苯酚-硫酸法测定酒蒸多花黄精多糖含量的优化

王迎香 唐子惟 彭腾 陈胡兰 高天宇 何沛煜 张军银

王迎香,唐子惟,彭腾,等. 苯酚-硫酸法测定酒蒸多花黄精多糖含量的优化[J]. 食品工业科技,2021,42(18):308−316. doi:  10.13386/j.issn1002-0306.2021010069
引用本文: 王迎香,唐子惟,彭腾,等. 苯酚-硫酸法测定酒蒸多花黄精多糖含量的优化[J]. 食品工业科技,2021,42(18):308−316. doi:  10.13386/j.issn1002-0306.2021010069
WANG Yingxiang, TANG Ziwei, PENG Teng, et al. Optimization of Phenol Sulfuric Acid Method for the Polysaccharide Content of Wine-steamed Polygonatum cyrtonema Hua[J]. Science and Technology of Food Industry, 2021, 42(18): 308−316. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010069
Citation: WANG Yingxiang, TANG Ziwei, PENG Teng, et al. Optimization of Phenol Sulfuric Acid Method for the Polysaccharide Content of Wine-steamed Polygonatum cyrtonema Hua[J]. Science and Technology of Food Industry, 2021, 42(18): 308−316. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2021010069

苯酚-硫酸法测定酒蒸多花黄精多糖含量的优化

doi: 10.13386/j.issn1002-0306.2021010069
基金项目: 四川省科技厅重点项目(2019YFS0024);四川省科技厅重点项目(2021YFN0015)
详细信息
    作者简介:

    王迎香(1997−),女,硕士研究生,研究方向:中药质量标准研究,E-mail:422803325@qq.com

    通讯作者:

    彭腾(1973−),男,博士,研究方向:天然药物化学,E-mail:56649923@qq.com

  • 中图分类号: TS255.1

Optimization of Phenol Sulfuric Acid Method for the Polysaccharide Content of Wine-steamed Polygonatum cyrtonema Hua

  • 摘要: 目的:建立苯酚-硫酸法测定酒蒸多花黄精中多糖含量的最优方法。方法:同时采用蒽酮-硫酸法、苯酚-硫酸法对酒蒸多花黄精的多糖含量进行测定,针对苯酚-硫酸法选取苯酚浓度、苯酚用量、硫酸用量、加热时间、加热温度进行单因素考察、利用响应面法进行分析、优化。结果:利用响应面进行F值分析,各因素对吸光度的影响大小为:硫酸用量>苯酚浓度>苯酚用量,加热温度及时间无明显影响。得到最佳工艺为苯酚用量1.5 mL、苯酚浓度4.5%、硫酸用量6.5 mL。对酒蒸多花黄精多糖进行测定,平均含量为8.50%,相对标准偏差为0.87%。结论:苯酚-硫酸法进一步优化后得到的方法能够准确测量酒蒸多花黄精中的多糖含量,为进行质量标准深入研究提供了参考价值。
  • 图  1  蒽酮-硫酸法波长扫描

    Figure  1.  Wavelength scanning of anthrone sulfuric acid method

    图  2  苯酚-硫酸法波长扫描

    Figure  2.  Wavelength scanning of anthrone sulfuric acid method

    图  3  蒽酮-硫酸法标准曲线

    Figure  3.  Standard curve of anthrone sulfuric acid method

    图  4  苯酚-硫酸法标准曲线

    Figure  4.  Standard curve of phenol sulfuric acid method

    图  5  时间扫描曲线

    Figure  5.  Time scan curve

    图  6  苯酚用量对吸光度的影响

    Figure  6.  Effect of phenol dosage on absorbance

    图  7  苯酚浓度对吸光度的影响

    Figure  7.  Effect of phenol concentration on absorbance

    图  8  硫酸用量对吸光度的影响

    Figure  8.  Effect of sulfuric acid dosage on absorbance

    图  9  加热温度对吸光度的影响

    Figure  9.  Effect of heating temperature on absorbance

    图  10  加热时间对吸光度的影响

    Figure  10.  Effect of heating time on absorbance

    图  11  各因素交互作用影响的等高线图及响应面图

    Figure  11.  Contour map and response surface map of interaction of various factors

    表  1  Box-Behnken试验设计

    Table  1.   Box-Behnken experimental designs

    因素
    水平
    −101
    A苯酚用量(mL)1.01.52.0
    B苯酚浓度(%)456
    C硫酸用量(mL)678
    下载: 导出CSV

