高糖饮食对果蝇发育和抗氧化能力的影响及其机理研究

文明明 赵治恒 毕洁 戴煌 贺艳萍 张威 王加华 舒在习 肖安红

文明明,赵治恒,毕洁,等. 高糖饮食对果蝇发育和抗氧化能力的影响及其机理研究[J]. 食品工业科技,2021,42(21):378−385. doi:  10.13386/j.issn1002-0306.2020120149
引用本文: 文明明,赵治恒,毕洁,等. 高糖饮食对果蝇发育和抗氧化能力的影响及其机理研究[J]. 食品工业科技,2021,42(21):378−385. doi:  10.13386/j.issn1002-0306.2020120149
WEN Mingming, ZHAO Zhiheng, BI Jie, et al. Effects of High Sucrose Diet on the Development and Antioxidant Capacity of Drosophila melanogaster and Its Mechanism[J]. Science and Technology of Food Industry, 2021, 42(21): 378−385. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120149
Citation: WEN Mingming, ZHAO Zhiheng, BI Jie, et al. Effects of High Sucrose Diet on the Development and Antioxidant Capacity of Drosophila melanogaster and Its Mechanism[J]. Science and Technology of Food Industry, 2021, 42(21): 378−385. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120149

高糖饮食对果蝇发育和抗氧化能力的影响及其机理研究

doi: 10.13386/j.issn1002-0306.2020120149
基金项目: 武汉轻工大学大宗粮油精深加工教育部重点实验室开放课题(2019GYBQGDKFB07,2020JYBQGDKFA01)
详细信息
    作者简介:

    文明明(1997−),女,硕士研究生,研究方向:食品营养,E-mail:2237424773@qq.com

    通讯作者:

    毕洁(1990−),女,博士,讲师,研究方向:食品营养,E-mail:271816367@qq.com

  • 中图分类号: TS201.4

Effects of High Sucrose Diet on the Development and Antioxidant Capacity of Drosophila melanogaster and Its Mechanism

  • 摘要: 为探究高糖饮食对果蝇发育、寿命及抗氧化能力的影响,以果蝇为研究对象,将含有高蔗糖的培养基喂养果蝇,并测定果蝇的寿命、运动能力与抗氧化能力;同时,对高糖组果蝇进行转录组测序,尝试从基因转录水平上探索高糖饮食影响果蝇发育的机理。结果表明,与对照组相比,高糖组雌性、雄性果蝇和雌雄混养果蝇的平均寿命分别缩短了35.01%、43.01%和34.15%,雄性果蝇和雌雄混养果蝇的生存曲线显著低于对照组(P<0.05)。高糖饮食降低了果蝇的化蛹率、羽化率和攀爬能力。高糖组雄性果蝇在生命后期体内T-SOD酶和CAT酶有不同程度的降低,而MDA含量均有所增加。通过转录组测序,发现高糖组果蝇的差异表达基因富集在果蝇发育过程、机体代谢活动调控及应激反应等方面。本研究表明高糖饮食显著降低果蝇的寿命、发育、运动能力及抗氧化能力,为健康饮食提供参考。
  • 图  1  雌性果蝇寿命曲线

    Figure  1.  Lifespan curve of female Drosophila melanogaster

    图  2  雄性果蝇寿命曲线

    Figure  2.  Lifespan curve of male Drosophila melanogaster

    图  3  雌雄混养果蝇寿命曲线

    Figure  3.  Lifespan curve of mixed Drosophila melanogaster

    图  4  高糖对果蝇攀爬指数的影响

    Figure  4.  Effect of high sucrose on climbing index of Drosophila melanogaster

    图  5  高糖对果蝇体内T-SOD活性的影响

    Figure  5.  Effect of high sucrose on T-SOD activity in Drosophila melanogaster

    注:*表示相同日龄的不同组果蝇的差异显著性,**表示P<0.01;***表示P<0.001;****表示P<0.0001;ns表示P>0.05;小写字母表示对照组不同日龄的果蝇的差异差异性,P<0.05;大写字母表示高糖组不同日龄的果蝇的差异显著性,P<0.05;图6-7同。

