SPME-GC-MS结合ROAV分析腌制时间对大河乌猪火腿挥发性风味物质的影响

王藤 施娅楠 李祥 黄艾祥

王藤,施娅楠,李祥,等. SPME-GC-MS结合ROAV分析腌制时间对大河乌猪火腿挥发性风味物质的影响[J]. 食品工业科技,2021,42(18):317−324. doi:  10.13386/j.issn1002-0306.2021010250
引用本文: 王藤,施娅楠,李祥,等. SPME-GC-MS结合ROAV分析腌制时间对大河乌猪火腿挥发性风味物质的影响[J]. 食品工业科技,2021,42(18):317−324. doi:  10.13386/j.issn1002-0306.2021010250
WANG Teng, SHI Yanan, LI Xiang, et al. Analysis of the Effect of Curing Time on the Volatile Flavor Compounds of Dahe Black Pig Ham by SPME-GC-MS and ROAV[J]. Science and Technology of Food Industry, 2021, 42(18): 317−324. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010250
Citation: WANG Teng, SHI Yanan, LI Xiang, et al. Analysis of the Effect of Curing Time on the Volatile Flavor Compounds of Dahe Black Pig Ham by SPME-GC-MS and ROAV[J]. Science and Technology of Food Industry, 2021, 42(18): 317−324. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010250

SPME-GC-MS结合ROAV分析腌制时间对大河乌猪火腿挥发性风味物质的影响

doi: 10.13386/j.issn1002-0306.2021010250
基金项目: 云南省万人计划“产业技术领军人才”专项(云发改人事(2019)274号);云南省专家基层科研工作站研发项目(云人社发(2017)38号);云岭产业技术领军人才(云发改人事(2014)1782号)
详细信息
    作者简介:

    王藤(1996−),女,硕士研究生,研究方向:食品加工与安全,E-mail:2548001448@qq.com

    通讯作者:

    黄艾祥(1963−),男,博士,教授,研究方向:食物新资源开发与乳品科学,E-mail:aixianghuang@126.com

  • 中图分类号: TS251

Analysis of the Effect of Curing Time on the Volatile Flavor Compounds of Dahe Black Pig Ham by SPME-GC-MS and ROAV

  • 摘要: 本研究旨在分析腌制时间对大河乌猪干腌火腿风味品质的影响,揭示干腌火腿的特征风味物质。将172只大河乌猪鲜腿分为4个组,采用传统方法加工后,每组随机抽取4只火腿,采用固相微萃取-气相色谱-质谱(Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry,SPME-GC-MS)技术并结合相对气味活度值(Relative Odor Activity Value, ROAV)法和主成分分析(Principal Component Analysis,PCA)法对大河乌猪火腿挥发性风味物质进行分析。结果表明:腌制15、18、21、24 d的挥发性成分的种类分别为57、57、54、41种,共鉴定77种同类挥发性成分;聚类分析表明不同腌制时间的大河乌猪火腿挥发性物质的组成及相对含量存在较大的差异;ROAV分析表明醛类和醇类对风味贡献最大;PCA表明1-辛烯-3-醇、异戊醛、正辛醛、双戊烯是不同腌制期火腿中含量变化最明显的挥发性物质。腌制时间对大河乌猪干腌火腿风味品质有一定影响,研究可为火腿品质控制及风味改良提供理论依据。
  • 图  1  不同腌制时间下大河乌猪火腿的聚类分析

    Figure  1.  Cluster analysis of Dahe black pig ham under different curing time

    图  2  不同腌制时间下大河乌猪火腿关键挥发性化合物主成分分析图

    Figure  2.  Principal component analysis of key volatile compounds of Dahe black pig ham under different curing time

    表  1  不同腌制时间的大河乌猪火腿挥发性风味物质

    Table  1.   Volatile compounds of Dahe black pig ham under different curing time

    化合物种类
    中文名
    RT(min)相对含量(% )阈值
    (μg/kg)[21-22]
    15 d18 d21 d24 d
    醛类(15种)













