产ACE抑制肽菌株的筛选及其在模拟消化道环境中的活性分析

邵伯悦 马春丽 余鹏飞 王家栩 贾丽丽

邵伯悦,马春丽,余鹏飞,等. 产ACE抑制肽菌株的筛选及其在模拟消化道环境中的活性分析[J]. 食品工业科技,2021,42(18):142−147. doi:  10.13386/j.issn1002-0306.2021020033
引用本文: 邵伯悦,马春丽,余鹏飞,等. 产ACE抑制肽菌株的筛选及其在模拟消化道环境中的活性分析[J]. 食品工业科技,2021,42(18):142−147. doi:  10.13386/j.issn1002-0306.2021020033
SHAO Boyue, MA Chunli, YU Pengfei, et al. Screening of ACE-inhibiting Peptide Producing Strains and Their Activity Analysis in Simulated Digestive Tract Environment[J]. Science and Technology of Food Industry, 2021, 42(18): 142−147. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020033
Citation: SHAO Boyue, MA Chunli, YU Pengfei, et al. Screening of ACE-inhibiting Peptide Producing Strains and Their Activity Analysis in Simulated Digestive Tract Environment[J]. Science and Technology of Food Industry, 2021, 42(18): 142−147. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021020033

产ACE抑制肽菌株的筛选及其在模拟消化道环境中的活性分析

doi: 10.13386/j.issn1002-0306.2021020033
详细信息
    作者简介:

    邵伯悦(1996−),男,硕士研究生,研究方向:乳品科学,E-mail:shaoboyue17@163.com

    通讯作者:

    马春丽(1978−),女,博士,副教授,研究方向:乳品科学,E-mail:machunli8@163.com

  • 中图分类号: TS201.3

Screening of ACE-inhibiting Peptide Producing Strains and Their Activity Analysis in Simulated Digestive Tract Environment

  • 摘要: 为了筛选出对血管紧张素转换酶(angiotensin-converting enzyme,ACE)抑制活性较高并且具有较强的耐酸耐胆盐和耐盐的乳酸菌,对实验室保存的27株乳酸菌进行了产酸能力、蛋白水解活力、ACE抑制活性、模拟胃肠道消化及酸、胆盐和盐耐受性的测定。结果显示,菌株M3的ACE抑制率可达71.94%±1.39%,具有较好的蛋白水解活力和产酸能力,蛋白水解活力为(86.66±3.51)μg/mL亮氨酸,滴定酸度为(71.67±2.86)°T。菌株M3经人工胃肠液分别处理3 h后,ACE抑制率为74.96%±1.73%;在pH3的环境中3 h,耐受性为14.34%±1.21%,活菌数能达到7 lg CFU mL−1以上;在含有0.3%胆盐的培养基中3 h,耐受性为37.50%±2.47%;在含有4% NaCl的培养基中24 h,耐受性为37.32%±1.84%。该菌经16S rDNA鉴定为Lactobacillus (Lb.) paracasei subsp. paracasei M3。因此,菌株Lb. paracasei subsp. paracasei M3可用作发酵牛乳富产ACE抑制肽且能耐受消化道环境具有益生菌潜力的菌株。
  • 图  1  人工模拟胃液肠液对ACE抑制活性的影响

    Figure  1.  Effect of artificial simulated gastric and intestinal fluids on ACE inhibitory activity

    注:不同小写字母不同表示同一阶段不同样品差异显著(P<0.05),不同大写字母表示同一样品不同阶段差异显著(P<0.05)。

    图  2  菌株的酸耐受性

    Figure  2.  Acid tolerance of the strains

    注:不同小写字母表示同一pH不同样品差异显著(P<0.05),不同大写字母表示同一样品不同pH差异显著(P<0.05)。

    图  3  菌株系统发育树

    Figure  3.  Phylogenetic tree of strains

    表  1  发酵乳pH、滴定酸度、蛋白水解活力、ACE抑制活性结果

    Table  1.   Results of fermented milk pH, titration acidity, protein hydrolysis activity, and ACE inhibition activity

