体外模拟胃肠消化对古茶树叶酵素中活性成分和抗氧化活性的影响

叶超悦 范昊安 鲍海媚 王珍珍 沙如意 方晟 胡新荣 江丽 李朵矫 袁名安 毛建卫

叶超悦,范昊安,鲍海媚,等. 体外模拟胃肠消化对古茶树叶酵素中活性成分和抗氧化活性的影响[J]. 食品工业科技,2021,42(18):64−72. doi:  10.13386/j.issn1002-0306.2021010099
引用本文: 叶超悦,范昊安,鲍海媚,等. 体外模拟胃肠消化对古茶树叶酵素中活性成分和抗氧化活性的影响[J]. 食品工业科技,2021,42(18):64−72. doi:  10.13386/j.issn1002-0306.2021010099
YE Chaoyue, FAN Haoan, BAO Haimei, et al. Effects of Simulated Gastrointestinal Digestion on Active Components and Antioxidant Activity of Fermented Tea (Camellia sinensis) Jiaosu in Vitro[J]. Science and Technology of Food Industry, 2021, 42(18): 64−72. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010099
Citation: YE Chaoyue, FAN Haoan, BAO Haimei, et al. Effects of Simulated Gastrointestinal Digestion on Active Components and Antioxidant Activity of Fermented Tea (Camellia sinensis) Jiaosu in Vitro[J]. Science and Technology of Food Industry, 2021, 42(18): 64−72. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010099

体外模拟胃肠消化对古茶树叶酵素中活性成分和抗氧化活性的影响

doi: 10.13386/j.issn1002-0306.2021010099
基金项目: 浙江省重点研发计划项目(2017C02009);省属高校基本科研业务费专项(2019JL10);金华市农业类重大项目(2018-2-001a)
详细信息
    作者简介:

    叶超悦(1997−)(ORCID:0000-0001-7639-1931),女,硕士研究生,研究方向:生物质资源利用技术与工程,E-mail:1158667984@qq.com

    通讯作者:

    沙如意(1982−)(ORCID:0000-0002-3505-1225),男,博士,副教授,研究方向:农业生物资源生化制造研究,E-mail:kevinsha_0204@163.com

    毛建卫(1964−)(ORCID:0000-0002-4371-9301),男,硕士,教授级高工,研究方向:农业生物资源生化制造研究,E-mail:zjhzmjw@163.com

  • 中图分类号: TS201.2

Effects of Simulated Gastrointestinal Digestion on Active Components and Antioxidant Activity of Fermented Tea (Camellia sinensis) Jiaosu in Vitro

  • 摘要: 为探究古茶树叶酵素经模拟胃、肠消化后活性成分和抗氧化活性的变化,该研究采用体外模拟胃、肠消化的方法,检测古茶树叶酵素模拟胃肠消化过程中总酚、黄酮、原花青素含量的释放规律,同时对模拟胃肠消化前后茶叶酵素中的5种儿茶素类物质含量变化进行了分析,并对其体外抗氧化活性的变化规律进行了进一步研究。结果表明:古茶树叶酵素在模拟胃消化中,总酚、总黄酮含量和ABTS阳离子自由基清除能力、还原力均显著提高(P<0.05),原花青素含量、DPPH自由基清除能力无显著变化(P>0.05);在模拟肠消化中,总酚含量、ABTS阳离子自由基清除能力显著提高(P<0.05),总黄酮含量、DPPH自由基清除能力、还原力无显著变化(P>0.05),原花青素含量显著降低(P<0.05)。5种儿茶素类物质中在胃消化过程中无显著性变化(P>0.05),而在肠消化过程中均显著下降(P<0.05),儿茶素、表没食子儿茶素、表儿茶素、表儿茶素没食子酸酯含量在模拟肠消化2 h后分别下降了74.58%、64.40%、86.95%、48.21%。这表明,古茶树叶酵素在模拟胃肠消化过程中,胃蛋白酶、胃酸可促进抗氧化活性物质释放,有较好的抗氧化活性,有望应用于抗氧化产品的开发。
  • 图  1  古茶树叶酵素模拟消化过程中总酚含量的变化

