2’-岩藻基乳糖对益生菌定殖及抗炎能力的影响

杨文君 刘同杰 梁曦 张喆 崔庆宇 吕优优 公丕民 易华西 章检明 刘大群 张兰威

杨文君,刘同杰,梁曦,等. 2’-岩藻基乳糖对益生菌定殖及抗炎能力的影响[J]. 食品工业科技,2021,42(20):355−364. doi:  10.13386/j.issn1002-0306.2021020190
引用本文: 杨文君,刘同杰,梁曦,等. 2’-岩藻基乳糖对益生菌定殖及抗炎能力的影响[J]. 食品工业科技,2021,42(20):355−364. doi:  10.13386/j.issn1002-0306.2021020190
YANG Wenjun, LIU Tongjie, LIANG Xi, et al. Effects of 2’-Fucosyllactose on the Colonization and Anti-inflammatory Property of Probiotics[J]. Science and Technology of Food Industry, 2021, 42(20): 355−364. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020190
Citation: YANG Wenjun, LIU Tongjie, LIANG Xi, et al. Effects of 2’-Fucosyllactose on the Colonization and Anti-inflammatory Property of Probiotics[J]. Science and Technology of Food Industry, 2021, 42(20): 355−364. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020190

2’-岩藻基乳糖对益生菌定殖及抗炎能力的影响

doi: 10.13386/j.issn1002-0306.2021020190
基金项目: 山东省泰山产业领军人才支持项目;国家重点研发计划(2018YFC1604300);浙江省农业科学院浙江省农业绿色生物制造核心菌种改良重点实验室开放课题(2020KFKT-08)
详细信息
    作者简介:

    杨文君(1996−),女,硕士研究生,研究方向:食品科学,E-mail:wenjun163yang@163.com

    通讯作者:

    张兰威(1961−),男,博士,教授,研究方向:乳品科学,E-mail:zhanglanwei@ouc.edu.cn

  • 中图分类号: TS201.4

Effects of 2’-Fucosyllactose on the Colonization and Anti-inflammatory Property of Probiotics

  • 摘要: 目的:探究2’-岩藻基乳糖(2’-Fucosyllactose,2’-FL)对乳酸菌和双歧杆菌增殖、粘附肠道细胞以及抗炎作用的影响。方法:以2’-FL和实验室的30株乳酸菌和双歧杆菌为研究对象,通过测定生物量、产酸和细胞粘附倍数的变化筛选出2’-FL可以增强定殖能力的菌株,再利用脂多糖诱导的RAW264.7细胞炎症模型进一步筛选出其中的潜在抗炎菌株,最后探究2’-FL和潜在抗炎菌株的联合抗炎效果。结果:30株实验菌株中,2’-FL仅能促进两歧双歧杆菌FL-276.1和FL-228.1的增殖,提高乳酸菌ML-1、FN515、FN518、FN249、ML329和双歧杆菌FL-276.1粘附Caco-2细胞的能力。其中两歧双歧杆菌FL-276.1、FL-228.1和鼠李糖乳杆菌FN518可以显著(P<0.05)降低脂多糖诱导的Raw264.7细胞炎症因子NO、TNF-α、IL-6和IL-1β的分泌。2’-FL可以显著降低NO、IL-6和IL-1β的分泌。2’-FL与上述3株菌联用具有协同抗炎作用,但协同效果具有菌株差异性,其中FL-276.1与2’-FL协同抗炎效果最好。结论:2’-FL可以提高乳酸菌和双歧杆菌的定殖能力,并协同发挥抗炎功能,但效果具有菌株差异性,这一结果可以为预防早产儿坏死性小肠结肠炎提供新的选择。
  • 图  1  2’-FL对乳酸菌和双歧杆菌OD600 nm(A)和pH下降值(B)的影响

    Figure  1.  Effects of 2’-FL on the OD600 nm(A) and pH drop(B) of lactic acid bacteria and Bifidobacteria

    注:*代表2’-岩藻基乳糖组与不添加碳源组相比差异显著P<0.05;#代表葡萄糖组与2’-岩藻基乳糖组相比差异显著P<0.05。

    图  2  2’-FL对乳酸菌和双歧杆菌粘附Caco-2细胞的能力的影响

    Figure  2.  Effect of 2’-FL on the adhesion of lactic acid bacteria and bifidobacterial to Caco-2 cells