    样品pH滴定酸度蛋白水解活力ACE抑制率(%)
    (°T)(μg/mL亮氨酸)
    M114.63 ± 0.0377.47 ± 1.3393.14 ± 3.0276.84 ± 1.98
    M34.75 ± 0.0671.67 ± 2.8686.66 ± 3.5171.94 ± 1.39
    M104.42 ± 0.0384.53 ± 3.87119.02 ± 6.3166.15 ± 3.30
    Bifidobacterium4.79 ± 0.0268.33 ± 2.5371.56 ± 0.7965.26 ± 2.02
    M124.95 ± 0.0361.20 ± 0.87108.96 ± 1.9462.81 ± 2.45
    M64.72 ± 0.0376.53 ± 2.2387.97 ± 2.4761.02 ± 1.97
    M95.02 ± 0.0658.60 ± 1.38110.35 ± 3.6459.69 ± 0.95
    M24.65 ± 0.0376.13 ± 2.4771.38 ± 2.6857.68 ± 0.85
    C64.99 ± 0.0357.07 ± 1.4091.20 ± 1.5555.23 ± 2.74
    C74.77 ± 0.0671.27 ± 1.33115.81 ± 2.1153.45 ± 0.77
    M54.45 ± 0.0382.27 ± 1.9098.47 ± 3.2052.34 ± 0.58
    C114.98 ± 0.0257.73 ± 1.86141.99 ± 1.6943.43 ± 1.72
    C135.07 ± 0.0448.33 ± 0.5079.75 ± 1.7441.87 ± 2.10
    M44.91 ± 0.0259.47 ± 2.4783.08 ± 3.0841.65 ± 0.82
    M74.96 ± 0.0359.27 ± 2.2096.11 ± 4.3539.87 ± 1.02
    C24.80 ± 0.0259.00 ± 1.6053.38 ± 2.4131.45 ± 1.71
    Q64.92 ± 0.0467.67 ± 2.8747.14 ± 1.9629.71 ± 1.34
    M135.03 ± 0.0755.27 ± 1.22105.69 ± 2.4228.95 ± 2.81
    C125.08 ± 0.0247.20 ± 0.8779.87 ± 0.4626.73 ± 4.41
    M15.09 ± 0.0245.73 ± 1.1381.14 ± 2.7625.84 ± 0.63
    C95.01 ± 0.1058.47 ± 2.8795.62 ± 2.8523.39 ± 2.12
    M84.92 ± 0.0157.13 ± 2.5387.99 ± 3.1122.27 ± 0.67
    C85.02 ± 0.0359.53 ± 1.4259.20 ± 2.0620.53 ± 1.41
    Lb. rhamnosus5.03 ± 0.0257.60 ± 0.9243.62 ± 2.1714.14 ± 2.05
    C105.00 ± 0.0357.53 ± 1.4289.80 ± 2.3011.80 ± 1.94
    Lb. plantarum5.00 ± 0.0158.47 ± 1.2957.93 ± 1.794.01 ± 0.81
    C55.08 ± 0.0249.07 ± 2.1492.59 ± 2.373.79 ± 1.79
    下载: 导出CSV

    表  2  菌株的胆盐耐受性

    Table  2.   Bile salt tolerance of the strains

    编号菌数(lg CFU mL−1胆盐耐受性(%)
    0% 胆盐0.3% 胆盐
    M37.99±0.077.56±0.0737.50±2.47a
    M68.28±0.037.69±0.0325.77±0.68bc
    M108.70±0.068.08±0.0424.09±0.31c
    M118.52±0.047.95±0.0327.24±0.58b
    注:不同小写字母表示不同样品差异显著(P<0.05);表3同。
    下载: 导出CSV

