全球食品领域近红外光谱应用研究文献计量分析

田华

田华. 全球食品领域近红外光谱应用研究文献计量分析[J]. 食品工业科技,2021,42(18):41−47. doi:  10.13386/j.issn1002-0306.2020120265
引用本文: 田华. 全球食品领域近红外光谱应用研究文献计量分析[J]. 食品工业科技,2021,42(18):41−47. doi:  10.13386/j.issn1002-0306.2020120265
TIAN Hua. Bibliometric Analysis of Near-infrared Spectroscopy in Global Food Areas[J]. Science and Technology of Food Industry, 2021, 42(18): 41−47. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120265
Citation: TIAN Hua. Bibliometric Analysis of Near-infrared Spectroscopy in Global Food Areas[J]. Science and Technology of Food Industry, 2021, 42(18): 41−47. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120265

全球食品领域近红外光谱应用研究文献计量分析

doi: 10.13386/j.issn1002-0306.2020120265
详细信息
    作者简介:

    田华(1979−),女,博士,副教授,研究方向:食品营养健康与大数据,E-mail:xynu0818@163.com

  • 中图分类号: TS201.1

Bibliometric Analysis of Near-infrared Spectroscopy in Global Food Areas

  • 摘要: 近红外光谱(NIRS)作为一种方便快捷的无损检测技术,具有操作简单、分析成本低、结果重现性强等优点,被广泛应用于食品研究领域。为了解全球食品领域近红外光谱应用的演变趋势,本论文使用文献在线分析平台、在线词云图绘制平台,以及CiteSpace可视化软件对Web of ScienceTM核心合集(Science Citation Index Expanded)数据库2010~2021年发表的584篇食品领域近红外光谱研究论文进行了文献计量分析,从文献的时空分布、国家/地区及相关机构影响力和合作关系、研究热点与研究前沿展开分析,客观评价食品领域近红外光谱的研究现状和发展前景。
  • 图  1  全球及主要国家论文发表年度分布

    Figure  1.  Annual distribution of papers published in the world and major countries

    注:(a):全球论文发表年度分布;(b):主要国家论文发表年度分布。

    图  2  全球主要国家/地区合作关系

    Figure  2.  Cooperation of major countries/regions in the world

    图  3  研究领域词云图

    Figure  3.  Word clouds of research area

    注:研究领域词云图:(a):全球;(b):中国;(c):西班牙;(d):美国。

    图  4  关键词年度分布

    Figure  4.  Annual distribution of key words

    图  5  共被引聚类时间线视图

    Figure  5.  Co-citation cluster Timeline view

    表  1  全球主要国家/地区研究情况

    Table  1.   Researches of major countries/regions in the world

    评价指标全球中国西班牙美国意大利巴西爱尔兰日本德国澳大利亚法国
    论文篇数584161766260432724232221
    总被引次数9316272713688211248387958186457257341
    篇均被引次数15.9516.941813.2420.8935.487.7519.8711.6816.24
    h指数44242415191115711811
    下载: 导出CSV

    表  2  研究文献分布及分析指标

    Table  2.   Distribution and analysis index of published papers

    发表论文数排名top10 总被引次数排名top10
    机构名文章数总被引次数平均被引次数机构名文章数总被引次数平均被引次数
    Zhejiang University
    浙江大学(中国)
    34531.56University Stellenbosch
    斯坦陵布什大学(南非)
    12645.33
    Jiangsu University
    江苏大学(中国)
    21331.57Zhejiang University
    浙江大学(中国)
    34531.56
    University of Milan
    米兰大学(意大利)
    16382.38University of Milan
    米兰大学(意大利)
    16382.38
    Universidade Estadual de Campinas
    金边大学(巴西)
    13332.54Sapienza University of Rome
    罗马大学(意大利)
    10383.80
    Universidad de Córdoba
    科尔多瓦大学(西班牙)
    13201.54National University of Ireland
    爱尔兰国立大学(爱尔兰)
    10363.60
    University Stellenbosch
    斯坦陵布什大学(南非)
    12645.33Jiangsu University
    江苏大学(中国)
    21331.57
    ARS
    美国农业部(美国)
    12141.17Universidade Estadual de Campinas
    金边大学(巴西)
    13332.54
    Universidad de Salamanca
    萨拉曼卡大学(西班牙)
    1290.75Universität Hohenheim
    霍恩海姆大学(德国)
    5285.60
    University of Padua
    帕多瓦大学(意大利)
    11181.64WALA Heilmittel GmbH
    金边大学(巴西)
    3289.33
    Sapienza University of Rome
    罗马大学(意大利)
    10383.80King Abdulaziz University
    阿卜杜勒阿齐兹国王大学(沙特)
    4266.50
    下载: 导出CSV