    注:*代表2’-FL组跟对照组相比差异显著,P<0.05。

    图  3  乳酸菌和双歧杆菌对Raw264.7细胞的增殖及细胞因子分泌的调节作用

    Figure  3.  Regulatory effects of lactic acid bacteria and Bifidobacteria on Raw264.7 cell viability and the secretion of cytokines

    注:A:Raw264.7细胞增殖结果;B:培养上清中NO含量;C:TNF-α含量;D:IL-1β含量;E:IL-6含量;F:IL-10含量;不同小写字母代表差异显著(P<0.05);*代表LPS组跟对照组相比差异显著(P<0.05);#代表加菌组跟LPS组相比差异显著(P<0.05);图4同。

    图  4  2’-FL对Raw264.7细胞的增殖及细胞因子分泌的调节作用

    Figure  4.  Regulatory effects of 2’-FL on Raw264.7 cell viability and the secretion of cytokines

    图  5  2’-FL与乳酸菌和双歧杆菌联用对Raw264.7细胞的增殖及细胞因子分泌的调节作用

    Figure  5.  Regulatory effects of combined use of 2’-FL and lactic acid bacteria and Bifidobacteria on the secretion of cytokines of Raw264.7

    注:A:培养上清中NO含量;B:TNF-α含量;C:IL-1β含量;D:IL-6含量;E:IL-10含量;其中3组柱形图分别代表不同的干预菌株处理,从左至右1,2,3分别代表FL276.1,FL228.1,FN518;字母不同表示差异显著P<0.05。

    图  6  乳酸菌和双歧杆菌或2’-FL以及二者联合作用对Raw264.7细胞形态的影响

    Figure  6.  Effects of lactic acid bacteria and Bifidobacteria or 2’-FL and the combination of the two on the morphology of Raw264.7 cells

    表  1  实验分组

    Table  1.   Experimental groups

    组别实验组编号LPS剂量(ng/mL)2’-FL剂量(mg/mL)菌干预剂量[28](CFU/mL)
    对照组Control000
    LPS模型组LPS10000
    2’-FL干预组2’-FL+LPS10050
    实验菌干预组

    FL-276.1+LPS1000107
    FL-228.1+LPS1000107
    FN518+LPS1000107
    实验菌+2’-FL联合干预组

