 顾吉萍, 周纷, 张龙, 等. 超声中华绒螯蟹雌雄蟹肉中游离氨基酸的提取工艺优化[J]. 食品工业科技,2019,40(18):147−151, 159. [Gu J, Zhou F, Zhang L, et al. Optimization of extraction of free amino acids from the meat of female and male chinese mitten crab(Eriocheir sinensis)[J]. Science and Technology of Food Industry,2019,40(18):147−151, 159.
    [40] 熊珺, 覃毅磊, 龚亮, 等. 超声辅助酶法提取-高效液相色谱-电感耦合等离子体质谱联用分析食品中无机硒和硒氨基酸6种硒形态[J]. 食品科技,2016,41(12):266−272. [Xiong J, Qin Y, Gong L, et al. Simultaneous quantification of the speciation of inorganic selenium and Se amino acids in food by ultrasonic assisted enzymatic extraction combined with high performance liquid chromatography-inductively coupled plasma mass spectrometry[J]. Food Science and Technology,2016,41(12):266−272.
    [41] 宋红艳, 夏敬胜, 纪刚剑, 等. LC-MS/MS法测定抑郁症患者晨尿中9种氨基酸类内源性物质的浓度[J]. 中国药房,2020,31(1):91−98. [Song H, Xia H, Ji G, et al. Determination of 9 amino acid endogenous substances in morning urine of depression patients by LCMS/MS[J]. China Pharmacy,2020,31(1):91−98.
    [42] 王冰, 余晶晶, 蔡君兰, 等. LC-MS/MS法测定口含烟中的4种亚硝基氨基酸[J]. 中国烟草学报,2021,27(1):8−17. [Wang B, Yu J, Cai J, et al. Determination of four N-nitrosamino acids in oral smokeless tobacco products by LC-MS/MS[J]. Acta Tabacaria Sinica,2021,27(1):8−17.
    [43] 刘峻麟, 俞年军, 邢丽花, 等. 基于UHPLC-QTRAP-MS/MS的石斛中氨基酸和核苷类成分分析与评价[J]. 中国中药杂志,2020,45(16):3890−3899. [Liu J, Yu N, Xing L, et al. Simultaneous determination and analysis of amino acids and nucleosides in dendrobium by UHPLC-QTRAP-MS/MS[J]. Chinese Journal of Chinese Materia Medica,2020,45(16):3890−3899.
    [44] 李金华, 李博. 我国3种杂豆的蛋白质营养综合评价[J]. 食品科技,2021,46(1):172−177. [Li J, Li B. Comprehensive evaluation of protein nutrition in three kinds of legume seeds in China[J]. Food Science and Technology,2021,46(1):172−177.
    [45] 朱怡霖, 张海生, 杨淑芳, 等. 18种大豆种子蛋白质、氨基酸和脂肪酸的组成成分分析[J]. 中国油脂,2017,42(1):144−148. [Zhu Y, Zhang H, Yang S, et al. Analysis of protein content, compositions of amino acid and fatty acid in 18 kinds of soybean seeds[J]. China Oils and Fats,2017,42(1):144−148. doi:  10.3969/j.issn.1003-7969.2017.01.034
    [46] 刘婷婷, 陈璐, 李岩, 等. 非转基因和转基因大豆中氨基酸含量的分析[J]. 营养学报,2020,42(3):287−290. [Liu T, Chen L, Li Y, et al. Analysis of amino acid contents of non-transgenic and transgenic soybeans[J]. Acta Nutrimenta Sinica,2020,42(3):287−290. doi:  10.3969/j.issn.0512-7955.2020.03.016
    [47] 孟骏, 汪芳, 孙璐, 等. 基于大豆原料蛋白质和氨基酸组成的豆浆甜度预测模型研究[J]. 食品工业科技,2019,40(10):18−22, 31. [Meng J, Wang F, Sun L, et al. Predictive model of soymilk sweetness based on protein and amino acid compositions of soybean materials[J]. Science and Technology of Food Industry,2019,40(10):18−22, 31.
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  52
  • HTML全文浏览量:  25
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-16
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。