    图  6  高糖对果蝇体内CAT活性的影响

    Figure  6.  Effect of high sucrose on CAT activity in Drosophila melanogaster

    图  7  高糖对果蝇体内MDA含量的影响

    Figure  7.  Effect of high sucrose on MDA content in Drosophila melanogaster

    图  8  表达量差异基因的火山图

    Figure  8.  The volcano of differential expression genes

    注:横坐标表示高糖组基因的表达量与对照组基因的表达量的比值即为表达差异倍数,纵坐标表示基因表达量变化差异的统计学检验值即P值。-log10(P值)越大则表达差异越显著。

    图  9  差异基因的GO功能注释分类统计图

    Figure  9.  GO functional classification on differential expression genes for each pairwise

    图  10  差异基因的qRT-PCR验证

    Figure  10.  Results of DEGs in qRT-PCR

    注:(A)、(B)、(C)、(D)分别为qRT-PCR验证DNaseIImt:ND4LGstE7,GstD5基因的表达量。表达量用平均值±标准误差表示。

    表  1  实验中所用引物

    Table  1.   Primers used in the experiment

    NameForward primer(5’-3’)Reverse primer(5’-3’)
    Rp49CGGTTACGGATCGAACAAGCCTTGCGCTTCTTGGAGGAGA
    DNaseIIAAGTCCGATAAGGTTCTCAATACGGTTCCACCACCACGA
    mt:ND4LGTTTCTAATCGGAAACATGCCCCTTCACATACTCTA
    GstE7TGCCATTATTGCCTATCTATCATCGTTTGCTTACCG
    GstD5ATTGCCGTCTATCTGGTGAGTAGTATTTGGCGAAGCT
    下载: 导出CSV

    表  2  高糖对果蝇寿命的影响

    Table  2.   Effect of high sucrose on life span of Drosophila melanogaster

    组别性别平均寿命(d)
    对照组雌性44.70±1.30a
    雄性34.62±2.30b
    雌雄混养32.83±2.52b
    高糖组雌性29.05±2.06**a
    雄性19.73±0.75**b
    雌雄混养21.62±2.17*b
    注:*表示高糖组与对照组相比存在显著差异,P<0.05;**表示与对照组相比存在极显著差异,P<0.01。不同小写字母表示同一组别不同性别之间的差异显著,P<0.05。
    下载: 导出CSV

    表  3  高糖对幼虫化蛹与羽化的影响

    Table  3.   Effect of high sucrose on pupation and eclosion of Drosophila melanogaster

    组别化蛹所需的时间(d)化蛹率(%)羽化所经历的时间(d)羽化率(%)
    对照组4.17±0.1795.00±0.037.33±0.3390.00±0.03
    高糖组5.17±0.17*75.00±0.05*7.93±0.3070.00±0.05*
    注:*表示与对照组相比差异显著,P<0.05。
    下载: 导出CSV
  • [1] 朱亚男, 徐菘阳, 丁慧敏, 等. 白玉菇多糖对免疫抑制型小鼠的免疫调节作用[J]. 食品工业科技,2020(7):295−300. [Zhu Y N, Xu S Y, Deng H M, et al. Immunomodulatory effects of white Hypsizygus marmoreus polysaccharides on immunosuppressive mice[J]. Science and Technology of Food Industry,2020(7):295−300.
    [2] Srab F, Id B, Aab C, et al. Functional, nutritional, antinutritional, and microbial assessment of novel fermented sugar syrup fortified with pre-mature fruits of Totapuri mango and star gooseberry[J]. LWT-Food Science and Technology,2021,136(P1):110276.
    [3] 工业和信息化部消费品工业司. 食品工业发展报告[M]. 北京: 中国轻工业出版社, 2019.