    Figure  1.  Changes of polyphenols in fermented tea Jiaosu during simulated gastric and intestinal digestion

    注:小写英文字母不同表示差异显著(P<0.05),图2~图3图5~图7同。

    图  2  古茶树叶酵素模拟消化过程中总黄酮含量的变化

    Figure  2.  Changes of flavonoids in fermented tea Jiaosu during simulated gastric and intestinal digestion

    图  3  古茶树叶酵素模拟消化过程中原花青素含量的变化

    Figure  3.  Changes of proanthocyanidins in fermented tea Jiaosu during simulated gastric and intestinal digestion

    图  4  混合标品的HPLC图

    Figure  4.  HPLC chromatagrams of mixed standards

    图  5  古茶树叶酵素模拟消化过程中DPPH自由基清除率的变化

    Figure  5.  Changes of DPPH radical scavenging capacity in fermented tea Jiaosu during simulated intestinal digestion

    图  6  古茶树叶酵素模拟消化过程中ABTS阳离子自由基清除率的变化

    Figure  6.  Changes of ABTS cation radical scavenging capacity in fermented tea Jiaosu during simulated intestinal digestion

    图  7  古茶树叶酵素模拟消化过程中还原力的变化

    Figure  7.  Changes of reducing force in fermented tea Jiaosu during simulated intestinal digestion

    表  1  儿茶素类物质的标准曲线回归方程

    Table  1.   Linear regresslon equations for five catechins standards

    儿茶素类物质回归方程R2
    Cy=61421x−27210.9999
    ECy=35414x−211460.9999
    EGCy=32652x−685.20.9999
    EGCGy=117837x−1198176.40.9978
    ECGy=16677x−81060.9999
    下载: 导出CSV

    表  2  古茶树茶叶酵素模拟胃消化过程中儿茶素类物质含量的变化

    Table  2.   Changes of catechins in fermented tea Jiaosu during simulated gastric digestion

    儿茶素类物质(μg·mL−1
    胃空白对照组(h) 胃酸对照组(h) 胃液消化组(h)
    00.51200.51200.512
    EGC76.53±4.00abcd78.41±3.69abcd73.39±0.78d77.71±6.76abcd81.76±0.30a79.65±2.36ab78.79±1.46abc78.94±0.89abc75.57±1.29bcd76.73±2.35abcd73.90±0.81cd77.18±1.04abcd
    C42.90±1.72bcd44.28±2.33abcd41.82±0.08d44.48±3.75abcd47.65±2.48a46.38±2.48ab47.27±0.85a43.58±1.87cd45.64±1.02abc46.13±1.53ab44.45±0.58abcd46.31±0.74ab
    EC439.15±4.49bc446.33±5.20a435.08±0.96c442.19±10.27ab445.67±1.31a442.90±0.10ab434.30±1.05c441.82±1.68ab414.34±1.40e420.15±2.14d409.59±0.63e425.45±0.85d
    EGCGNDNDNDND0.53NDNDNDNDNDNDND
    ECG16.63±0.35c18.40±0.53abc18.09±2.41bc19.32±0.56abc22.41±3.43a21.61±0.89ab21.82±0.21ab20.45±0.61abc21.85±2.05ab18.32±3.70bc19.32±0.30abc19.97±0.62abc
    注:同行小写英文字母不同表示差异显著(P<0.05);表3同。
    下载: 导出CSV

    表  3  古茶树茶叶酵素模拟肠消化过程中儿茶素类物质含量的变化

    Table  3.   Changes of catechins in fermented tea Jiaosu during simulated intestinal digestion