    表  3  共被引聚类标签

    Table  3.   Clusters of co-cited references

    Cluster IDSizeSilhouetteMean(Year)Label(LLR)
    0390.5722014NIR spectroscopy(近红外光谱)
    1340.632013chemometrics(化学计量学)
    2320.6582014data fusion(数据融合)
    3240.7932012near-infrared spectroscopy(近红外光谱)
    4240.6252014variable selection(变量选择)
    5240.712011hyperspectral imaging(高光谱成像)
    6
    7
    20
    11
    0.763
    0.856
    2012
    2015
    food analysis(食品分析)
    Listeria monocytogene(李斯特菌)
    下载: 导出CSV
  • [1] 王文霞, 马本学, 罗秀芝, 等. 近红外光谱结合变量优选和GA-ELM模型的干制哈密大枣水分含量研究[J]. 光谱学与光谱分析,2020,40(2):543−549. [Wang W X, Ma B X, Luo X Z, et al. Study on the moisture content of dried hami big jujubes by near infrared spectroscopy combined with variable preferred and GA-ELM model[J]. Spectroscopy and Spectral Analysis,2020,40(2):543−549.
    [2] 何鸿举, 朱亚东, 王慧, 等. 近红外光谱技术在生鲜禽肉质量检测中应用的研究进展[J]. 食品科学,2019,40(21):317−323. [He H J, Zhu Y D, Wang H, et al. Recent advances in application of near-infrared spectroscopy for quality detection in fresh poultry meat[J]. Food Science,2019,40(21):317−323. doi:  10.7506/spkx1002-6630-20181119-218
    [3] 田华, 侯志杰, 陈报阳, 等. 近红外光谱在鱼类及鱼制品定性定量分析中的应用[J]. 食品与发酵工业,2017,43(6):274−278. [Tian H, Hou Z J, Chen B Y, et al. Prospects of applying near infrared spectroscopy in qualitative and quantitative analysis of fish and its products[J]. Food and Fermentation Industries,2017,43(6):274−278.
    [4] 张萌, 赵忠盖. 深度信念网络的近红外光谱分析建模方法[J]. 光谱学与光谱分析,2020,40(8):2512−2517. [Zhang M, Zhao G Z. Near infrared spectral analysis modeling method based on deep belief network[J]. Spectroscopy and Spectral Analysis,2020,40(8):2512−2517.
    [5] Hao Y, Geng P, Wu W H, et al. Identification of rice varieties and transgenic characteristics based on near-infrared diffuse reflectance spectroscopy and chemometrics[J]. Molecules,2019,24:4568. doi:  10.3390/molecules24244568
    [6] Cortes V, Cubero S, Blasco J, et al. In-line application of visible and near-infrared diffuse reflectance spectroscopy to identify apple varieties[J]. Food and Bioprocess Technology,2019,12(6):1021−1030.
    [7] Li C L, Guo H W, Zong B Z, et al. Rapid and non-destructive discrimination of special-grade flat green tea using near-infrared spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2019,206:254−262. doi:  10.1016/j.saa.2018.07.085
    [8] Okubo N, Kurata Y. Nondestructive classification analysis of green coffee beans by using near-infrared spectroscopy[J]. Foods,2019,22, 8(2):82.
    [9] Oliveira M M, Cruz-Tirado J P, Roque J V, et al. Portable near-infrared spectroscopy for rapid authentication of adulterated paprika powder[J]. Journal of Food Composition and Analysis,2020:87.
    [10] Chen H, Tan C, Li HJ. Untargeted Identification of adulterated sanqi powder by near-infrared spectroscopy and one-class model[J]. Journal of Food Composition and Analysis,2020:88.
    [11] Wiedemair V, Ramoner R, Huck C W. Investigations into the total antioxidant capacities of cultivars of gluten-free grains using near-infrared spectroscopy[J]. Food Control,2019,95:189−195. doi:  10.1016/j.foodcont.2018.07.045
    [12] McGoverin C M, Weeranantanaphan J, Downey G, et al. The application of near infrared spectroscopy to the measurement of bioactive compounds in food commodities[J]. Journal of Near Infrared Spectroscopy,2010,18(2):87−111. doi:  10.1255/jnirs.874
    [13] Li Z X, Tang X Y, Shen Z X, et al. Comprehensive comparison of multiple quantitative near-infrared spectroscopy models for Aspergillus flavus contamination detection in peanut[J]. Journal of the Science of Food and Agriculture,2019,99(13):5671−5679. doi:  10.1002/jsfa.9828
    [14] Johnson J B. An Overview of Near-infrared Spectroscopy (NIRS) for the detection of insect pests in stored grains[J]. Journal of Stored Products Research,2020:86.
    [15] Li L Q, Pan X P, Chen W L, et al. Multi-manufacturer drug identification based on near infrared spectroscopy and deep transfer learning[J]. Journal of Innovative Optical Health Sciences,2020,13(4):2050016. doi:  10.1142/S1793545820500169
    [16] Sans S, Ferre J, Boque R, et al. Estimating sensory properties with near-infraredspectroscopy: a tool for quality control and breeding of ‘calçots’ (Allium cepa L.)[J]. Agronomy,2020,10(6):828. doi:  10.3390/agronomy10060828
    [17] Cayuela J A, Puertas B, Cantos-Villar E. Assessing wine sensory attributes using Vis/NIR[J]. European Food Research and Technology,2017,243(6):941−953. doi:  10.1007/s00217-016-2807-9
    [18] Ribeiro J S, Ferreira M M C, Salva T J G. Chemometric models for the quantitative descriptive sensory analysis of arabica coffee beverages using near infrared spectroscopy[J]. Talanta,2011,83(5):1352−1358. doi:  10.1016/j.talanta.2010.11.001
    [19] Baqueta M R, Coqueiro A, Valderrama P. Brazilian coffee blends: A simple and fast method by near-infrared spectroscopy for the determination of the sensory attributes elicited in professional coffee cupping[J]. Journal of Food Science,2019,84(6):1247−1255. doi:  10.1111/1750-3841.14617
    [20] Francois I M, Wins H, Buysens S, et al. Predicting sensory attributes of different chicory hybrids using physico-chemical measurements and visible/near infrared spectroscopy[J]. Postharvest Biology and Technology,2008,49(3):366−373. doi:  10.1016/j.postharvbio.2008.02.011
    [21] Plans M, Simo J, Casanas F, et al. Estimating sensory properties of common beans (Phaseolus vulgaris L.) by near infrared spectroscopy[J]. Food Research International,2014,56:55−62. doi:  10.1016/j.foodres.2013.12.003
    [22] Van Dijk C, Fischer M, Holm J, et al. Texture of cooked potatoes (Solanum tuberosum). 1. Relationships between dry matter content, sensory-perceived texture, and near-infrared spectroscopy[J]. Journal of Agricultural and Food Chemistry,2002,50(18):5082−5088. doi:  10.1021/jf011509w
    [23] Gonzalez-Mohino A, Antequera T, Ventanas S, et al. Near-infrared spectroscopy-based analysis to study sensory parameters on pork loins as affected by cooking methods and conditions[J]. Journal of the Science of Food and Agriculture,2018,98(11):4227−4236. doi:  10.1002/jsfa.8944
    [24] 邱均平. 文献计量学[M]. 北京: 科学出版社, 2019.

