基于陶瓷膜过滤工艺制备甘蔗红糖的多酚组成以及抗氧化研究

尚煜豪 侯楚璇 盖莉莉 谢彩锋 李凯

尚煜豪,侯楚璇,盖莉莉,等. 基于陶瓷膜过滤工艺制备甘蔗红糖的多酚组成以及抗氧化研究[J]. 食品工业科技,2021,42(18):89−97. doi:  10.13386/j.issn1002-0306.2021010141
引用本文: 尚煜豪,侯楚璇,盖莉莉,等. 基于陶瓷膜过滤工艺制备甘蔗红糖的多酚组成以及抗氧化研究[J]. 食品工业科技,2021,42(18):89−97. doi:  10.13386/j.issn1002-0306.2021010141
SHANG Yuhao, HOU Chuxuan, GAI Lili, et al. Polyphenol Compositions and Antioxidant Activity of Non-centrifugal Sugars Prepared by Ceramic Membrane Filtration Process[J]. Science and Technology of Food Industry, 2021, 42(18): 89−97. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010141
Citation: SHANG Yuhao, HOU Chuxuan, GAI Lili, et al. Polyphenol Compositions and Antioxidant Activity of Non-centrifugal Sugars Prepared by Ceramic Membrane Filtration Process[J]. Science and Technology of Food Industry, 2021, 42(18): 89−97. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010141

基于陶瓷膜过滤工艺制备甘蔗红糖的多酚组成以及抗氧化研究

doi: 10.13386/j.issn1002-0306.2021010141
基金项目: 广西绿色制糖工程技术研究中心(2017GCZX00001)
详细信息
    作者简介:

    尚煜豪(1994−),男,硕士研究生,研究方向:制糖工程,E-mail:xiangjun@st.gxu.edu.cn

    通讯作者:

    李凯(1972−),男,博士,教授,研究方向:绿色制糖技术,E-mail:gxlikai@gxu.edu.cn

  • 中图分类号: TS245.1

Polyphenol Compositions and Antioxidant Activity of Non-centrifugal Sugars Prepared by Ceramic Membrane Filtration Process

  • 摘要: 为研究基于陶瓷膜过滤工艺制备甘蔗红糖的多酚成分、含量以及抗氧化能力,对广西南宁市扶绥县甘蔗双高基地6个品种甘蔗制备的红糖进行研究。通过测定红糖提取液总酚、总黄酮含量以及单体酚组成,以DPPH和ABTS自由基清除能力以及亚铁离子和铜离子螯合能力为指标对红糖提取物抗氧化能力进行评价。结果表明,不同品种红糖的总酚、总黄酮含量以及抗氧化活性存在显著差异;其中红糖总酚含量范围为2846.21~4073.48 µg/g,总黄酮含量范围为1999.24~2438.63 µg/g,在单体酚分析中,没食子酸是红糖优势酚酸;在抗氧化活性测定中,红糖活性提取液的DPPH、ABTS自由基清除能力以及铜离子螯合能力均大于对照组,表现出较高的抗氧化活性,其中D(GUC23-2)在DPPH自由基清除实验、ABTS自由基清除实验、螯合亚铁离子实验中表现出最好效果;结合相关性分析发现,多酚含量与抗氧化活性具有较高相关性,因此可以初步认为多酚种类以及含量是甄别不同品种红糖抗氧化活性的主要因素。综上所述,甘蔗品种的差异性是引起红糖多酚类物质种类以及含量差异的主要因素,而多酚类物质含量以及组成的差异是造成不同品种红糖抗氧化活性差异的主要原因。
  • 图  1  红糖制备工艺图

    Figure  1.  Preparation process of non-centrifugal sugars(NCS)

    图  2  不同品种红糖的总酚含量

    Figure  2.  Total phenolic contents of different varieties NCS

    注:不同小写字母表示数据差异显著,P<0.05;图3图6~图8同。

    图  3  不同品种红糖黄酮类含量

    Figure  3.  Total flavonoid contents of different varieties NCS

    图  4  甘蔗中酚酸形成机理

    Figure  4.  Metabolism of phenolic compounds synthesis in sugarcane

    图  5  不同品种红糖DPPH自由基清除活性比较

    Figure  5.  Comparison of the DPPH radical scavenging capacity of different varieties NCS

    图  6  不同品种红糖ABTS+自由基清除活性比较

    Figure  6.  Comparison of the ABTS+ radical scavenging capacity of different varieties NCS

    图  7  不同品种红糖螯合亚铁离子能力比较

    Figure  7.  Comparison offerous ion chelating ability of different varieties NCS

    图  8  不同品种红糖螯合铜离子能力比较

    Figure  8.  Comparison of cupric ion chelating ability of different varieties NCS