    儿茶素类物质(μg·mL−1
    肠空白对照组(h) 肠液消化组(h)
    00.51200.512
    EGC21.83±1.88c14.83±0.71d27.44±0.39b10.51±2.18d36.71±3.65a32.34±4.89a21.26±1.26c13.07±1.38d
    C18.25±0.09bc12.63±1.58d15.65±0.46cd6.24±0.46e24.27±2.28a21.32±3.96ab14.53±0.06d6.17±0.75e
    EC83.67±7.50b45.91±0.59e58.80±0.42d14.20±1.33f123.65±6.63a73.40±6.02e56.86±0.51d16.14±0.44f
    EGCGNDNDNDNDNDNDNDND
    ECG16.76±0.42a11.91±3.71bc9.70±0.33bc3.92±1.33e8.11±0.18d10.39±1.01b8.89±0.39cd4.20±0.21e
    下载: 导出CSV
  • [1] 刘加友, 王振斌. 微生物酵素食品研究进展[J]. 食品与发酵工业,2017,42(1):273−276. [Liu Jiayou, Wang Zhenbin. Research progress on microbial ferment food[J]. Food and Fermentation Industries,2017,42(1):273−276.
    [2] 毛建卫, 吴元锋, 方晟. 微生物酵素研究进展[J]. 发酵科技通讯,2010,39(3):42−44. [Mao Jianwei, Wu Yuanfeng, Fang Sheng. Research progress on microbial ferment[J]. Bulletin of Fermentation Science and Technology,2010,39(3):42−44. doi:  10.3969/j.issn.1674-2214.2010.03.018
    [3] 范昊安, 沙如意, 方晟, 等. 苹果梨酵素发酵过程中的褐变与抗氧化活性[J]. 食品科学,2020,41(14):116−123. [Fan Haoan, Sha Ruyi, Fang Sheng, et al. Browning and antioxidant activity of apple-pear jiaosu during fermentation[J]. Food Science,2020,41(14):116−123. doi:  10.7506/spkx1002-6630-20190515-151
    [4] 赵芳芳, 莫雅雯, 蒋增良, 等. 功能性微生物酵素产品的研究进展[J]. 食品与发酵工业,2017,42(7):283−287. [Zhao Fangfang, Mo Yawen, Jiang Zengliang, et al. Research progress of functional microbial enzyme products[J]. Food and Fermentation Industries,2017,42(7):283−287.
    [5] 李艳春, 陈志鹏, 林伟伟, 等. 茶树连作障碍形成机制及调控措施研究进展[J]. 生态科学,2019,38(5):225−232. [Li Yanchun, Chen Zhipeng, Lin Weiwei, et al. Research progress on the formation mechanism and regulation measures of continuous cropping obstacle of tea plant[J]. Ecological Science,2019,38(5):225−232.
    [6] Wu T, Guo Y, Liu R, et al. Black tea polyphenols and polysaccharides improve body composition, increase fecal fatty acid, and regulate fat metabolism in high-fat diet-induced obese rats[J]. Food & Function,2016:2469.
    [7] 周金伟, 陈雪, 易有金, 等. 不同类型茶叶体外抗氧化能力的比较分析[J]. 中国食品学报,2014,14(8):262−269. [Zhou Jinwei, Chen Xue, Yi Youjin, et al. Comparative analysis on antioxidant capacities of different types of fermented teas in vitro[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(8):262−269.
    [8] 徐歆. 紫娟茶原花青素分离提纯、组分鉴定及肠胃稳定性研究[D]. 武汉: 湖北工业大学, 2019.

