响应面法优化托盘根总皂苷提取工艺及抗氧化活性研究

杨秀东 白子凡 徐永涛 梁倍 周鸿立

杨秀东,白子凡,徐永涛,等. 响应面法优化托盘根总皂苷提取工艺及抗氧化活性研究[J]. 食品工业科技,2021,42(18):183−189. doi:  10.13386/j.issn1002-0306.2020120266
引用本文: 杨秀东,白子凡,徐永涛,等. 响应面法优化托盘根总皂苷提取工艺及抗氧化活性研究[J]. 食品工业科技,2021,42(18):183−189. doi:  10.13386/j.issn1002-0306.2020120266
YANG Xiudong, BAI Zifan, XU Yongtao, et al. Optimization of Extraction Process of Total Saponins from Rubus crataegifolius Bunge. Root by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 183−189. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120266
Citation: YANG Xiudong, BAI Zifan, XU Yongtao, et al. Optimization of Extraction Process of Total Saponins from Rubus crataegifolius Bunge. Root by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2021, 42(18): 183−189. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120266

响应面法优化托盘根总皂苷提取工艺及抗氧化活性研究

doi: 10.13386/j.issn1002-0306.2020120266
基金项目: 吉林省化工学院科科学技术研究项目(2020-09,2020-006);吉林省教育厅科学研究项目(JJKH20210239KJ)
详细信息
    作者简介:

    杨秀东(1981−),男,博士,副教授,研究方向:天然产物及其生物活性研究,E-mail:yangwt_1981@163.com

    通讯作者:

    周鸿立(1967−),女,博士,教授,研究方向:天然产物活性成分分析与结构鉴定,E-mail:zhouhongli@jlict.edu.cn

  • 中图分类号: TS255.1

Optimization of Extraction Process of Total Saponins from Rubus crataegifolius Bunge. Root by Response Surface Methodology and Its Antioxidant Activity

  • 摘要: 为进一步开发托盘根的功能性成分和药用价值。本研究以托盘的干燥根为试材,通过考察提取时间、乙醇体积分数、液料比等因素对托盘根总皂苷得率的影响,选用响应面法(RSM)探究托盘根总皂苷的最佳提取工艺,且研究了托盘根总皂苷提取物的体外抗氧化能力。结果表明:托盘根总皂苷的最优提取条件为:提取时间2 h,乙醇体积分数71%,液料比28:1 mL/g,在该条件下测得托盘根总皂苷的得率为3.37%,与预测值3.49%相近。托盘根总皂苷提取物对DPPH·、ABTS+·、${\rm{O}}_2^-\cdot $清除率的IC50值分别为0.0782、0.2770和0.9954 mg/mL。因此,RSM优化托盘根总皂苷提取工艺有效可靠,稳定可行,本文为托盘根总皂苷作为天然抗氧化剂的开发与利用提供科学依据。
  • 图  1  液料比对总皂苷得率的影响

    Figure  1.  Effect of liquid-solid ratio on total saponin yield

    图  2  乙醇体积分数对总皂苷得率的影响

    Figure  2.  Effect of ethanol concentrations on total saponin yield

    图  3  提取时间对总皂苷得率的影响

    Figure  3.  Effect of extraction time on total saponin yield

    图  4  提取温度对总皂苷得率的影响

    Figure  4.  Effect of extraction temperatures on total saponin yield

    图  5  各因素交互作用对托盘根总皂苷得率的影响

    Figure  5.  Effects of interaction of various factors on yield of total saponins from Rubus crataegifolius

    图  6  DPPH·清除能力

    Figure  6.  DPPH free radical scavenging ability

    图  7  ABTS+·清除能力

    Figure  7.  ABTS+· scavenging ability

    图  8  ${\rm{O}}_2^-\cdot $清除能力

    Figure  8.  Superoxide anion radical scavenging ability

    表  1  试验因素与水平

    Table  1.   Experimental factors and levels

    因素编码编码水平
    −101
    液料比(mL/g)A20:130:140:1
    乙醇体积分数(%)B607080
    提取时间(h)C1.522.5
    下载: 导出CSV

    表  2  响应面分析试验方案及结果

    Table  2.   Results of response surface experiment

    实验号ABCY总皂苷得率(%)
    130:17023.576
    220:1701.52.508
    330:1801.52.998
    430:1802.53.016
    530:17023.173
    620:16022.937
    740:1701.52.722
    840:1702.53.343
    920:18022.991
    1030:1601.52.901
    1130:1602.53.113
    1240:18023.385
    1340:16022.739
    1430:17023.40:19
    1530:17023.40:13
    1630:17023.664
    1720:1702.53.095
    下载: 导出CSV