    表  3  菌株的盐耐受性

    Table  3.   Salt tolerance of the strains

    编号菌数(lg CFU mL−1盐耐受性(%)
    0% NaCl4% NaCl
    M37.99 ± 0.077.56 ± 0.0537.32 ± 1.84a
    M68.28 ± 0.037.65 ± 0.0323.67 ± 0.80b
    M108.70 ± 0.067.99 ± 0.0519.81 ± 0.58c
    M118.52 ± 0.047.84 ± 0.0320.65 ± 0.30c
    下载: 导出CSV
  • [1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2019概要[J]. 中国循环杂志,2020,39(9):833−854. [China Cardiovascular Health and Disease Report Compilation Group. Annual report on cardiovascular health and diseases in China 2019[J]. Journal of Cardiovascular & Pulmonary Diseases,2020,39(9):833−854.
    [2] Nawaz K A A, David S M, Murugesh E, et al. Identification and in silico characterization of a novel peptide inhibitor of angiotensin converting enzyme from pigeon pea (Cajanus cajan)[J]. Phytomedicine, 2017(Dec 1),36:1-7.
    [3] Fagyas M, Úri K, Siket I M, et al. New perspectives in the renin-angiotensin-aldosterone system (RAAS) I: endogenous angiotensin converting enzyme (ACE) inhibition[J]. PloS One,2014,9(4):e87843. doi:  10.1371/journal.pone.0087843
    [4] Seppo L, Jauhiainen T, Poussa T, et al. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects[J]. American Journal of Clinical Nutrition,2003,77(2):326−330. doi:  10.1093/ajcn/77.2.326
    [5] Wu Q, Li Y, Peng K, et al. Isolation and characterization of three antihypertension peptides from the mycelia of Ganoderma lucidum (agaricomycetes)[J]. Journal of Agricultural and Food Chemistry,2019,67:8149−8159. doi:  10.1021/acs.jafc.9b02276
    [6] Priyanto A D, Doerksen R J, Chang C I, et al. Screening, discovery, and characterization of angiotensin-I converting enzyme inhibitory peptides derived from proteolytic hydrolysate of bitter melon seed proteins[J]. Journal of Proteomics,2015,128:424−435. doi:  10.1016/j.jprot.2015.08.018
    [7] 董喜梅, 包艳, 张勇, 等. 国内外发酵豆乳研究发展现状[J]. 大豆科学,2010,29(5):883−888. [Dong X M, Bao Y, Zhang Y, et al. Research progress on domestic and international fermented soymilk[J]. Soybean Science,2010,29(5):883−888.
    [8] Fitzgerald R J, Murray B A. Bioactive peptides and lactic fermentations[J]. International Journal of Dairy Technology,2006,59(2):118−125. doi:  10.1111/j.1471-0307.2006.00250.x
    [9] Korhonen H, Pihlanto A. Bioactive peptides: Production and functionality[J]. International Dairy Journal,2006,16(9):945−960. doi:  10.1016/j.idairyj.2005.10.012
    [10] Ugwu C P, Abarshi M M, Mada S B, et al. Camel and horse milk casein hydrolysates exhibit angiotensin converting enzyme inhibitory and antioxidative effectsin vitro and in silico[J]. International Journal of Peptide Research & Therapeutics,2019,25(4):1595−16.
    [11] Martini S, Conte A, Tagliazucchi D. Effect of ripening and in vitro digestion on the evolution and fate of bioactive peptides in Parmigiano-Reggiano cheese[J]. International Dairy Journal,2020,105:104668. doi:  10.1016/j.idairyj.2020.104668
    [12] Rani S, Pooja K, Pal G K. Exploration of potential angiotensin converting enzyme inhibitory peptides generated from enzymatic hydrolysis of goat milk proteins[J]. Biocatalysis and Agricultural Biotechnology,2017,11:83−88. doi:  10.1016/j.bcab.2017.06.008
    [13] Ashok A, Brijesha N, Aparna H S. Discovery, synthesis, and in vitro evaluation of a novel bioactive peptide for ACE and DPP-IV inhibitory activity[J]. European Journal of Medicinal Chemistry,2019,180:99−110. doi:  10.1016/j.ejmech.2019.07.009
    [14] Solanki D, Hati S. Considering the potential of Lactobacillus rhamnosus for producing angiotensin I-converting enzyme (ACE) inhibitory peptides in fermented camel milk (Indian breed)[J]. Food Bioscience,2018:16−22.
    [15] 林虬, 黄薇, 宋永康, 等. 棉籽蛋白水解物水解度3种测定方法的比较[J]. 福建农业学报,2011,26(6):1076−1080. [Lin Q, Huang W, Song Y K, et al. Comparing three methods in determining hydrolytic degree of cottonseed protein[J]. Fujian Journal of Agricultural Science,2011,26(6):1076−1080. doi:  10.3969/j.issn.1008-0384.2011.06.030
    [16] Cushman D W, Cheng H S. Spectrophotometric assay and properties of the angiotensin- converting enzyme of rabbit lung[J]. Biochemical Pharmacology,1971,20:1637−1648. doi:  10.1016/0006-2952(71)90292-9
    [17] 张秋红. 植物乳杆菌发酵羊乳产ACE抑制肽优化及分离纯化[D]. 西安: 陕西科技大学, 2014.

    Zhang Q H. Optimization and purification of ace inhibitory peptides from goat milk fermented by lactobacillus plantarum[D]. Xi’an: Shaanxi University of Science and Technology, 2014.
    [18] 国家药典委员会. 中华人民共和国药典 (第二版)[M]. 北京: 中国医药科技出版社, 2005.