    Xu X. Study on separation, purification, component identification and gastrointestinal stability of proanthocyanidins from Zijuan tea[D]. Wuhan: Hubei University of Technology, 2019.
    [9] 金亮, 李小白, 丁华侨, 等. 不同种类茶叶抗氧化活性及茶汤颜色参数比较[J]. 中国食品学报,2016,16(2):242−250. [Jin Liang, Li Xiaobai, Ding Huaqiao, et al. Comparison on antioxidant activity and color parameters for different types of tea[J]. Journal of Chinese Institute of Food Science and Technology,2016,16(2):242−250.
    [10] 刘静敏, 史静兰, 鲁江, 等. 体外模拟胃肠消化过程中四种茶叶活性成分及抗氧化性变化规律[J]. 食品工业科技,2020,41(1):301−306. [Liu Jingmin, Shi Jinglan, Lu Jiang, et al. Changes of active constituents and antioxidant properties of four kinds of tea during gastrointestinal digestion in vitro[J]. Science and Technology of Food Industry,2020,41(1):301−306.
    [11] 薛宏坤, 谭佳琪, 王瑜, 等. 体外消化对蓝莓提取物抗氧化、抗癌及组分的影响[J]. 精细化工,2019,36(3):461−468. [Xue Hongkun, Tan Jiaqi, Wang Yu, et al. Effects of in vitro digestion on antioxidant activity, anti-cancer activity and composition of blueberry extracts[J]. Fine Chemicals,2019,36(3):461−468.
    [12] 陈希苗, 李美英, 许秋莉, 等. 体外模拟胃肠消化中山楂多酚及抗氧化活性的变化[J]. 食品科学,2019,40(5):31−37. [Chen Ximiao, Li Meiying, Xu Qiuli, et al. Changes in polyphenol contents and antioxidant activity in hawthorn (Crataegus pinnatifida Bunge) during simulated gastrointestinal digestion[J]. Food Science,2019,40(5):31−37. doi:  10.7506/spkx1002-6630-20170930-447
    [13] 从彦丽, 彭梦雪, 刘冬, 等. 柑橘在体外模拟胃肠消化过程中总多酚、总黄酮及总抗氧化活性的变化规律[J]. 食品科学,2016,37(17):96−103. [Cong Yanli, Peng Mengxue, Liu Dong, et al. Changes in total polyphenols, total flavonoids and antioxidant activity of citrus during in vitro gastrointestinal digestion process[J]. Food Science,2016,37(17):96−103. doi:  10.7506/spkx1002-6630-201617016
    [14] Tagliazucchi D, Verzelloni E, Bertolini D, et al. In vitro bio-accessibility and antioxidant activity of grape polyphenols[J]. Food Chemistry,2010,120(2):599−606. doi:  10.1016/j.foodchem.2009.10.030
    [15] 王谢祎, 翟宇鑫, 李倩, 等. 南酸枣在模拟消化过程中抗氧化活性及多酚含量分析[J]. 食品科学,2016,37(11):7−11. [Wang Xieyi, Zhai Yuxin, Li Qian, et al. Changes in antioxidant activity and phenol content in Choerospondias axillaris fruits during simulated gastrointestinal digestion[J]. Food science,2016,37(11):7−11. doi:  10.7506/spkx1002-6630-201611002
    [16] 徐洪宇, 蒯宜蕴, 詹壮壮, 等. 果皮中酚类物质含量、抗氧化活性及在体外消化过程中成分的变化[J]. 食品科学,2019,40(15):23−30. [Xu Hongyu, Kuai Yiyun, Zhan Zhuangzhuang, et al. Phenolic contents and antioxidant activity of fruit peels and changes in phenolic composition during in vitro simulated digestion[J]. Food Science,2019,40(15):23−30. doi:  10.7506/spkx1002-6630-20180806-046
    [17] 黎海彬. 山楂中有效成分含量测定的研究[J]. 食品科学,2008,29(8):475−477. [LI Haibin. Study on determination of effective Ingredients in crataegus pinatigide bge[J]. Food Science,2008,29(8):475−477. doi:  10.3321/j.issn:1002-6630.2008.08.110
    [18] 赵平, 刘俊英, 张月萍. 香草醛法测定原花青素物质的量浓度[J]. 中国食品添加剂,2011(3):219−224. [Zhao Ping, Liu Junying, Zhang Yueping. Determination of proanthocyanidins molar concentration using vanillin[J]. China Food Additives,2011(3):219−224. doi:  10.3969/j.issn.1006-2513.2011.03.038
    [19] 梁冬松, 王芳, 韦炎冶, 等. 高效液相色谱法同时测定发酵前后白参菌茶中六种活性成分[J]. 食品与发酵工业,2020,46(8):234−238. [Liang Dongsong, Wang Fang, Wei Yanye, et al. Simultaneous determination of changes in six active ingredients in Schizophyllum communeh fermented tea by HPLC[J]. Food and Fermentation Industries,2020,46(8):234−238.