    异戊醛4.1871.46±0.322.77±0.794.82±1.281.19±1.010.4
    戊醛5.3770.2±0.04N.D.0.92±0.67N.D.12
    己醛7.86214.82±2.3611.47±3.5919.78±8.5010.91±3.414.5
    庚醛10.7143.18±1.252.53±0.974.23±0.963.68±0.093
    正辛醛13.6796.67±0.540.33±0.217.70±1.233.03±0.790.7
    壬醛15.98810.95±2.3911.66±6.4312.35±5.977.61±2.351
    反-2-辛烯醛16.6560.16±0.010.25±0.08N.D.N.D.3
    2-辛烯醛16.6660.36±0.17N.D.N.D.N.D.0.1
    苯甲醛18.2142.52±0793.49±1.424.64±1.213.17±0.63350
    反式-2-壬醛18.38N.D.N.D.0.39±0.21N.D.0.08
    肉豆蔻醛23.1480.75±0.070.33±0.073.57±0.79N.D.14
    十八烷醛25.2978.83±1.387.62±3.265.39±1.632.83±0.97/
    十六醛27.2341.84±1.020.21±0.110.46±0.092.29±0.65/
    9-十八烯醛27.4920.22±0.050.17±0.13N.D.N.D./
    (Z)-13-十八碳烯醛27.4950.11±0.01N.D.N.D.N.D./
    醇类(13种)











    乙醇4.6450.82±0.211.68±0.890.02±0.012.41±0.7310000
    异戊醇11.632N.D.0.14±0.080.42±0.230.58±0.26170
    1-戊醇12.8380.96±0.290.76±0.371.01±0.64N.D.4000
    正己醇15.2690.76±0.160.95±0.210.14±0.091.16±0.35250
    1-辛烯-3-醇17.0314.77±1.354.96±2.396.66±2.3217.80±5.371
    庚醇17.1371.01±0.780.90±0.531.50±0.711.21±0.543
    1-辛醇18.7041.94±0.311.63±0.761.60±1.791.25±0.31125.8
    1,3-丁二醇18.9480.18±0.03N.D.N.D.N.D./
    2,3-丁二醇18.955N.D.0.49±0.310.49±0.350.34±0.04/
    反式-2-辛烯-1-醇19.5000.71±0.070.58±0.470.93±0.640.69±0.16/
    二甲基硅烷二醇19.8372.02±0.454.13±3.284.80±0.794.46±0.39/
    2-乙基己醇21.4490.13±0.040.27±0.11N.D.N.D.25482.2
    苄醇22.681N.D.0.35±0.200.54±0.13N.D./
    烃类
    (10种)








    十二烷10.309N.D.N.D.0.41±0.170.30±0.18/
    (-)-柠檬烯10.9131.46±0.31N.D.N.D.3.29±1.8510
    双戊烯10.919N.D.3.22±1.070.16±0.07N.D.10
    萜品烯12.304N.D.0.28±0.05N.D.0.31±0.06/
    十一烷13.81N.D.N.D.0.49±0.35N.D.3000000
    正十六烷17.7020.28±0.11N.D.N.D.N.D./
    十七烷17.7460.57±0.350.57±0.18N.D.N.D./
    十五烷17.752N.D.0.59±0.24N.D.N.D./
    1,1,3,3-四乙氧基丙烷17.8718.36±3.8916.0±4.21N.D.17.5±7.31/
    十五烯18.453N.D.N.D.1.18±0.39N.D./
    酮类(4种)2,3-辛二酮14.5442.44±0.401.03±0.692.02±0.511.38±0.362.52
    甲基庚烯酮14.8530.57±0.11N.D.0.86±0.290.61±0.2168
    2-壬酮15.909N.D.N.D.0.25±0.05N.D.200
    香叶基丙酮22.4220.13±0.04N.D.N.D.N.D.48
    酯类
    (5种)



    丙烯酸2-乙基己酯17.5800.32±0.030.38±0.09N.D.0.33±0.12/
    甲酸辛酯18.702N.D.N.D.2.15±1.36N.D./
    γ-己内酯20.705N.D.0.18±0.040.22±0.07N.D./
    己酸乙酯22.287N.D.N.D.0.26±0.12N.D.3000
    2,4-双[(三甲基硅烷基)氧基]苯甲酸三甲基硅烷基酯25.8580.09±0.010.15±0.050.18±0.08N.D./
    酸类
    (8种)