    FL-276.1+2’-FL+LPS1005107
    FL-228.1+2’-FL+LPS1005107
    FN518+2’-FL+LPS1005107
    下载: 导出CSV
  • [1] 王静. 新生儿坏死性小肠结肠炎发病机制研究进展[J]. 安徽医药,2019,23(6):1074−1077. [Wang Jing. Research progress in the pathogenesis of neonatal necrotizing enterocolitis[J]. Anhui Medical and Pharmaceutical Journal,2019,23(6):1074−1077. doi:  10.3969/j.issn.1009-6469.2019.06.004
    [2] Werts A D, Fulton W B, Ladd M R, et al. A novel role for necroptosis in the pathogenesis of necrotizing enterocolitis[J]. Cellular and Molecular Gastroenterology and Hepatology,2020,9(3):403−423. doi:  10.1016/j.jcmgh.2019.11.002
    [3] Wang K, Tao G, Sylvester K G. Recent advances in prevention and therapies for clinical or experimental necrotizing enterocolitis[J]. Digestive Diseases and Sciences,2019,64(11):3078−3085. doi:  10.1007/s10620-019-05618-2
    [4] Schanler R J, Lau C, Hurst N M, et al. Randomized trial of donor human milk versus preterm formula as substitutes for mothers' own milk in the feeding of extremely premature infants[J]. Pediatrics,2005,116(2):400−406. doi:  10.1542/peds.2004-1974
    [5] Morgan R L, Preidis G A, Kashyap P C, et al. Probiotics reduce mortality and morbidity in preterm, low-birth-weight infants: A systematic review and network meta-analysis of randomized trials[J]. Gastroenterology,2020,159(2):467−480. doi:  10.1053/j.gastro.2020.05.096
    [6] Donovan S M, Comstock S S. Human milk oligosaccharides influence neonatal mucosal and systemic immunity[J]. Annals of Nutrition and Metabolism,2016,69:42−51.
    [7] Kong C L, Cheng L H, Krenning G, et al. Human milk oligosaccharides mediate the crosstalk between intestinal epithelial Caco-2 cells and Lactobacillus plantarum WCFS1 in an in vitro model with intestinal peristaltic shear force[J]. Journal of Nutrition,2020,150(8):2077−2088. doi:  10.1093/jn/nxaa162
    [8] Holscher H D, Bode L, Tappenden K A. Human milk oligosaccharides influence intestinal epithelial cell maturation in vitro[J]. Journal of Pediatric Gastroenterology and Nutrition,2017,64(2):296−301. doi:  10.1097/MPG.0000000000001274
    [9] Cheng L H, Kong C L, Walvoort M T C, et al. Human milk oligosaccharides differently modulate goblet cells under homeostatic, proinflammatory conditions and ER stress[J]. Molecular Nutrition & Food Research,2020,64(5).
    [10] Sodhi C P, Wipf P, Yamaguchi Y, et al. The human milk oligosaccharides 2'-fucosyllactose and 6'-sialyllactose protect against the development of necrotizing enterocolitis by inhibiting toll-like receptor 4 signaling[J]. Pediatric Research,2021,89(1):91−101. doi:  10.1038/s41390-020-0852-3
    [11] Yu Z-T, Nanthakumar N N, Newburg D S. The human milk oligosaccharide 2'-fucosyllactose quenches Campylobacter jejuni-induced inflammation in human epithelial cells HEp-2 and HT-29 and in mouse intestinal mucosa[J]. Journal of Nutrition,2016,146(10):1980−1990. doi:  10.3945/jn.116.230706
    [12] Goehring K C, Marriage B J, Oliver J S, et al. Similar to those who are breastfed, infants fed a formula containing 2'-fucosyllactose have lower inflammatory cytokines in a randomized controlled trial[J]. Journal of Nutrition,2016,146(12):2559−2566. doi:  10.3945/jn.116.236919
    [13] He Y Y, Liu S B, Kling D E, et al. The human milk oligosaccharide 2'-fucosyllactose modulates CD14 expression in human enterocytes, thereby attenuating LPS-induced inflammation[J]. Gut,2016,65(1):33−46. doi:  10.1136/gutjnl-2014-307544
    [14] Cheng L, Kiewiet M B G, Groeneveld A, et al. Human milk oligosaccharides and its acid hydrolysate LNT2 show immunomodulatory effects via TLRs in a dose and structure-dependent way[J]. Journal of Functional Foods,2019,59:174−184. doi:  10.1016/j.jff.2019.05.023
    [15] Khanna S, Bishnoi M, Kondepudi K K, et al. Isolation, characterization and anti-inflammatory mechanism of probiotics in lipopolysaccharide-stimulated RAW 264.7 macrophages[J]. World Journal of Microbiology & Biotechnology,2020,36(5).
    [16] Wang X L, Li Z, Xu Z L, et al. Probiotics prevent Hirschsprung's disease-associated enterocolitis: A prospective multicenter randomized controlled trial[J]. International Journal of Colorectal Disease,2015,30(1):105−110. doi:  10.1007/s00384-014-2054-0
    [17] Archer A C, Kurrey N K, Halami P M. In vitro adhesion and anti-inflammatory properties of native Lactobacillus fermentum and Lactobacillus delbrueckii spp[J]. Journal of Applied Microbiology,2018,125(1):243−256. doi:  10.1111/jam.13757
