超声处理对羊乳中大肠杆菌和金黄色葡萄球菌的杀灭效果

任荣 张安琪 张富新 刘玉芳 王维哲 贺超 刘莹莹 王毕妮

任荣,张安琪,张富新,等. 超声处理对羊乳中大肠杆菌和金黄色葡萄球菌的杀灭效果[J]. 食品工业科技,2021,42(18):126−133. doi:  10.13386/j.issn1002-0306.2020120270
引用本文: 任荣,张安琪,张富新,等. 超声处理对羊乳中大肠杆菌和金黄色葡萄球菌的杀灭效果[J]. 食品工业科技,2021,42(18):126−133. doi:  10.13386/j.issn1002-0306.2020120270
REN Rong, ZHANG Anqi, ZHANG Fuxin, et al. Effect of Ultrasonic Treatment on the Bactericidal Effect of Escherichia coli and Staphylococcus aureus in Goat Milk[J]. Science and Technology of Food Industry, 2021, 42(18): 126−133. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120270
Citation: REN Rong, ZHANG Anqi, ZHANG Fuxin, et al. Effect of Ultrasonic Treatment on the Bactericidal Effect of Escherichia coli and Staphylococcus aureus in Goat Milk[J]. Science and Technology of Food Industry, 2021, 42(18): 126−133. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120270

超声处理对羊乳中大肠杆菌和金黄色葡萄球菌的杀灭效果

doi: 10.13386/j.issn1002-0306.2020120270
基金项目: 西安市科技计划农业技术研发项目(20NYYF0014,20NYYF0018);陕西省重点研发计划重点产业创新链项目(2019ZDLNY06-06)
详细信息
    作者简介:

    任荣(1997−),女,硕士研究生,研究方向:乳品科学,E-mail:18483681752@163.com

    通讯作者:

    王毕妮(1980−),女,博士,教授,研究方向:乳品科学,E-mail:biniwang@snnu.edu.cn

  • 中图分类号: TS252.41

Effect of Ultrasonic Treatment on the Bactericidal Effect of Escherichia coli and Staphylococcus aureus in Goat Milk

  • 摘要: 以新鲜羊乳为原料,研究了超声处理对新鲜羊乳中大肠杆菌和金黄色葡萄球菌的杀菌效果,为羊乳的非热杀菌方法及产品开发提供参考。基于单因素实验,采用Box-Behnken试验设计研究了超声功率、温度及时间对羊乳中大肠杆菌和金黄色葡萄球菌杀菌效果的影响,并以大肠杆菌和金黄色葡萄球菌的灭菌对数值为响应值,通过响应面分析对超声处理条件进行了优化,并研究了超声处理和巴氏杀菌处理对两种菌株菌体的破坏情况以及贮藏期内菌落数的变化。结果表明,超声处理羊乳的最佳条件为超声功率530 W,超声温度60 ℃,超声时间30 min,在此条件下对大肠杆菌和金黄色葡萄球菌的灭菌对数值可到达7.55和6.53。与巴氏杀菌处理相比,超声处理能更大程度地破坏菌体细胞表面结构,杀菌效果更好,并能将羊乳贮藏期从巴氏杀菌处理后的14 d延长至21 d,品质要求仍符合国家标准。
  • 图  1  不同超声功率、温度和时间对新鲜羊乳中大肠杆菌和金黄色葡萄球菌的灭菌效果影响

    Figure  1.  Effects of different ultrasonic power, temperature, and time on inactivation of E. coli and S. aureus in fresh goat milk

    图  2  各因素交互作用对大肠杆菌和金黄色葡萄球菌Nk值影响的响应面图

    Figure  2.  Response surface plots of the interaction of various factors on Nk value of E. coli and S. aureus

    图  3  不同杀菌处理对大肠杆菌细胞表面结构的影响

    Figure  3.  Effects of different sterilization treatments on cell surface structure of E. coli

    注:A:对照组;B:巴氏杀菌组;C:超声处理组;图4同。

    图  4  不同杀菌处理对金黄色葡萄球菌细胞表面结构的影响

    Figure  4.  Effects of different sterilization treatments on cell surface structure of S. aureus

    表  1  Box-Behnken响应面设计试验因子与水平

    Table  1.   Variables and levels in response surface design

    水平
    因素
    A超声功率(W)B超声温度(℃)C超声时间(min)
    −14004010
    05005020
    16006030
    下载: 导出CSV