    表  2  精密度测试结果

    Table  2.   Precision test results

    方法
    试验次数RSD(%)
    12345
    蒽酮-硫酸法0.27610.27500.27500.27500.27610.20
    苯酚-硫酸法0.53120.53130.53120.53130.53120.01
    下载: 导出CSV

    表  3  重现性测试结果

    Table  3.   Reproducibility test results

    方法
    试验次数RSD(%)
    12345
    蒽酮-硫酸法0.27500.28210.28730.27500.27801.84
    苯酚-硫酸法0.58280.53320.51710.53250.53121.73
    下载: 导出CSV

    表  4  回收率试验结果

    Table  4.   Recovery test results

    方法序号样品含量(mg)加标量(mg)测得量(mg)回收率(%)平均回收率(%)RSD(%)
    蒽酮-硫酸法



    139.961049.0998.25
    239.962057.2795.51
    339.963066.7195.3696.741.38
    439.964078.3097.93
    539.965086.9696.66
    苯酚-硫酸法



    137.991048.05100.12
    237.992056.9798.24
    337.993065.9697.0198.641.19
    437.994077.4799.33
    537.995086.6998.52
    下载: 导出CSV

    表  5  响应面试验设计及结果

    Table  5.   Design and results of response surface test

    序号
    因素吸光度
    A苯酚用量B苯酚浓度C硫酸用量
    1−1010.5628
    2−1−100.5057
    30000.7014
    40−110.5517
    501−10.3094
    60000.6827
    71010.6256
    81100.6280
    90−1−10.2894
    101−100.6094
    1110−10.3747
    120000.7153
    130000.6911
    140000.6749
    15−1100.6358
    160110.6889
    17−10−10.3435
    下载: 导出CSV