    异丁酸18.8330.13±0.020.34±0.17N.D.N.D./
    丁酸19.6520.30±0.150.69±0.540.70±0.370.65±0.312400
    异戊酸20.2080.26±0.051.14±0.320.78±0.320.62±0.23/
    己酸22.2870.65±0.211.35±0.491.21±0.370.81±0.544800
    辛酸24.5450.25±0.030.53±0.210.44±0.090.23±0.053000
    癸酸26.5650.22±0.010.57±0.180.36±0.210.15±0.03/
    十六烷酸26.9530.64±0.210.80±0.270.78±0.32N.D./
    油酸27.492N.D.0.17±0.030.16±0.05N.D./
    芳香族化合物
    (9种)







    甲苯6.7733.06±1.565.64±2.38N.D.2.91±0.391550
    苯乙烯12.7610.36±0.230.61±0.070.83±0.010.40±0.1765
    间异丙基甲苯13.058N.D.1.67±0.69N.D.2.34±0.1447
    邻异丙基甲苯13.1041.5±0.23N.D.N.D.N.D./
    4-异丙基甲苯13.127N.D.2.09±0.53N.D.1.41±0.21/
    1,2,3,4-四甲基苯16.7270.51±0.21N.D.N.D.N.D./
    苯并环辛烷20.3420.10±0.03N.D.N.D.N.D./
    21.2160.30±0.110.12±0.01N.D.N.D.1
    4-甲基苯酚24.7760.15±0.060.32±0.170.24±0.160.16±0.07/
    其他
    (13种)












    十甲基环五硅氧烷9.7500.14±0.030.47±0.210.47±0.19N.D./
    2-正戊基呋喃12.0530.23±0.130.21±0.130.42±0.230.24±0.135.8
    十二甲基环六硅氧烷14.2800.06±0.020.15±0.070.22±0.030.16±0.07400
    2,6-二甲基吡嗪14.7200.42±0.210.40±0.320.48±0.050.20±0.011500
    2,3,5-三甲基吡嗪16.2700.33±0.190.34±0.070.52±0.390.33±0.12400
    1,1,1,3,5,7,7,7-八甲基-3,5-双(三甲基硅氧基)19.263N.D.N.D.0.13±0.04N.D./
    十六烷基环八硅氧烷19.2700.08±0.050.38±0.210.12±0.01N.D./
    六甲基环三硅氧烷21.6020.21±0.090.59±0.090.56±0.070.30±0.11/
    八甲基环四硅氧烷22.2000.18±0.030.43±0.310.34±0.090.23±0.05/
    二十甲基环十硅氧烷22.627N.D.N.D.0.13±0.04N.D./
    1,1,1,3,5,7,9,11,11,11-十甲基-7-[(三甲基硅烷基)氧基]-3,5,9-六硅氧烷三基23.8860.18±0.060.37±0.230.29±0.03N.D./
    十六甲基二氢
    八硅氧烷
    24.8940.16±0.040.25±0.050.26±0.13N.D./
    十六烷腈27.594N.D.0.21±0.07N.D.0.33±0.12/
    注:“N.D.”未检出该物质;“/”未查到该物质的阈值。
    下载: 导出CSV

    表  2  腌制时间对挥发性风味物质的种类及相对含量的影响

    Table  2.   Effects of curing time on the types and relative content of volatile flavor substances

    腌制时间(d)项目醛类醇类烃类酮类酯类酸类芳香族化合物其他
    15
    种类14104327710
    相对含量(%)52.08±2.3613.29±1.7920.66±1.173.14±0.230.41±0.162.45±0.735.98±1.371.99±0.11
    18
    种类11125138611
    相对含量(%)40.84±3.7516.84±1.5820.66±2.521.03±0.690.71±0.375.68±2.5910.44±2.633.79±0.76
    21
    种类11114347212
    相对含量(%)64.26±2.3718.12±2.312.24±0.753.13±0.392.81±0.274.43±1.411.07±0.563.95±0.97
    24
    种类89421557
    相对含量(%)34.91±1.7929.89±1.8621.4±1.741.99±0.430.33±0.122.47±1.497.21±1.291.79±0.63
    下载: 导出CSV