    表  2  响应面试验设计与结果

    Table  2.   Design and results of response surface experiment

    实验号
    因素y1(大肠杆菌灭菌对数值Nk

    (lg CFU·mL−1
    y2(金黄色葡萄球菌灭菌对数值Nk
    (lg CFU·mL−1
    ABC
    160040200.421.18
    260050304.904.16
    340060205.064.94
    460050101.191.20
    550050202.122.66
    650050202.101.73
    750040303.683.28
    850050201.801.53
    950050201.861.65
    1050040100.060.12
    1160060206.156.24
    1250050201.551.56
    1350060105.795.36
    1450060307.606.54
    1540040200.150.35
    1640050100.380.80
    1740050302.313.10
    下载: 导出CSV

    表  3  多元方程方差分析表

    Table  3.   ANOVA for the quadratic equation

    方差来源平方和 自由度 均方 F值 P
    E. coliS. aureusE. coliS. aureusE. coliS. aureusE. coliS. aureusE. coliS. aureus
    模型85.8965.72 99 9.547.30 76.8141.81 <0.0001***<0.0001***
    A2.831.61112.831.6122.799.220.0020**0.0189*
    B51.4641.091151.4641.09414.17235.25<0.0001***<0.0001***
    C15.3211.571115.3211.57123.2966.23<0.0001***<0.0001***
    AB0.170.055110.790.116.380.620.28290.5914
    AC0.790.11110.790.116.380.620.0395*0.4557
    BC0.820.96110.820.966.595.500.0371*0.0496*
    A21.110.025111.110.0258.960.140.0201*07175
    B210.428.591110.428.5983.8849.18<0.0001***0.0002**
    C22.851.35112.851.3522.977.720.0020**0.0274*
    残差0.871.22770.120.17
    失拟项0.650.33330.220.113.900.490.11080.7080
    纯误差0.220.89440.0550.22
    总离差86.7666.941616
    注:*差异显著(P<0.05),**差异较显著(P<0.01),***差异极显著(P<0.0001)。
    下载: 导出CSV

    表  4  不同杀菌处理对羊乳贮藏过程中微生物指标的影响(lg CFU/mL)

    Table  4.   Effects of different sterilization treatments on the microbial indexes of goat milk during storage (lg CFU/mL)