    [18] Singh S, Bhatia R, Singh A, et al. Probiotic attributes and prevention of LPS-induced pro-inflammatory stress in RAW264.7 macrophages and human intestinal epithelial cell line (Caco-2) by newly isolated Weissella cibaria strains[J]. Food & Function,2018,9(2):1254−1264.
    [19] Li M, Bai Y, Zhou J, et al. Core fucosylation of maternal milk N-glycan evokes B cell activation by selectively promoting the L-fucose metabolism of gut Bifidobacterium spp. and Lactobacillus spp[J]. Mbio,2019,10(2).
    [20] 白璐, 张喆, 梁曦, 等. 益生菌对2型糖尿病小鼠的调节作用[J]. 食品工业科技,2020,41(19):339−346. [Bai Lu, Zhang Zhe, Liang Xi, et al. Administration of probiotics on type 2 diabetes mice[J]. Science and Technology of Food Industry,2020,41(19):339−346.
    [21] Yu Z T, Chen C, Newburg D S. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes[J]. Glycobiology,2013,23(11):1281−1292. doi:  10.1093/glycob/cwt065
    [22] 陈臣, 周方方, 吴正钧, 等. 荧光标记法初探植物乳杆菌ST-Ⅲ对Caco-2细胞的粘附机理[J]. 微生物学通报,2010,37(3):355−361. [Chen Chen, Zhou Fangfang, Wu Zhengjun, et al. A fluorescence labeling method for the study on mechanism of adhesion of Lactobacillus plantarum ST-Ⅲ on Caco-2 cells[J]. Microbiology China,2010,37(3):355−361.
    [23] Celebioglu H U, Olesen S V, Prehn K, et al. Mucin- and carbohydrate-stimulated adhesion and subproteome changes of the probiotic bacterium Lactobacillus acidophilus NCFM[J]. Journal of Proteomics,2017,163:102−110. doi:  10.1016/j.jprot.2017.05.015
    [24] Celebioglu H U, Delsoglio M, Brix S, et al. Plant polyphenols stimulate adhesion to intestinal mucosa and induce proteome changes in the probiotic Lactobacillus acidophilus NCFM[J]. Molecular Nutrition & Food Research,2017,62(4):1870041.
    [25] Fiedorowicz E, Markiewicz L H, Sidor K, et al. The influence of breast milk and infant formulae hydrolysates on bacterial adhesion and Caco-2 cells functioning[J]. Food Research International,2016,89:679−688. doi:  10.1016/j.foodres.2016.09.022
    [26] Choi S H, Lee S H, Kim M G, et al. Lactobacillus plantarum CAU1055 ameliorates inflammation in lipopolysaccharide-induced RAW264.7 cells and a dextran sulfate sodium-induced colitis animal model[J]. Journal of Dairy Science,2019,102(8):6718−6725. doi:  10.3168/jds.2018-16197
    [27] 陈广勇, 韩乾杰, 张玲玲, 等. 黄芪多糖对脂多糖刺激小鼠巨噬细胞形态及免疫功能的影响[J]. 动物营养学报,2020,32(9):4358−4365. [Chen Guangyong, Han Qiangjie, Zhang Lingling, et al. Effects of astragalus polysaccharides on morphology and immune function of lipopolysaccharide-stimulated macrophages in mice[J]. Acta Zoonutrimenta Sinica,2020,32(9):4358−4365.
    [28] 崔鹏月, 彭灿, 刘松玲, 等. 具有潜在改善炎症反应益生菌的筛选[J]. 食品工业科技,2020,41(9):314−319. [Cui Pengyue, Peng Can, Liu Songling, et al. Screening of probiotics with potential to improve inflammatory response[J]. Science and Technology of Food Industry,2020,41(9):314−319.
    [29] Ashida H, Miyake A, Kiyohara M, et al. Two distinct alpha-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates[J]. Glycobiology,2009,19(9):1010−1017. doi:  10.1093/glycob/cwp082
    [30] Zhang G F, Zhao J J, Wen R, et al. 2'-fucosyllactose promotes Bifidobacterium bifidum DNG6 adhesion to Caco-2 cells[J]. Journal of Dairy Science,2020,103(11):9825−9834. doi:  10.3168/jds.2020-18773
    [31] Zhai Q X, Shen X D, Cen S, et al. Screening of Lactobacillus salivarius strains from the feces of Chinese populations and the evaluation of their effects against intestinal inflammation in mice[J]. Food & Function,2020,11(1):221−235.
    [32] Duncan P I, Aitio O, Heiskanen A, et al. Structure and function of bovine whey derived oligosaccharides showing synbiotic epithelial barrier protective properties[J]. Nutrients,2020,12(7):2007.
    [33] 郑胜眉, 周兴, 黄文涛, 等. 岩白菜素对LPS诱导RAW264.7细胞炎性因子产生及细胞形态变化的影响[J]. 中药材,2020,43(1):206−210. [Zheng Sheng-mei, Zhou Xing, Huang Wentao, et al. The effect of bergenin on LPS-induced inflammatory factor production and cell morphological changes in RAW264.7 cells[J]. Journal of Chinese Medicinal Materials,2020,43(1):206−210.
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  27
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-25
  • 网络出版日期:  2021-08-23
  • 刊出日期:  2021-10-11

目录

    /

    返回文章
    返回

    重要通知

    喜报:《食品工业科技》2021版影响因子稳居第二,且影响因子大幅提升