    表  1  抗氧化能力与总酚和总黄酮之间相关性分析

    Table  1.   Correlation coefficient between antioxidantactivityand TPC and TFC

    TPCTFCDPPHABTSFe2+Cu2+
    TPC10.489*−0.480*0.290−0.497*0.314
    TFC1−0.828**0.089−0.768**0.305
    DPPH1−0.123−0.739**0.209
    ABTS10.0060.589*
    Fe2+1−0.495
    Cu2+1
    注:*表示在0.05级别,相关性显著;**在0.01级别,相关性极显著。
    下载: 导出CSV

    表  2  红糖上清提取液液质分析结果(µg/g)

    Table  2.   Contents of polyphenols by LC-MS of NCS supernatant extracts(µg/g)

    成分ABCDEF
    丁香酸170.93±7.65c102.00±0.08d155.42±0.59c206.94±4.99b361.43±22.68a364.60±2.90a
    对香豆酸28.81±1.28c21.40±0.02d32.57±0.13c56.11±1.34b70.81±4.44a67.13±0.53a
    芥子酸19.19±0.85a9.75±0.04c15.21±0.06b15.20±0.36b18.84±1.17a6.22±0.06d
    绿原酸36.56±1.64a1.21±0.03d20.48±0.08b1.27±0.03d1.62±0.10d4.28±0.04c
    咖啡酸16.92±0.75a3.65±0.04d7.36±0.04b3.88±0.09d5.10±0.31c1.67±0.02e
    没食子酸2372.71±39.86c2460.93±67.07c3838.37±26.10a1808.03±22.9e2242.68±40.07d2604.98±38.57b
    苯甲酸27.23±1.21e13.16±0.13f33.20±0.12d45.15±1.08c54.29±3.40b89.00±0.70a
    儿茶素000000
    香草酸111.12±4.97b50.61±0.07c63.88±0.24c126.06±3.04b264.22±16.58a125.98±1.00b
    原儿茶酸6.90±0.30b3.62±0.03c8.11±0.04a6.55±0.15b2.26±0.14d7.98±0.07a
    阿魏酸32.99±1.46c54.51±1.30a29.36±0.12b22.77±0.02e28.07±0.05d48.66±0.38b
    总含量2823.362720.844203.962291.963049.323320.5
    含量排序451632
    注:不同小写字母表示同行数据差异显著,P<0.05。
    下载: 导出CSV
  • [1] 王葫青. 甘蔗新品种在百色地区引种的适应性研究[D]. 南宁: 广西大学, 2018.