    贮藏天数
    (d)
    菌落总数TPC 大肠杆菌TCC 金黄色葡萄球菌S.aureus
    原乳R巴杀乳P超声乳US原乳R巴杀乳P超声乳US原乳R巴杀乳P超声乳US
    0 5.15±0.11c 2.76±0.08e 0.74±0.06e 3.47±0.01b 0 0 3.39±0.40c 0 0
    1 5.54±0.12b 2.72±0.08e 0.88±0.12d 3.58±0.14b 0 0 4.30±0.17b 0 0
    7 8.64±0.15a 3.36±0.09d 0.90±0.09d 7.44±0.22a 0 0 6.64±0.05a 0 0
    14 5.16±0.12c 1.30±0.13c 2.56±0.18c 0 0.67±0.12c 0
    17 5.41±0.11b 1.86±0.15b 3.15±0.13b 0 1.93±0.07b 0
    21 5.97±0.16a 2.70±0.2a 3.47±0.37a 0 2.20±0.19a 0
    注:“−”表示未进行检测。结果以平均值±标准差表示,同一列不同字母表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 刘翠, 潘健存, 李媛媛, 等. 人乳营养成分及其生理功能[J]. 食品工业科技,2019,40(1):286−291. [Liu C, Pan J C, Li Y Y, et al. Nutrients and physiological functions of human milk[J]. Science and Technology of Food Industry,2019,40(1):286−291.
    [2] 李龙柱, 张富新, 贾润芳, 等. 不同哺乳动物乳中主要营养成分比较的研究进展[J]. 食品工业科技,2012,33(19):396−400. [Li L Z, Zhang F X, Jia R F, et al. Research progress of comparison of major nutritional components for different mammalian milk[J]. Science and Technology of Food Industry,2012,33(19):396−400.
    [3] 李贺, 马莺. 羊乳营养及其功能性特性[J]. 中国乳品工业,2017,45(1):29−33, 49. [Li H, Ma Y. Nutrition and functional properties of goat milk[J]. China Dairy Industry,2017,45(1):29−33, 49. doi:  10.3969/j.issn.1001-2230.2017.01.008
    [4] 马玉琴, 宋礼, 崔广智, 等. 羊乳作为婴幼儿配方乳粉乳源的研究进展[J]. 乳业科学与技术,2019,42(2):50−54. [Ma Y Q, Song L, Cui G Z, et al. Recent advances in goat milk as a milk source for infant formula[J]. Journal of Dairy Science and Technology,2019,42(2):50−54.
    [5] De Souza J V, Dias F S. Protective, technological, and functional properties of select autochthonous lactic acid bacteria from goat dairy products[J]. Current Opinion in Food Science,2017,13:1−9.
    [6] Crotta M, Paterlini F, Rizzi R, et al. Consumers’ behavior in quantitative microbial risk assessment for pathogens in raw milk: Incorporation of the likelihood of consumption as a function of storage time and temperature[J]. Journal of dairy science,2016,99(2):1029−1038. doi:  10.3168/jds.2015-10175
    [7] Srimagal A, Ramesh T, Sahu J K. Effect of light emitting diode treatment on inactivation of Escherichia coli in milk[J]. LWT-Food Science and Technology,2016,71:378−385. doi:  10.1016/j.lwt.2016.04.028
    [8] Walter L, Knight G, Ng S Y, et al. Kinetic models for pulsed electric field and thermal inactivation of Escherichia coli and Pseudomonas fluorescens in whole milk[J]. International Dairy Journal,2016,57:7−14. doi:  10.1016/j.idairyj.2016.01.027
    [9] Claeys W L, Van Loey A M, Hendrickx M E. Intrinsic time temperature integrators for heat treatment of milk[J]. Trends in Food Science & Technology,2002,13(9-10):293−311.
    [10] Choudhary R, Bandla S. Ultraviolet pasteurization for food industry[J]. International Journal of Food Science & Nutrition Engineering,2012,2(1):12−15.
    [11] 樊丽华, 侯福荣, 马晓彬, 等. 超声波及其辅助灭菌技术在食品微生物安全控制中的应用[J]. 中国食品学报,2020,20(7):326−336. [Fan L H, Hou F R, Ma X B, et al. The application of ultrasound and assistant sterilization technologies in food microbiological control: A review[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(7):326−336.
    [12] 张琪, 朱丹, 牛广财, 等. 不同杀菌方式对沙棘果浆品质的影响[J]. 食品与发酵工业,2019,45(19):166−172. [Zhang Q, Zhu D, Niu G C, et al. Effects of different sterilization methods on fruit pulp quality of sea buckthorn[J]. Food and Fermentation Industries,2019,45(19):166−172.
    [13] Jalilzadeh A, Hesari J, Peighambardoust S H, et al. The effect of ultrasound treatment on microbial and physicochemical properties of Iranian ultrafiltered feta-type cheese[J]. Journal of Dairy Science,2018,101(7):5809−5820. doi:  10.3168/jds.2017-14352
    [14] Monteiro S H M C, Silva E K, Alvarenga V O, et al. Effects of ultrasound energy density on the non-thermal pasteurization of chocolate milk beverage[J]. Ultrasonics Sonochemistry,2018,42:1−10. doi:  10.1016/j.ultsonch.2017.11.015
    [15] Sfakianakis P, Topakas E, Tzia C. Comparative study on high-intensity ultrasound and pressure milk homogenization: Effect on the kinetics of yogurt fermentation process[J]. Food and Bioprocess Technology,2015,8(3):548−557. doi:  10.1007/s11947-014-1412-9
    [16] 董自艳, 戴翚, 马仕洪, 等. 紫外-可见分光光度法快速确定细菌菌液的浓度[J]. 中国药品标准,2014(2):120−121. [Dong Z Y, Dai H, Ma S H, et al. Bacterial counts by UV-vis spectrophotometry[J]. Drug Standards of China,2014(2):120−121.
    [17] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 4789.3-2016食品微生物学检验 大肠菌群计数[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. GB 4789.3-2016 Food microbiology inspection, counting of coliform[S]. Beijing: China Standards Press, 2016.