    Qiu J P. Bibliometrics[M]. Beijing: Science Press, 2019.
    [25] 骆靖阳, 陆柏益. 基于文献计量学的食品大数据技术研究分析[J]. 食品科学,2021,42(5):278-287.

    Lu J Y, Lu B Y. Research and analysis of food big data technology based on bibliometrics[J]. Food Science,2021,42(5):278-287.
    [26] 许智勇, 马爱民. 基于文献计量的全球营养基因组学研究态势分析[J]. 食品科学,2020,41(5):237−245. [Xu Z Y, Ma A M. Global trends in nutrigenomic research: a bibliometric analysis[J]. Food Science,2020,41(5):237−245. doi:  10.7506/spkx1002-6630-20190716-213
    [27] Chen H, Jiang W, Yang Y, et al. State of the art on food waste research: a bibliometrics study from 1997 to 2014[J]. Journal of Cleaner Production,2016,140(s1):840−846.
    [28] Sharifi A, Simangan D, Kaneko S. Three decades of research on climate change and peace: A bibliometrics analysis[J]. Sustainability Science,2020,8:1−17.
    [29] 肖鹏飞, 安璐, 吴德东. 基于文献计量学分析的全球生物质炭研究进展[J]. 农业工程学报,2020,36(18):292. [Xiao Pengfei, An Lu, Wu Dedong. Research progress of biochar in the world based on bibliometrics analysis[J]. CAB International,2020,36(18):292. doi:  10.11975/j.issn.1002-6819.2020.18.034
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  32
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。