    表  3  回归模型方差分析结果

    Table  3.   Regression model analysis of variance results

    来源平方和自由度均方FP显著性
    模型1.3990.1514.000.0011**
    A0.1110.119.580.0174*
    B0.02210.0221.960.2038
    C1.445×10−411.445×10−40.0130.9122
    AB3.540×10−313.540×10−30.320.5894
    AC3.136×10−313.136×10−30.280.6110
    BC0.01310.0131.130.3224
    A20.3310.3329.430.0010**
    B20.4310.4338.500.0004**
    C20.3610.3632.970.0007**
    残差0.07770.011
    失拟项0.01836.037×10−30.410.7571
    纯误差0.05940.015
    总离差1.4716
    R20.9474
    R2Adj0.8797
    CV(%)3.42
    注:*表示显著性差异(P<0.05),**表示显著性差异(P<0.01)。
    下载: 导出CSV
  • [1] 周繇. 中国长白山植物资源志[M]. 北京: 中国林业出版社, 2010: 11.

    Zhou Y. Changbai mountain plant resources in China[M]. Beijing: China Forestry Publishing House, 2010: 11.
    [2] 魏忠宝, 孙佳明, 李朋飞, 等. 山楂叶悬钩子根抗氧化活性成分研究[J]. 中国中药杂志,2018,44(3):1−7. [Wei Z B, Sun J M, Li P F, et al. Antioxidant activity constituents from root of Rubus crataegifolius[J]. China Journal of Chinese Materia Medica,2018,44(3):1−7.
    [3] Ni W, Zhang X, Bi H, et al. Preparation of a glucan from the roots of Rubus crataegifolius Bge. and its immunological activity[J]. Carbohydrate Research,2009,344:2512−2518. doi:  10.1016/j.carres.2009.08.042
    [4] 赵伟, 李超, 刘利民, 等. 托盘根的化学成分研究[J]. 中国药学杂志,2017,52(3):193−195. [Zhao W, Li C, Liu L M, et al. Chemical constituents from the roots of Rubus crataegifolius Bge

    J]. Chinese Pharmaceutical Journal,2017,52(3):193−195.
    [5] 张萍, 肖新月, 张南平, 等. 蔷薇科根类药材化学成分及药理作用研究进展[J]. 中国药事,2008,22(8):721−726. [Zhang P, Xiao X Y, Zhang N P, et al. Review on research of the chemical constituents and pharmacological activities of plants of Rosaceae[J]. Chinese Pharmaceutical Affairs,2008,22(8):721−726.
    [6] 张旭, 房金波, 梁忠岩. 托盘根水溶性多糖的分离纯化及初步研究[J]. 特产研究,2005(1):40−42. [Zhang X, Fang J B, Liang Z Y. Purification and initial studies of the water-soluble polysaccharide RCP from the roots of Rubus crataegiflolius Bge doi:  10.3969/j.issn.1001-4721.2005.01.011

    J]. Special Wild Economic Animal and Plant Research,2005(1):40−42. doi:  10.3969/j.issn.1001-4721.2005.01.011
    [7] Lee J H, Ham Y A, Choi S H, et al. Activity of crude extract of Rubus crataegifolius roots as a potent apoptosis inducer and DNA topoisomerase I inhibitor[J]. Archives of Pharmacal Research,2000,23(4):338−343. doi:  10.1007/BF02975444
    [8] Jung S W, Shin M H, Jung J H, et al. A triterpene glucosyl ester from the roots of Rubus crataegifolius[J]. Archives of Pharmacal Research,2001,24(5):412−415. doi:  10.1007/BF02975185
    [9] 李秋叶. 山楂叶悬钩子的化学成分及保肝活性研究[D]. 延吉: 延边大学, 2013.