    表  3  不同腌制时间下大河乌猪火腿关键性风味物质及对应的ROAV

    Table  3.   Key flavor compounds of Dahe black pig ham and corresponding ROAV under different curing time

    序号
    化合物名称
    阈值(μg/kg)
    ROAV香气描述[21-22]
    15 d18 d21 d24 d
    1异戊醛0.4033.2959.4397.6239.19奶酪坚果风味
    2戊醛12.000.150.62麦芽香、杏仁香
    3己醛4.5030.0821.8535.5931.87清香
    4庚醛3.009.697.2311.4316.12脂肪、酸败味
    5正辛醛0.7086.994.0189.1256.93肉香、清香、鲜香
    6壬醛1.00100.00100.00100.00100.00油脂香、果香、
    7反-2-辛烯醛3.000.490.71坚果味、油味、
    82-辛烯醛0.1032.50鸡肉味
    9苯甲醛350.000.070.090.110.12苦杏仁味
    10反式-2-壬醛0.0839.09柑橘香
    11肉豆蔻醛14.000.490.202.06牛奶香、脂肪香
    121-辛烯-3-醇1.0043.5642.5253.89233.93蘑菇味
    13庚醇3.003.072.574.065.31油脂味
    141-辛醇125.800.140.110.100.13蘑菇味
    15(-)-柠檬烯10.001.334.33/
    16双戊烯10.002.760.13柠檬香
    172,3-辛二酮2.528.843.526.497.20黄油味
    18甲基庚烯酮68.000.080.100.12柠檬草香
    19间异丙基甲苯47.000.300.65/
    201.002.701.03/
    212-正戊基呋喃5.800.370.300.590.55烤肉香
    注:“−”未检出该物质而未做计算;“/”未查到香气描述;仅列出ROAV≥0.1的风味化合物。
    下载: 导出CSV
  • [1] 朱砺, 李学伟, 帅素容, 等. 大河猪与大河乌猪的肌肉营养成分分析[J]. 中国畜牧杂志,2008,44(7):6−9. [Zhu L, Li X W, Shuai S R, et al. Analysis of the muscle nutrient composition of Dahe pig and Dahe black pig[J]. Chinese Journal of Animal Science,2008,44(7):6−9.
    [2] 司徒乐愉, 吴安立, 皮晓波, 等. 大河乌猪肉质特性研究[J]. 养猪,2004(5):48−50. [Situ Y Y, Wu A L, Pi X B, et al. Study on quality characteristics of Dahe black pork[J]. Swine Production,2004(5):48−50. doi:  10.3969/j.issn.1002-1957.2004.05.032
    [3] 郑璞, 苏伟, 母雨, 等. 盘县火腿自然发酵过程中理化和风味特征[J]. 肉类研究,2020,34(9):59−67. [Zheng P, Su W, Mu Y, et al. Physicochemical and flavor characteristics of Panxianham during natural fermentation[J]. Meat Research,2020,34(9):59−67. doi:  10.7506/rlyj1001-8123-20200615-152
    [4] Théron L, Tournayre P, Kondjoyan N, et al. Analysis of the volatile profile and identification of odour-active compounds in Bayonne ham[J]. Meat Science,2010,85(3):453−460. doi:  10.1016/j.meatsci.2010.02.015
    [5] Zhuang K J, Wu N, Wang X C, et al. Effects of 3 feeding modes on the volatile and nonvolatile compounds in the edible tissues of female Chinese mitten crab(Eriocheir sinensis)[J]. Journal of Food Science,2016,81(4):S968−S981. doi:  10.1111/1750-3841.13229
    [6] Sun L X, Chen J P, Li M Y, et al. Effect of star anise(Illicium verum) on the volatile compounds of stewed chicken[J]. Journal of Food Process Engineering,2014,37(2):131−145. doi:  10.1111/jfpe.12069
    [7] 李玲, 张敬竟, 王桂瑛, 等. 宣威火腿与金华火腿中游离脂肪酸组成比较分析[J]. 食品工业科技,2019,40(15):225−229, 234. [Li L, Zhang J J, Wang G Y, et al. Comparative analysis of fatty acid composition in Xuanwei ham and Jinhua ham[J]. Science and Technology of Food Industry,2019,40(15):225−229, 234.
    [8] 彭金月, 姜水, 高韶婷, 等. 基于智能感官与人工感官评价的中国三大干腌火腿风味特性分析[J]. 食品工业科技, 2020, 41(17): 231−236.