    Department of Consumer Goods Industry, Ministry of Industry and Information Technology. China food industry[M]. Beijing: China Light Industry Press, 2019.
    [4] Morenga L T, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies[J]. BMJ: British Medical Journal,2013,346(2):e7492.
    [5] L O’Connor, Imamura F, Brage S, et al. Intakes and sources of dietary sugars and their association with metabolic and inflammatory markers[J]. Clinical Nutrition (Edinburgh, Scotland),2018,37(4):1313−1322. doi:  10.1016/j.clnu.2017.05.030
    [6] Chi D L, Scott J M. Added sugar and dental caries in children: A scientific update and future steps[J]. Dental Clinics of North America,2019,63(1):17−33. doi:  10.1016/j.cden.2018.08.003
    [7] 张茜. Tristetraprolin对糖尿病肾病及高糖环境下足细胞损伤的调节作用[D]. 郑州: 郑州大学, 2020.

    Zhang Q. The regulatory role of tristetraprolin in diabetic nephropathy and high glucose-induced injury of podocytes[D]. Zhengzhou: Zhengzhou University, 2020.
    [8] 王飞. 化瘀祛浊法对糖尿病大鼠大血管病炎性因子影响的实验研究[D]. 沈阳: 辽宁中医药大学, 2017.

    Wang F. Experimental study on the effect of removing blood stasis and removing turbidity on inflammatory factors of macrovascular disease in diabetic rats[D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2017.
    [9] Yin J, Zhu Y, Vasanti M, et al. Intake of sugar-sweetened and low-calorie sweetened beverages and risk of cardiovascular disease: A meta-analysis and systematic review[J]. Advances in Nutrition (Bethesda, Md.),2020:6882.
    [10] Chantal V S, David L, Mackay T F C, et al. Genome-wide analysis reveals novel regulators of growth in Drosophila melanogaster[J]. Plos Genetics,2016,12(1):e1005616. doi:  10.1371/journal.pgen.1005616
    [11] Jorn T, Cas F, Milou B, et al. Fructose and sucrose intake increase exogenous carbohydrate oxidation during exercise[J]. Nutrients,2017,9(2):167. doi:  10.3390/nu9020167
    [12] 王俊婷. 壳聚糖酰基缩氨基硫脲类衍生物对果蝇寿命、繁殖力的影响[D]. 呼和浩特: 内蒙古农业大学, 2019.

    Wang J T. Effect of novel acyl-thiosemicarbazone-chitosan derivatives on lifespan and fecundity in Drosophila melanogaster[D]. Huhehaote: Inner Mongolia Agricultural University, 2019.
    [13] 叶文斌, 何玉鹏, 文晓晓, 等. Pb2+对果蝇生育力和寿命及抗氧化能力的影响[J]. 首都师范大学学报(自然科版),2019,40(3):44−49. [Ye W B, He Y P, Wen X X, et al. Effects of Pb2+ on fertility, longevity and antioxidant capacity of Drosophila melanogaster[J]. Journal of Capital Normal University (Natural Science Edition),2019,40(3):44−49.
    [14] 李尽哲, 梁利香, 黄雅琴. 花椒对果蝇生殖力、寿命和生长发育的影响[J]. 黑龙江畜牧兽医,2016(21):184−187. [Li J Z, Liang L X, Huang Y Q. Effects of Zanthoxylum on fecundity, life span and growth and development of Drosophila melanogaster[J]. Heilongjiang Animal Science and Veterinary Medicine,2016(21):184−187.
    [15] Dobson A J, Ezcurra M, Flanagan C E, et al. Nutritional programming of lifespan by FOXO inhibition on sugar-rich diets[J]. Cell Reports,2017,18(2):299−306. doi:  10.1016/j.celrep.2016.12.029
    [16] Rovenko B M, Kubrak O I, Gospodaryov D V, et al. High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster[J]. Journal of Insect Physiology,2015,79:42−54. doi:  10.1016/j.jinsphys.2015.05.007
    [17] Na J, Musselman L P, Pendse J, et al. A Drosophila model of high sugar diet-induced cardiomyopathy[J]. PLOS Genetics,2013,9(1):e1003175. doi:  10.1371/journal.pgen.1003175
    [18] Nakamura B N, Lawson G, Chan J Y, et al. Knockout of the transcription factor NRF2 disrupts spermatogenesis in an age dependent manner[J]. Free Radical Biology & Medicine,2010,49:1368−1379.
    [19] Ps A, Cl B, Pki A, et al. TL15 of Arthrospira platensis sulfite reductase scavenges free radicals demonstrated in oxidant induced larval zebrafish (Danio rerio) model[J]. International Journal of Biological Macromolecules,2021,166:641−653. doi:  10.1016/j.ijbiomac.2020.10.222
    [20] Halliwell B. Reactive oxygen species in living systems: Source, biochemistry, and role in human disease[J]. The American Journal of Medicine,1991,91(3C):14S−22S.
    [21] Diamanti-Kandarakis E, Papalou O, Kandaraki E A, et al. Mechanisms in endocrinology: Nutrition as a mediator of oxidative stress in metabolic and reproductive disorders in women[J]. European Journal of Endocrinology,2017,176(2):R79−R99. doi:  10.1530/EJE-16-0616
    [22] Helmut S, Wilhelm S, Alex S. Nutritional, dietary and postprandial oxidative stress[J]. The Journal of Nutrition,2005,135(5):969−972. doi:  10.1093/jn/135.5.969
    [23] Halliwell B. Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans[J]. Free Radical Research,1996,25(1):57−74. doi:  10.3109/10715769609145656
    [24] 李艳, 孙凤娇, 张天然, 等. 高糖、高脂饮食与不同浓度硒对大鼠脂代谢及氧化应激的影响[J]. 山东大学学报(医学版),2020,58(5):98−106. [Li Y, Sun F J, Zhang T R, et al. Effects of high-sugar, high-fat diet and different concentrations of selenium on lipid metabolism and oxidative stress in rats[J]. Journal of Shandong University (Health Sciences),2020,58(5):98−106.
    [25] 吴春红. Dynamitin调控雄性果蝇生殖和幼虫发育的机制研究[D]. 武汉: 华中师范大学, 2017.