    Li Q Y. Study of chemical constituent and hepatoprotective activity of Rubus crataegifolius Bunge[D]. Yanji: Yanbian University, 2013.
    [10] 闻利威, 张琼琳, 青格乐, 等. 皂苷生物活性及应用研究进展[J]. 畜牧与饲料科学,2020,41(4):90−96. [Wen L W, Zhang Q L, Qing G L, et al. Research advances on biological activities and application of saponins[J]. Animal Husbandry and Feed Science,2020,41(4):90−96. doi:  10.12160/j.issn.1672-5190.2020.04.018
    [11] Liu Y, Yang Y, Feng Z, et al. Eight new triterpenoid saponins with antioxidant activity from the roots of Glycyrrhiza uralensis Fisch[J]. Fitoterapia,2019,133:186−192. doi:  10.1016/j.fitote.2019.01.014
    [12] Jung M S, Lee S J, Song Y, et al. Rubus crataegifolius Bunge. regulates adipogenesis through Akt and inhibits high-fat diet-induced obesity in rats[J]. Nutrition & Metabolism,2016,13:29.
    [13] Zhao Y, Su R, Zhang W, et al. Antibacterial activity of tea saponin from Camellia oleifera shell by novel extraction method[J]. Industrial Crops & Products,2020,153:112604.
    [14] Xia C, Chen L, Sun W, et al. Total saponins from Paris forrestii (Takht) H. Li. show the anticancer and RNA expression regulating effects on prostate cancer cells[J]. Biomedicine & Pharmacotherapy,2020,121:109674.
    [15] Desai T H, Joshi S V. Anticancer activity of saponin isolated from Albizia lebbeck using various in vitro models[J]. Journal of Ethnopharmacology,2019,231:494−502. doi:  10.1016/j.jep.2018.11.004
    [16] Sun Y, Jia L, Huang Z, et al. Hepatoprotective effect against CCl4-induced acute liver damage in mice and high-performance liquid chromatography mass spectrometric method for analysis of the constituents of extract of Rubus crataegifolius[J]. Natural Product Research,2017,31:2695−2699. doi:  10.1080/14786419.2017.1292264
    [17] Tian C, Chang Y, Liu X, et al. Anti-inflammatory activity in vitro, extractive process and HPLC-MS characterization of total saponins extract from Tribulus terrestris L. fruits[J]. Industrial Crops & Products,2020,150:112343.
    [18] Hadidi M, Ibarz A, Pagan J. Optimisation and kinetic study of the ultrasonic-assisted extraction of total saponins from alfalfa (Medicago sativa) and its bioaccessibility using the response surface methodology[J]. Food Chemistry,2020,309:125786. doi:  10.1016/j.foodchem.2019.125786
    [19] 左月明, 王亚芳, 张忠立, 等. 响应面分析法优化回流提取延龄草甾体皂苷工艺研究[J]. 时珍国医国药,2020,31(1):49−51. [Zuo Y M, Wang Y F, Zhang Z L, et al. Optimization of extraction of steroidal saponins from Trillium tschonoskii Maxim. using response surface methodology[J]. Lishizhen Medicine and Materia Medica Research,2020,31(1):49−51.
    [20] Zivkovic J, Savikin K, Jankovic T, et al. Optimization of ultrasound-assisted extraction of polyphenolic compounds from pomegranate peel using response surface methodology[J]. Separation and Purification Technology,2018,194:40−47. doi:  10.1016/j.seppur.2017.11.032
    [21] Hierro J D, Herrera T, Garcia-Risco M R, et al. Ultrasound-assisted extraction and bioaccessibility of saponins from edible seeds: quinoa, lentil, fenugreek, soybean and lupin[J]. Food Research International,2018,109:440−447. doi:  10.1016/j.foodres.2018.04.058
    [22] Yang X, Bai Z, Zhang D W, et al. Enrichment of flavonoid-rich extract from Bidens bipinnata L. by macroporous resin using response surface methodology, UHPLC-Q-TOF MS/MS-assisted characterization and comprehensive evaluation of its bioactivities by analytical hierarchy process[J]. Biomedical Chromatography,2020,34(11):e4933.
    [23] 胡政宇. 乌拉草多糖的提取纯化、结构表征及生物活性研究[D]. 吉林: 吉林化工学院, 2019.