    [20] Pinteus S, Silva J, Alves C, et al. Cytoprotective effect of seaweeds with high antioxidant activity from the peniche coast (Portugal)[J]. Food Chemistry,2017,218:591−599. doi:  10.1016/j.foodchem.2016.09.067
    [21] Arnao M B, Cano A, Acosta M. The hydrophilic and lipophilic contribution to total antioxidant activity[J]. Food Chemistry,2001,73(2):239−244. doi:  10.1016/S0308-8146(00)00324-1
    [22] Tohidi B, Rahimmalek M, Arzani A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of thymus species collected from different regions of Iran[J]. Food Chemistry,2017,220:153−161. doi:  10.1016/j.foodchem.2016.09.203
    [23] 李茹, 朱毅. 体外模拟胃、肠消化对萝卜苗中活性物质、抗氧化功能及代谢差异物的影响[J]. 中国食品学报,2019,19(4):61−71. [Li Ru, Zhu Yi. Effect of simulated gastrointestinal digestion in vitro on active substances, antioxidant function and differential metabolites of radish sprouts[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(4):61−71.
    [24] 李俶, 王谢祎, 翟宇鑫, 等. 多酚化合物体外模拟消化的稳定性分析[J]. 食品科学,2016,37(13):1−5. [Li Shu, Wang Xieyi, Zhai Yuxin, et al. Stability of polyphenols during in vitro digestion[J]. Food Science,2016,37(13):1−5. doi:  10.7506/spkx1002-6630-201613001
    [25] 谭和平, 邹燕, 叶善蓉, 等. 茶叶中的多酚类物质及其分析方法综述[J]. 中国测试技术,2008(4):4−11. [Tan Heping, Zou Yan, Ye Shanrong, et al. Review of tea polyphenols analyses for tea[J]. China Measurement & Testing Technology,2008(4):4−11.
    [26] Record I R, Lane J M. Simulated intestinal digestion of green and black teas[J]. Food Chemistry,2001,73(4):481−486. doi:  10.1016/S0308-8146(01)00131-5
    [27] Tenore G C, Campiglia P, Giannetti D, et al. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols[J]. Food Chemistry,2015,169(feb. 15):320−326.
    [28] Green R J, Murphy A S, Schulz B, et al. Common tea formulations modulatein vitro digestive recovery of green tea catechins[J]. Molecular Nutrition & Food Research,2007,51(9):1152−1162. doi:  10.1002/mnfr.200700086
    [29] Mochizuki M, Yamazaki S I, Kano K, et al. Kinetic analysis and mechanistic aspects of autoxidation of catechins[J]. Biochim Biophys Acta,2002,1569(1-3):35−44. doi:  10.1016/S0304-4165(01)00230-6
    [30] 葛艳琳. 山葡萄皮花青素超声波辅助提取及抗氧化活性研究[J]. 食品研究与开发,2018,39(10):48−55. [Ge Yanlin. Ultrasonic assisted extraction technology and its antioxidant activity of Vitis amurensis Rupr skin anthocyanin[J]. Food Research and Development,2018,39(10):48−55. doi:  10.3969/j.issn.1005-6521.2018.10.010
    [31] 万红霞, 孙海燕, 熊云霞, 等. 体外模拟胃肠消化过程中苹果和梨的抗氧化活性变化[J]. 广州城市职业学院学报,2019,13(3):68−73. [Wan Hongxia, Sun Haiyan, Xiong Yunxia, et al. Changes in antioxidant activity of apples and pears during in vitro simulated digestion process[J]. Journal of Guangzhou City Polytechnic,2019,13(3):68−73. doi:  10.3969/j.issn.1674-0408.2019.03.013
    [32] 王振帅, 陈善敏, 信思悦, 等. 朝鲜蓟花苞汁总酚、总黄酮、抗氧化性比较及体外模拟胃肠消化特性[J]. 食品科学,2019,40(19):136−142. [Wang Zhenshuai, Chen Shanmin, Xin Siyue, et al. Total phenols and flavonoids and antioxidant activity of artichoke (Cynara scolymus L.) bud juices before and after gastrointestinal digestion in vitro[J]. Food Science,2019,40(19):136−142. doi:  10.7506/spkx1002-6630-20181015-147
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  20
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-15
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。