    Peng J Y, Jiang S, Gao X T, et al. Flavor characterization of three major dry-cured hams in China based on intelligent sensory evaluation and artificial sensory analysis[J]. Science and Technology of Food Industry, 2019, 40(15): 225−229, 234.
    [9] 邵靖萱, 高晓格, 王雅楠, 等. 宣威火腿加工过程中抗氧化肽活性变化规律[J]. 食品工业科技,2019,40(1):101−104, 208. [Shao J X, Gao X G, Wang Y N, et al. Mechanism of antioxidant peptide change of Xuanwei ham during processing[J]. Science and Technology of Food Industry,2019,40(1):101−104, 208.
    [10] 周一鸣, 贺利庆, 蒿婷凤, 等. 金华火腿加工过程中美拉德反应产物的形成与初探[J]. 现代食品科技,2016,32(7):170−175. [Zhou Y M, He L Q, Hao T F, et al. Formation and exploration of maillard reaction products during Jinhua ham production[J]. Modern Food Science & Technology,2016,32(7):170−175.
    [11] 孔维严. 宣威火腿工艺及当代发展概况调查报告[D]. 重庆: 重庆师范大学, 2016.

    Kong K M. A report on the surverys of processing and contemporary development Xuanwei ham[D]. Chong Qing: Chongqing Normal University, 2016.
    [12] 夏博能. 传统工艺与现代工艺金华火腿的品质比较研究[D]. 杭州: 浙江大学, 2016.

    Xia B N. Study on the quality comparison of Jinhua ham made by tradition technology and modern technology[D]. Hangzhou: Zhejiang University, 2016.
    [13] Shi Y N, Li X, Huang A X. A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham[J]. Meat Science,2019:158.
    [14] Huang H, He Z F, Tao X Q, et al. Analysis of volatile flavour compounds in different curings on Ira rabbit with HS-SPME-GC-MS[J]. Food Science,2015.
    [15] Lin N, Li S W, Tang R Q, et al. The pickled process research of Baishiyi salted duck[J]. Journal of Anhui Agri Sci,2015(14):239, 244.
    [16] 谭汝成. 腌腊鱼制品生产工艺优化及其对风味影响的研究[D]. 武汉: 华中农业大学, 2004.

    Tan R C. Study on the optimization of the production process of pickled fish products and its influence on flavor[D]. Wuhan: Huazhong Agricultural University, 2004.
    [17] Huan Y J, Zhou G H, Zhao G M, et al. Changes in flavor compounds of dry-cured Chinese Jinhua ham during processing[J]. Meat Science,2005,71(2):154−87.
    [18] 高韶婷, 宋雪, 陈乐, 等. 基于固相萃取整体捕集剂-气相色谱-质谱金华火腿挥发性风味物质分析[J]. 食品科学,2015,36(22):113−116. [Gao S T, Song X, Chen Le, et al. Analysis of the volatile compounds of Jinhua ham by monolithic material sorptive extraction coupled with gas chromatography-mass spectrometry[J]. Food Science,2015,36(22):113−116. doi:  10.7506/spkx1002-6630-201522020
    [19] 樊艳. SPME-GC-MS结合ROAV分析腐乳中的主体风味物质[J/OL]. 食品工业科技: 1−17[2021-01-21]. https://doi.org/10.13386/j.issn1002-0306.2020060171.