    National Pharmacopoeia Commission. Chinese pharmacopoe (second edition)[M]. Beijing: China Medical Science and Technology Press, 2005.
    [19] 陈仪婷, 张红星, 谢远红, 等. 降胆固醇乳酸菌的筛选鉴定及其耐酸耐胆盐性能研究[J]. 食品与发酵工业,2018,44(5):29−33. [Chen Y T, Zhang H X, Xie Y H, et al. Selection of cholesterol- lowering lactic acid bacteria in vitro and study on it's tolerance of acid and bile salts[J]. Food and Fermentation Industries,2018,44(5):29−33.
    [20] 黄燕燕, 郭均, 黎恒希, 等. 降胆固醇乳酸菌的体外筛选及其降胆固醇机理探讨[J]. 食品科学,2018,6:95−101. [Huang Y Y, Guo J, Li H X, et al. In vitro screening of lactic acid bacteria for cholesterol-lowering activity and the underlying mechanism[J]. Food Science,2018,6:95−101. doi:  10.7506/spkx1002-6630-201811015
    [21] 陈大卫, 顾瑞霞, 鲁茂林, 等. 人源乳酸菌耐酸耐胆盐能力及降胆固醇作用研究[J]. 食品与机械,2017,33(10):1−5. [Chen D W, Gu R X, Lu M L, et al. Ability of acid and bile salt resistance of lactic acid bacteria and its cholesterol lowering effect from human origin[J]. Food & Machinery,2017,33(10):1−5.
    [22] 孙杰, 元少尉, 王秋燕, 等. 植物乳杆菌PUM1785抑菌作用及耐胆盐和耐盐性能[J]. 中国微生态学杂志,2020,32(10):1128−1133. [Sun J, Yuan S W, Wang Q Y, et al. Bacteriostasis, bile salt tolerance and salt tolerance of Lactobacillus plantarum PUM1785[J]. Chinese Journal of Microecology,2020,32(10):1128−1133.
    [23] Cole J R, Wang Q, Cardenas E, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis[J]. Nucleic Acids Research,2009,37:D141−D145. doi:  10.1093/nar/gkn879
    [24] Wang Q, Garrity G M, Tiedje J M. et al. et al. Naïve bayesian classifier for rapid assignment of rrna sequences into the new bacterial taxonomy[J]. Applied and environmental microbiology,2007,73(16):5261−5267. doi:  10.1128/AEM.00062-07
    [25] Kumar S, Nei M, Dudley J, et al. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences[J]. Briefings in Bioinformatics,2008,9(4):299−306. doi:  10.1093/bib/bbn017
    [26] Chen P, Liu L, Zhang X, et al. Antioxidant activity of cheddar cheese during its ripening time and after simulated gastrointestinal digestion as affected by probiotic bacteria[J]. International Journal of Food Properties,2019,22(1):217−228. doi:  10.1080/10942912.2019.1579836
    [27] 郝欣悦, 李晓东, 刘璐, 等. 瑞士乳杆菌对契达干酪成熟期间所产ACE抑制肽的影响及其消化稳定性[J/OL]. 食品科学: 1−12[2021-08-13]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201228.1533.006.html.

    Hao X Y, Li X D, Liu L, et al. Effect of Lactobacillus helveticus on ACE inhibitory peptide of Cheddar cheese during ripening and the digestion stability[J]. Food Science: 1−12[2021-08-13]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201228.1533.006.html.
    [28] 孙敏, 袁凤霞, 曹晓虹, 等. 传统发酵食品中耐肠胃道环境乳酸菌的筛选及其在酸乳发酵中的应用[J]. 食品与发酵工业,2018,44(3):114−120. [Sun M, Yuan F X, Cao X H, et al. Screening of lactic acid bacteria strains with resistance to gastrointestinal environment isolated from traditional foods and their application in fermented yoghurt[J]. Food and Fermentation Industries,2018,44(3):114−120.
    [29] 陈瑞娟. 肠内菌丛与健康长寿[J]. 食品与发酵工业,1996,32(2):69−73. [Chen R J. Intestinal flora and healthy longevity[J]. Food and Fermentation Industries,1996,32(2):69−73. doi:  10.3321/j.issn:0253-990X.1996.02.017
    [30] Shah N P. Probiotic bacteria: Selective enumeration and survival in dairy foods[J]. Journal of Dairy Science,2000,83(4):894−907. doi:  10.3168/jds.S0022-0302(00)74953-8
    [31] 刘璐, 吴江丽, 杨金桃, 等. 发酵鱼酱酸产GABA乳酸菌的分离筛选及发酵特性研究 [J/OL]. 食品科学: 1−16[2021-07-08]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201212.0814.014.html.

    Liu L. Wu J L, Yang J T, et al. Isolation and fermentation characteristics of gaba-producing lactic acid bacteria from fermented yu jiang suan[J]. Food Science: 1−12[2021-08-13]. http://kns.cnki.net/kcms/detail/11.2206.TS.20201228.1533.006.html.
    [32] 熊涛, 宋苏华, 黄锦卿, 等. 植物乳杆菌NCU116在模拟人体消化环境中的耐受力[J]. 食品科学,2011,32(11):114−117. [Xiong T, Song S H, Huang J Q, et al. Tolerance of Lactobacillus plantarum NCU116 in stimulated digestive environments[J]. Food Science,2011,32(11):114−117.
    [33] 辛羚, 郭本恒, 吴正钧. 3株乳杆菌在模拟消化环境中存活性能的研究[J]. 中国乳品工业,2005,33(5):15−17. [Xin L, Guo B H, Wu Z J. Studies on the survival properties of three lactobacillus strains in imitative gastroenteric environments[J]. China Dairy Industry,2005,33(5):15−17. doi:  10.3969/j.issn.1001-2230.2005.05.004
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  18
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-05
  • 网络出版日期:  2021-08-06
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。