    表  6  方差分析和显著性差异结果

    Table  6.   Analysis of variance and significant difference results

    项目平方和自由度均方FP显著性
    模型0.3390.03766.69<0.0001***
    A4.508E-00314.508E-0038.170.0244*
    B0.01110.01119.780.0030**
    C0.1110.11269.86<0.0001***
    AB3.108E-00313.108E-0035.630.0494*
    AC2.496E-00412.496E-0040.450.5228
    BC4.733E-00314.733E-0038.580.0221*
    A27.455E-00317.455E-00313.510.0079**
    B20.01310.01324.160.0017**
    C20.1310.13231.89<0.0001***
    残差3.864E-00375.512E-004
    失拟项2.859E-00339.529E-0043.790.1153
    纯误差1.005E-00342.513E-004
    总和0.2416
    确定系数0.9885
    校正确定系数0.9737
    注:P<0.05为有显著统计学差异; P<0.01 为有极显著统计学差异;P<0.001为高度显著统计学差异。
    下载: 导出CSV
  • [1] 吕品田, 段昕波. 黄精多糖对MFC胃癌荷瘤小鼠抑瘤及免疫调节作用[J]. 中成药,2020,42(8):2169−2172. [Lv P T, Duan X B. Antitumor and immunomodulatory effects of Polygonatum polysaccharide on MFC gastric cancer bearing mice[J]. Chinese Traditional Patent Medicine,2020,42(8):2169−2172. doi:  10.3969/j.issn.1001-1528.2020.08.041
    [2] 刘超, 徐飞, 吴涛, 等. 黄精多糖对TNF-α作用的大鼠成骨细胞增殖、凋亡影响及其机制研究[J]. 中国骨质疏松杂志,2020,26(8):1147−1153, 1158. [Liu C, Xu F, Wu T, et al. Effect of polygonatum polysaccharide on prolife ration and apoptosis of rat oste oblasts induce d by TNF-α[J]. Chinese Journal of Osteoporosis,2020,26(8):1147−1153, 1158. doi:  10.3969/j.issn.1006-7108.2020.08.011
    [3] Liu J, Zhang H, Ji B, et al. A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells[J]. Food Funct,2014,5(5):1038−1049. doi:  10.1039/C3FO60524H
    [4] Kato A, Miura T. Hypoglycemic activity of Polygonati rhizoma in normal and diabetic mice[J]. Biological & Pharmaceutical Bulletin,1993,16(11):1118−1120.
    [5] 王秋丽, 童小慧, 李小东, 等. 多花黄精多糖对STZ诱导的Ⅰ型糖尿病小鼠影响作用研究[J]. 云南中医学院学报,2019,42(1):1−7. [Wang Q L, Tong X H, Li X D, et al. Hypoglycemic effects of polysaccharide of Polygonatum cyrtonema Hua on type1 diabetic mice induced by STZ[J]. Journal of Yunnan University of Traditional Chinese Medicine,2019,42(1):1−7.
    [6] Park D S, Shin S M, Leem K H, et al. Effects of Polygonati rhizoma extracts on the collagenase activity and procollagen synthesis in Hs68 human fibroblasts and tyrosinase activity[J]. The Korea Journal of Herbology,2013,2803:1−5.
    [7] Zheng S Y. Protective effect of Polygonatum sibiricum polysaccharide on D-galactose-induced aging rats model[J]. Sci Rep. 2020, 10(1): 2246.
    [8] Wang Z F, Hu Y Q, Wu Q G, et al. Virtual screening of potential anti-fatigue mechanism of Polygonati rhizoma based on network pharmacology[J]. Combinatorial Chemistry & High Throughput Screening,2019,229:612−614.
    [9] 幸春容, 胡彦君, 李柏群, 等. 大健康产业背景下中药保健食品发展浅析[J]. 中国药业,2020,29(18):19−21. [Xing C R, Hu Y Q, Li B Q, et al. Analysis on the development of traditional chinese health food under the background of enlarged health industry[J]. China Pharmaceuticals,2020,29(18):19−21. doi:  10.3969/j.issn.1006-4931.2020.18.006
    [10] 萨翼, 陈广耀, 王进博, 等. 已批准增强免疫力功能的中药类保健食品现状及监管建议[J]. 中国中药杂志,2019,44(5):885−890. [Sa Y, Chen G Y, Wang J B, et al. Current situation analysis and supervision suggestions of traditional Chinese medicine health food claiming to enhance immune function[J]. China Journal of Chinese Materia Medica,2019,44(5):885−890.
    [11] Sharma N, Kumar P, Giri R. Polysaccharides like pentagalloylglucose, parishin a and stevioside inhibits the viral entry by binding the Zika virus envelope protein[J]. Journal of Biomolecular Structure and Dynamics 2020, 724: 1-13.
    [12] Hou C Y, Chen L L, Yang L Z, et al. An insight into anti-inflammatory effects of natural polysaccharides[J]. International Journal of Biological Macromolecules,2020,153:248−255. doi:  10.1016/j.ijbiomac.2020.02.315
    [13] Zhang N, Liang T S, Jin Q, et al. Chinese yam(Dioscorea opposita Thunb.) alleviates antibiotic-associated diarrhea, modifies intestinal microbiota, and increases the level of short chain fatty acids in mice[J]. Food Research International,2019,122:191−198. doi:  10.1016/j.foodres.2019.04.016
    [14] Li S, Qi Y, Chen L, et al. Effects of Panax ginseng polysaccharides on the gut microbiota in mice with antibiotic-associated diarrhea[J]. International Journal of Biological Macromolecules, 2019, 124: 931−937.
    [15] 刘丹. 对多糖测定方法的探讨[J]. 四川文理学院学报,2008,18(2):49−51. [Liu D. An analysis of amylose determining method[J]. Sichuan University of Arts and Science Journal,2008,18(2):49−51. doi:  10.3969/j.issn.1674-5248.2008.02.016
    [16] 李计萍. 中药新药研究中多糖含量测定方法探讨[J]. 中国中药杂志,2014,39(17):3392−3394. [Li J P. Discussion on polysaccharide determination methods in new Chinese drug research[J]. China Journal of Chinese Materia Medica,2014,39(17):3392−3394.
    [17] 杨勤, 谷文超, 周浓, 等. 苯酚-硫酸法与蒽酮-硫酸法测定地参多糖的比较研究[J]. 食品科技,2020,45(1):343−350. [Yang Q, Gu W C, Zhou N, et al. Comparison of phenol-sulfuric acid and anthrone-sulfuric methods for determination of polysaccharide in Lycopus Lucidus Tilrcz. var. hirtus Regel[J]. Food Science And Technology,2020,45(1):343−350.
    [18] 孙晓玲. 蒽酮-硫酸法测定秋葵多糖条件的优化[J]. 中国食品添加剂,2019,30(9):154−158. [Sun X L. Optimization of polysaccharide determination in okra by anthrone-sulfuric acid method[J]. China Food Additives,2019,30(9):154−158.
    [19] 朱新焰, 丛琨, 石亚娜, 等. 不同初加工方法对黄精品质的影响研究[J]. 中国药房,2019,30(18):2537−2541. [Zhu X Y, Cong K, Shi Y N, et al. Study on the effects of different primary processing methods on the quality of Polygonatum sibiricum[J]. China Pharmacy,2019,30(18):2537−2541.
    [20] 赵志君, 任婧. 超声波协同纤维素酶提取黄精多糖的工艺优化研究[J]. 农产品加工,2019(13):41−44. [Zhao Z J, Ren Q. Study on the extraction of polysaccharides from Polygonatum with cellulase enzyme under ultrasonic wave[J]. Farm Products Processing,2019(13):41−44.
    [21] 王彦平, 娄芳慧, 陈月英, 等. 苯酚-硫酸法测定紫山药多糖含量的条件优化[J]. 食品研究与开发,2021,42(4):170−174. [Wang Y P, Lou F H, Chen Y Y, et al. Optimization of analytical conditions for the determination of polysaccharides contents in purple yam by phenol-sulfuric acid method[J]. Food Research and Development,2021,42(4):170−174.
    [22] 韩笑. 荆瑜叶饮料的基础研究及产品初步开发[D]. 成都: 成都中医药大学, 2018.