    Fan Y. Analysis of main flavor substances in fermented soybean curd by ME-GC-MS and ROAV[J]. Science and Technology of Food Industry: 1−17[2021-01-21]. https://doi.org/10.13386/j.issn1002-0306.2020060171.
    [20] 刘登勇, 周光宏, 徐幸莲. 确定食品关键风味化合物的一种新方法: “ROAV”法[J]. 食品科学,2008,29(7):370−374. [Liu D Y, Zhou G H, Xu R L. “ROAV” method: A new method for determining key odor compounds of Rugao ham[J]. Food Science,2008,29(7):370−374. doi:  10.3321/j.issn:1002-6630.2008.07.082
    [21] 里奥·范海默特. 化合物嗅觉阈值汇编[M]. 第二版. 北京: 科学出版社, 2018: 1−398.

    Leo Vanheimer. Compilation of compound olfactory thresholds[M]. 2nd ed. Beijing: Science Press, 2018: 1−398.
    [22] Lorenzo J M, Carballo J, Franco D. Effect of the inclusion of chestnut in the finishing diet on volatile compounds of dry-cured ham from celta pig breed[J]. Journal of Integrative Agriculture,2013,12(11):2002−2012. doi:  10.1016/S2095-3119(13)60638-3
    [23] Sabio E, Vidal-Aragon M C, Bernalte M J, et al. Volatile compounds present in six types of dry-cured ham from south European countries[J]. Food Chemistry,1998,61(4):493−503. doi:  10.1016/S0308-8146(97)00079-4
    [24] Marusic N, Vidacek S, Janci T, et al. Determination of volatile compounds and quality parameters of traditional Istrian dry cured ham[J]. Meat Science,2014,96(4):1409−1416. doi:  10.1016/j.meatsci.2013.12.003
    [25] Morales M L, Oacute R M, Ubeda C, et al. Effect of storage time at low temperature on the volatile compound composition of Sevillana and Maravilla raspberries[J]. Postharvest Biology & Technology,2014,96(2):128−134.
    [26] Lee S K, Tatiyaborworntham N, Grunwald E W, et al. Myoglobin and haemoglobin-mediated lipid oxidation in washed muscle: Observations on crosslinking, ferryl formation, porphyrin degradation, and haemin loss rate[J]. Food Chemistry,2015,167(15):258−263.
    [27] Radovcic N, Vidacek S, Janci T, et al. Characterization of volatile compounds, physico-chemical and sensory characteristics of smoked dry-cured ham[J]. Journal of Food Science and Technology,2016,53(11):4093−4105. doi:  10.1007/s13197-016-2418-2
    [28] 母雨, 苏伟, 母应春. 盘县火腿微生物多样性及主体挥发性风味解析[J]. 食品研究与开发,2019(15):77−85. [MU Y, Su W, Mu Y C. Analysis of microbial diversity and key volatile flavor compounds of Panxian dry-cured ham[J]. Food Research and Development,2019(15):77−85. doi:  10.12161/j.issn.1005-6521.2019.15.013
    [29] Chen J L, Rui H M, Chen H C. Comparison of volatile flavor characteristic of different kinds of chicken muscles[J]. Modern Food Science and Technology,2009,25:1129−1134.
    [30] Calkins C R, Hodgen J M. A fresh look at meat flavor[J]. Meat Science,2007,77(1):63−80. doi:  10.1016/j.meatsci.2007.04.016
    [31] 孙宝国. 含硫香料化学[M]. 北京: 科学出版社, 2007: 31-49.

    Sun B G. Sulfur-containing perfume chemistry[M]. Beijing: Science Press, 2007: 31-49.
    [32] Martin A, Cordoba J J, Aranda E, et al. Contribution of a selected fungal population to the volatile compounds on dry-cured ham[J]. International Journal of Food Microbiology,2006,10(1):8−18.
    [33] Zhu J C, Wang L Y, Xiao Z B, et al. Characterization of the key aroma compounds in mulberry fruits by application of gas chromatography-olfactometry(GC-O), odor activity value(OAV), gas chromatography-mass spectrometry(GC-MS) and flame photometric detection(FPD)[J]. Food Chemistry,2018,245:775−785. doi:  10.1016/j.foodchem.2017.11.112
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  13
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 网络出版日期:  2021-08-04
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。