    [18] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 4789.10-2016食品微生物学检验 金黄色葡萄球菌检验[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. GB 4789.10-2016 Food microbiology inspection, inspection of Staphylococcus aureus[S]. Beijing: China Standards Press, 2016.
    [19] 胡春辉, 徐青, 孙璇, 等. 几种典型扫描电镜生物样本制备[J]. 湖北农业科学,2016(20):5389−5392. [Hu C H, Xu Q, Sun X, et al. Several biological typical samples preparation methods of scanning electron microscope[J]. Hubei Agricultural Sciences,2016(20):5389−5392.
    [20] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 4789.2-2016食品微生物学检验菌落总数测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission of the People’s Republic of China, State Food and Drug Administration. GB 4789.2-2016 Food microbiology inspection, determination of the total number of bacterial colonies[S]. Beijing: China Standard Press, 2016.
    [21] 林祎, 丁甜, 刘东红, 等. 声热复合对沙门氏菌的杀菌效果研究[J]. 食品工业科技,2017,38(7):121−126. [Lin Y, Ding T, Liu D H, et al. Sterilization effects of thermo-sonication treatment on Salmonella[J]. Science and Technology of Food Industry,2017,38(7):121−126.
    [22] 薛海晓, 芦晶, 张书文, 等. 生鲜羊乳脂肪酶活力研究[J]. 中国食品学报,2014,14(12):13−17. [Xue H X, Lu J, Zhang S W, et al. Studies on lipase activity of fresh goat milk[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(12):13−17.
    [23] 徐连应, 侯院林, 王毕妮, 等. 加工方式对羊乳中类胰岛素生长因子I浓度的影响[J]. 食品与发酵工业,2017,43(2):62−66. [Xu L Y, Hou Y L, Wang B N, et al. Effects of processing modes on the concentration of insulin-like growth factor-I in goat milk[J]. Food and Fermentation Industries,2017,43(2):62−66.
    [24] Tidona F, Sekse C, Criscione A, et al. Antimicrobial effect of donkeys’ milk digested in vitro with human gastrointestinal enzymes[J]. International Dairy Journal,2011,21(3):158−165. doi:  10.1016/j.idairyj.2010.10.008
    [25] Yolmeh M, Jafari S M. Applications of response surface methodology in the food industry processes[J]. Food and Bioprocess Technology,2017,10(3):413−433. doi:  10.1007/s11947-016-1855-2
    [26] Hong E J, Kang D H. Effect of sequential dry heat and hydrogen peroxide treatment on inactivation of Salmonella typhimurium on alfalfa seeds and seeds germination[J]. Food Microbiology,2016,53:9−14. doi:  10.1016/j.fm.2015.08.002
    [27] Khanal S N, Anand S, Muthukumarappan K, et al. Inactivation of thermoduric aerobic sporeformers in milk by ultrasonication[J]. Food Control,2014,37:232−239. doi:  10.1016/j.foodcont.2013.09.022
    [28] 钱静亚, 马海乐, 李树君, 等. 温度、 超声、nisin协同脉冲磁场杀灭枯草芽孢杆菌的研究[J]. 现代食品科技,2013,29(12):2970−2974. [Qian J Y, Ma H L, Li S J, et al. Inactivation of Bacillus subtilis by pulsed magnetic field combined with temperature, ultrasonic, and nisin[J]. Modern Food Science and Technology,2013,29(12):2970−2974.
    [29] 盖作启, 李冰, 李琳, 等. 非热杀菌技术在牛奶加工中的研究进展[J]. 食品工业科技,2009(1):329−332. [Gai Z Q, Li B, Li L, et al. Advancement of non-thermal sterilization technologies in milk industry[J]. Science and Technology of Food Industry,2009(1):329−332.
    [30] Bermúdez-Aguirre D, Barbosa-Cánovas G V. Study of butter fat content in milk on the inactivation of Listeria innocua ATCC 51742 by thermo-sonication[J]. Innovative Food Science & Emerging Technologies,2008,9(2):176−185.
    [31] Bermúdez-Aguirre D, Mawson R, Versteeg K, et al. Composition properties, physicochemical characteristics and shelf life of whole milk after thermal and thermo-sonication treatments[J]. Journal of Food Quality,2009,32(3):283−302. doi:  10.1111/j.1745-4557.2009.00250.x
    [32] 林祎. 声热复合处理对液态乳中致病菌的杀菌效果与理化特性影响研究[D]. 浙江: 浙江大学, 2018.

    Lin Y. Effect of thermo-sonication treatment on pathogens inactivation and physicochemical properties of liquid milk[D]. Zhejiang: Zhejiang University, 2018.
    [33] 肖容雍, 赵鹤飞, 李铭. 常温即食食品的主要杀菌技术研究进展[J]. 农产品加工,2018(12):64−69. [Xiao R Y, Zhao H F, Li M. Advances in main sterilization technologies for ready-to-eat food[J]. Farm Products Processing,2018(12):64−69.
    [34] 付丽, 赵艳, 申晓琳, 等. 超声波处理对鲜牛乳均质效果的影响[J]. 现代牧业,2019,3(4):15−21. [Fu L, Zhao Y, Shen X L, et al. Effect of ultrasonic treatment on homogenization of fresh milk[J]. Modern Animal Husbandry,2019,3(4):15−21. doi:  10.3969/j.issn.1008-3111.2019.04.004
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  20
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 网络出版日期:  2021-08-06
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。