    Wang H. Study on adaptability of introducing new sugarcane varieties in baise Area[D]. Nanning; Guangxi University, 2018.
    [2] Nayaka MAH, Sathisha UV, Manohar MP, et al. Cytoprotective and antioxidant activity studies of jaggery sugar[J]. Food Chemistry,2009,115(1):113−118. doi:  10.1016/j.foodchem.2008.11.067
    [3] Lee JS Srinivasan R, Jo IG, et al. Comparative study of the physicochemical, nutritional, and antioxidant properties of some commercial refined and non-centrifugal sugars[J]. Food Research International,2018,109(5):614−625.
    [4] Barrera C, Betoret N, Lucía S. Phenolic profile of cane sugar derivatives exhibiting antioxidant and antibacterial properties[J]. Sugar Tech,2020,22(5):1−14.
    [5] 中华人民共和国国家质量监督检验检疫总局. GB/T 9289-2010 制糖工业术语[S]. 北京: 中国标准出版社, 2010.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 9289-2010 Terminology of sugar industry[S]. Beijing: Standards Press of China, 2010.
    [6] He X, Liu R. Phytochemicals of apple peels: Isolation, structure elucidation, and their antiproliferative and antioxidant activities[J]. Journal of Agricultural & Food Chemistry,2008,56(21):9905−9910.
    [7] Chen Y, Wang G, WangH, et al. Phytochemical profiles and antioxidant activities in six species of ramie leaves[J]. Plos One,2014,9(9):e108−140.
    [8] Liu H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action[J]. Journal of Nutrition, 2004, 134(12): 3479S-3485S.
    [9] Perron N, Brumaghim J. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding[J]. Cell Biochemistry & Biophysics,2009,53(2):75−100.
    [10] Gulcin I. Antioxidant activity of food constituents: An overview[J]. Archives of Toxicology,2012,86(3):345−391. doi:  10.1007/s00204-011-0774-2
    [11] Jaffé W R. Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature[J]. Journal of Food Composition and Analysis,2015,43:194−202. doi:  10.1016/j.jfca.2015.06.007
    [12] 李军. 红糖小档案[J]. 饮食科学,2008(12):23−23. [Li J. Brown sugar profile[J]. Dietetics,2008(12):23−23.
    [13] Elabasy M, Motobu M, Shimura K, et al. Immunostimulating and growth-promoting effects of sugar cane extract (SCE) in chickens[J]. Journal of Veterinary Medical Science,2002,64(11):1061−1063. doi:  10.1292/jvms.64.1061
    [14] Amer S, Na KJ, El-Abasy M, et al. Immunostimulating effects of sugar cane extract on X-ray radiation induced immunosuppression in the chicken[J]. International Immunopharmacology,2004,4(1):71−77. doi:  10.1016/j.intimp.2003.10.006
    [15] Takara K, Otsuka K, Wada K, et al. 1, 1-Diphenyl-2-picrylhydrazylradical scavenging activity and tyrosinase inhibitory effects of constituents of sugarcane molasses[J]. Bioscience Biotechnology & Biochemistry,2007,71(1):183−191.
    [16] Duarte-Almeida J M, Novoa A V, Linares A F, et al. Antioxidant activity of phenolics compounds from sugar cane (Saccharum officinarum L.) juice[J]. Plant Foods for Human Nutrition,2006,61(4):187−192. doi:  10.1007/s11130-006-0032-6
    [17] Asikin Y, Chinen T, Takara K, et al. Determination of long—chainalcohol and aldehyde contents in the non-centrifuged cane sugar Kokuto[J]. Food Science and Technology Research,2008,14(6):583−588. doi:  10.3136/fstr.14.583
    [18] Kimura Y, Okuda H, Arichi S. Effects of non-sugar fraction in black sugar on lipid and carbohydrate metabolism; Part I[J]. Planta Medica,1984,50(6):465−468. doi:  10.1055/s-2007-969774
    [19] 李文, 朱瓌之, 漆虹, 等. 陶瓷膜超滤净化石灰法制糖清汁[J]. 食品科学,2019,40(2):252−258. [Li W, Zhu G, Qi H, et al. Effect of ultrafiltration on the purification of sugar juice by lime[J]. Food Science,2019,40(2):252−258. doi:  10.7506/spkx1002-6630-20180111-145
    [20] 曲睿晶, 宋颖雪, 兰梅娟, 等. 陶瓷膜分离技术在制糖工业中的研究应用[J]. 中国调味品,2017,42(6):72−76. [Qui R, Song Y, Lan M, et al. Research and application of ceramic membrane separation technology in sugar industry[J]. China Condiment,2017,42(6):72−76. doi:  10.3969/j.issn.1000-9973.2017.06.015
    [21] 黄玭, 张若璇, 杭方学, 等. 膜分离技术在制糖工业中的应用研究进展[J]. 中国调味品,2017,42(4):169−173, 180. [Huang P, Zhang R, Hang F, et al. Research progress in application of membrane separation technology in sugar industry[J]. China Condiment,2017,42(4):169−173, 180. doi:  10.3969/j.issn.1000-9973.2017.04.038
    [22] Li W, Ling G, Lei F, et al. Ceramic membrane fouling and cleaning during ultrafiltration of limed sugarcane juice[J]. Separation & Purification Technology,2017,190(8):9−24.
    [23] Shi C, Rackemann D W, Moghaddam L, et al. Ceramic membrane filtration of factory sugarcane juice: Effect of pretreatment on permeate flux, juice quality and fouling[J]. Journal of Food Engineering,2018,243(FEB.):101−113.
    [24] Zhu Z, Xie C, Li W, et al. Nutritional and antioxidant properties of non-centrifugal cane sugar derived from membrane clarified juice[J]. LWT, 2020, 131: 109717.
    [25] 李凯, 谢彩锋, 杭方学, 等. 一种膜法生产砂糖和精制糖的方法和装置: 中国, 108251563[P]. 2018-07-06.