    Han X. The basic research and product development of Jingyu leaf beverage[D]. Chengdu: Chengdu University of Traditional Chinese Medicine, 2018.
    [23] 吕亭亭, 杨志华, 韩永红, 等. 响应面法优化苯酚-硫酸法测定泡桐花多糖含量[J]. 化学与生物工程,2020,37(7):62−68. [Lv T T, Yang Z H, Han Y H, et al. Optimization in phenol-sulfuric acid method for determination of content of Paulowniae flos polysaccharide by response surface methodology[J]. Chemistry and Bioengineering,2020,37(7):62−68.
    [24] 胡治远, 刘素纯, 刘石泉. 冠突散囊菌发酵液多糖测定条件优化研究[J]. 湖南城市学院学报(自然科学版),2019,28(2):61−65. [Hu Z Y, Liu S C, Liu S Q. Study on optimization of the conditions for the determination of polysaccharide in the fermentation broth of Eurotium cristatum[J]. Journa l of Hunan City University,2019,28(2):61−65.
    [25] 马敏, 刘嘉宝, 陈兰兰. 苯酚-硫酸法测定多糖含量显色条件的优化与改进[J]. 江苏农业科学,2015,43(12):323−324. [Ma M, Liu J B, Chen L L. Optimization and improvement of chromogenic conditions for determination of polysaccharide content by phenol sulfuric acid method[J]. Jiangsu Agricultural Science,2015,43(12):323−324.
    [26] 刑其毅. 基础有机化学[M]. 北京: 高等教育出版社, 2005: 459.

    Xing Q Y. Basic organic chemistry[M]. Beijing: Higher Education Press, 2005: 459.
    [27] 孙晓燕, 蔡昌利, 徐丽莉, 等. 多糖含量测定方法的比较[J]. 现代中药研究与实践,2015,29(3):58−62. [Sun X Y, Cai C L, Xu L L, et al. Comparison of methods for determination of polysaccharide content[J]. Research and Practice on Chinese Medicines,2015,29(3):58−62.
    [28] 蔡兴航, 谢培, 史鑫波, 等. Box-Behnken响应面优化酒黄精多糖的超声提取工艺及其抗氧化活性研究[J]. 陕西农业科学,2019,65(8):25−29. [Cai X H, Xie P, Shi X B, et al. Ultrasound extraction process for wine polygonatum polysaccharide and study on anti-oxidation activities by box behnken response surface optimization[J]. Shanxi Jourinal of Agricultural Sciences,2019,65(8):25−29. doi:  10.3969/j.issn.0488-5368.2019.08.007
    [29] 张遥遥. 黄精多糖的提纯、修饰及其理化性质研究[D]. 北京: 北京林业大学, 2019.

    Zhang Y Y. Study on purification, modification and physicochemical properties of polysaccharides from Polygonatum sibiricum[J]. Beijing Forestry University, 2019.
    [30] 刘小攀, 田启建, 田春莲. 黄精多糖酶法脱蛋白的工艺研究[J]. 西北林学院学报,2016,31(1):238−242. [Liu X P, Tian Q J, Tian C L. Deproteinization of Polygonatum polysacharid[J]. Journal of Northwest Forestry University,2016,31(1):238−242. doi:  10.3969/j.issn.1001-7461.2016.01.41
  • 加载中
图(11) / 表(6)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  23
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-13
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。