    Hu Z. Extraction, purification, structural characterization and biological activity of polysaccharides from Carex meyeriana Kunth[D]. Jilin: Jilin Institute of Chemical and Technology. 2019.
    [24] 陈俭清, 高凌飞, 任涌志, 等. 响应面法优化丁香叶总皂苷提取工艺[J]. 食品工业科技,2016,37(10):320−323, 328. [Chen J Q, Gao L F, Ren Y Z, et al. Optimization of extraction process of total saponins from Syringa oblate Lindl. leaves by response surface methodology[J]. Science and Technology of Food Industry,2016,37(10):320−323, 328.
    [25] 徐士钊, 齐菲, 席雅琳, 等. 响应面法优化辽东楤木总皂苷提取工艺及其抗氧化作用[J]. 江苏农业科学,2020,48(03):204−209. [Xu S Z, Qi F, Xi Y L, et al. Optimization of extraction process of total saponins from Aralia elata (Miq.) Seem by response surface analysis and its antioxidant activity[J]. Jiangsu Agricultural Science,2020,48(03):204−209.
    [26] Le A V, Parks S E, Nguyen M, et al. Optimisation of the microwave-assisted ethanol extraction of saponins from gac (Momordica cochinchinensis Spreng.) seeds[J]. Medicines,2018,5(3):70. doi:  10.3390/medicines5030070
    [27] 姬海刚, 杨秀芳, 惠昱昱, 等. 响应曲面法优化提取柴胡总皂苷的工艺[J]. 应用化工,2020,49(11):2787−2790, 2794. [Ji H G, Yang X F, Hui Y Y, et al. Response surface methodology for optimizing the extraction of total saponins from Bupleurum Chinese DC doi:  10.3969/j.issn.1671-3206.2020.11.025

    J]. Applied Chemical Industry,2020,49(11):2787−2790, 2794. doi:  10.3969/j.issn.1671-3206.2020.11.025
    [28] 王志娟, 张炜, 田格, 等. 超高压法提取藜麦皂苷的工艺研究[J]. 中国粮油学报,2020,35(6):45−50. [Wang Z J, Zhang W, Tian G, et al. Ultrahigh pressure extraction technology of saponins from quinoa husk[J]. Journal of the Chinese Cereals and Oils Association,2020,35(6):45−50. doi:  10.3969/j.issn.1003-0174.2020.06.007
    [29] Huy T B, Phuong N T L, Nga B K, et al. Enzyme-assisted extraction of triterpenoid saponins from Pseuderanthemum palatiferum (Nees) Radlk. dry leaf powder and bioactivities examination of extracts[J]. Chemistry Select,2019,27(4):8129−8134.
    [30] 张文婷, 王后玮, 潘金鹏, 等. 响应面法优化油茶壳中茶皂素提取工艺及HPLC验证[J]. 食品工业,2019,40(10):75−79. [Zhang W T, Wang H W, Pan J P, et al. Optimization of extraction process and HPLC verification of tea saponin from oil tea shell by response surface methodology[J]. The Food Industry,2019,40(10):75−79.
    [31] 许效群, 赵文婷, 苗秀香, 等. 藜麦麸皮总皂苷的提取纯化工艺研究[J]. 食品工业科技,2017,38(18):215−220. [Xu X Q, Zhao W T, Miao X X, et al. Extraction and purification of total saponins from quinoa bran[J]. Science and Technology of Food Industry,2017,38(18):215−220.
    [32] 贺红军, 邱宗荫. 正交试验优选茅莓总皂苷的提取工艺[J]. 中国药房,2012,23(7):611−613. [He H J, Qiu Z M. Study on the extraction process of the total saponins of Rubus parviflolius[J]. China Pharmacy,2012,23(7):611−613. doi:  10.6039/j.issn.1001-0408.2012.07.12
    [33] 韦一飞. 山莓根成分分析及抗肿瘤、抗氧化作用研究[D]. 南宁: 广西中医药大学, 2018.

    Wei Y F. Component analysis and antitumor and antioxidant effects of Rubus corchorifolius L. f. roots[D]. Nanning: Guangxi University of Chinese Medicine, 2018.
    [34] 汪礼洋. 树莓中花色苷的提取、分离、纯化及抗氧化活性研究[D]. 郑州: 河南工业大学, 2016.

    Wang L Y. Extraction, separation, purification and antioxidant activity of raspberry anthocyanins[D]. Zhengzhou: Henan University of Technology, 2016.
    [35] 蔡成林, 黄庭海, 张青峰. 红莓和黑莓叶黄酮类化合物抗氧化活性的比较研究[J]. 生物化工,2020,6(6):33−35. [Cai C L, Huang T H, Zhang Q F. Comparative research on antioxidant activity of flavonoids from raspberry and blackberry leaves[J]. Biological Chemical Engineering,2020,6(6):33−35.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  31
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。