    Li K, Xie C, Hang F, et al. A method and device for producing granulated sugar and refined sugar by membrane process: China, 108251563[P]. 2018-07-06.
    [26] Chen Y, Huang J, Hu J, et al. Comparative study on the phytochemical profiles and cellular antioxidant activity of phenolics extracted from barley malts processed under different roasting temperatures[J]. Food &Function,2019,10(4):2176−2185.
    [27] 中华人民共和国国家质量监督检验检疫总局. GB/T 31740.2-2015. 茶制品第二部分: 茶多酚[S]. 北京: 中国标准出版社, 2015.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 31740.2-2015 Tea products Part 2: Tea polyphenols[S]. Beijing: Standards Press of China, 2015.
    [28] Asikin Y, Takahashi M, Mishima T, et al. Antioxidant activity of sugarcane molasses against 2, 2’-azobis(2-amidinopropane) dihydrochloride-induced peroxyl radicals[J]. Food Chemistry,2013,141(1):466−472. doi:  10.1016/j.foodchem.2013.03.045
    [29] Chen Y, Ma X, Fu X, et al. Phytochemical content, cellular antioxidant activity and antiproliferative activity of Adinandranitida tea (Shiyacha) infusion subjected toin vitro gastrointestinal digestion[J]. Rsc Advances,2017,7:50430−50440. doi:  10.1039/C7RA07429H
    [30] Jia Z, Mengcheng T, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals[J]. Food Chemistry,1999,64:555−559. doi:  10.1016/S0308-8146(98)00102-2
    [31] Payet B, Sing A S C, Smadja J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents[J]. Journal of Agricultural & Food Chemistry,2005,53(26):10074−9.
    [32] Santos J, Brizola V R A, Granato D. High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application[J]. Food Chemistry,2017,214:515−522. doi:  10.1016/j.foodchem.2016.07.091
    [33] Chen C, Wang L, Wang R, et al. Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of Oats[J]. Food Chemistry,2018,239:260−267. doi:  10.1016/j.foodchem.2017.06.104
    [34] 蒋变玲, 王志花, 张东京, 等. 四种柑橘果皮主要活性物质测定和抗氧化能力对比研究[J]. 阜阳师范大学学报,2021,38(1):51−56. [Jiang B, Wang Z, Zhang D, et al. Determination of main active substances and comparison of antioxidant ability of four citrus peels[J]. Journal of Fuyang Normal University,2021,38(1):51−56.
    [35] 李鹏程, 肖咪, 薛宏坤, 等. 冠突散囊菌发酵枸杞工艺优化及其抗氧化活性研究[J]. 食品科技,2021,46(2):51−58. [Li P, Xiao M, Xue H, et al. Optimization of fermentation process and antioxidant activity of lycium barbarum by stystic coronoid[J]. Food Science and Technology,2021,46(2):51−58.
    [36] Ventura I, Jammal J, Bianco-Peled H. Insights into the nanostructure of low-methoxyl pectin-calcium gels[J]. Carbohydrate Polymers,2013,97(2):650−658. doi:  10.1016/j.carbpol.2013.05.055
    [37] 易建勇, 赵圆圆, 毕金峰, 等. 细胞壁多糖与酚类物质相互作用研究进展[J]. 食品科学,2020,41(9):269−275. [Yi J, Zhao Y, Bi J, et al. Research progress on the interaction between cell wall polysaccharides and phenolic compounds[J]. Food Science,2020,41(9):269−275. doi:  10.7506/spkx1002-6630-20190303-021
    [38] Bourvellec C L, Bouchet B, Renard C. Non-covalent interaction between procyanidins and apple cell wall material. Part III; Study on model polysaccharides[J]. Biochimica et Biophysica Acta,2005,1725(1):10−18. doi:  10.1016/j.bbagen.2005.06.004
    [39] Padayachee A, Netzel G, Netzel M, et al. Binding of polyphenols to plant cell wall analogues-Part 1: Anthocyanins[J]. Food Chemistry,2012,134(1):155−161. doi:  10.1016/j.foodchem.2012.02.082
    [40] Padayachee A, Netzel G, Netzel M, et al. Binding of polyphenols to plant cell wall analogues – Part 2: Phenolic acids[J]. Food Chemistry,2012,135(4):2287−2292. doi:  10.1016/j.foodchem.2012.07.004
    [41] Fernandes G, Ivanova N F, Brás N, et al. Structural characterization of inclusion complexes between cyanidin-3-O-glucoside and β-cyclodextrin[J]. Carbohydrate Polymers,2014,102(Complete):269−277.
    [42] Frazier E R, Deaville R J, Green E, et al. Interactions of tea tannins and condensed tannins with proteins[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,51(2):490−495. doi:  10.1016/j.jpba.2009.05.035
    [43] Kroll J, Rawel H M, Rohn S. Reactions of plant phenolics with food proteins and enzymes under special consideration of covalent bonds[J]. Foodence& Technology Research,2007,9(3):205−218.
    [44] Singleton V L, Orthofer R, Lamuela-Raventos R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent[J]. Methods Enzymol,1999,299(1):152−178.
    [45] Conde C, Delrot S, Geros H. Phenolics in sugar products: Their role in flavor and color production. In proceedings of the 1982 Sugar Processing Research Conference[C]// SPRI: New Orleans, LA, 1982: 47−72.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  18
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-20
  • 网络出版日期:  2021-08-04
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。