    Wu C H. Dynamitin regulates male fertility and larval development of Drosophila[D]. Wuhan: Central China Normal University, 2017.
    [26] 张晓月. 高糖饮食对果蝇肠道干细胞增殖及分化的影响[D]. 哈尔滨: 东北林业大学, 2018.

    Zhang X Y. Effects of high sugar diet on proliferation and differentiation of drosophila intestinal stem cells in Drosophila melanogaster[D]. Harbin: Northeast Forestry University, 2018.
    [27] 刘莹, 刘莉, 关慧波. 远志皂苷对果蝇攀爬能力及寿命的影响[J]. 长春中医药大学学报,2019,35(5):936−938. [Liu Y, Liu L, Guan H B. Effect of Polygala tenuifolia saponin on climbing ability and life span of Drosophila melanogaster[J]. Journal of Changchun University of Chinese Medicine,2019,35(5):936−938.
    [28] 怀雪, 孟永海, 王艳艳, 等. 刺玫果提取物抗衰老作用的研究[J]. 食品科技,2019,44(2):215−220. [Huai X, Meng Y M, Wang Y Y, et al. Anti-aging effect of Rosa davurica Pall extract on Drosophila melanogaster[J]. Food Science and Technology,2019,44(2):215−220.
    [29] 王彦平, 袁贵英, 曹娅, 等. 紫山药提取物抗氧化与延长寿命作用的研究[J]. 食品工业科技,2017,38(1):360−363. [Wang Y P, Yuan G Y, Cao Y, et al. Effect of purple yam extract on antioxidant function and lifespan in Drosophila melanogaster[J]. Science and Technology of Food Industry,2017,38(1):360−363.
    [30] 秦永燕, 王妤婕, 李颖, 等. 黄芪多糖对果蝇寿命和抗氧化作用的影响[J]. 食品工业科技,2020,41(2):288−291. [Qin Y Y, Wang Y J, Li Y, et al. Effects of Astragalus polysaccharide on life span and antioxidation of Drosophila melanogaster[J]. Science and Technology of Food Industry,2020,41(2):288−291.
    [31] 王耀辉, 任海虹, 王景雪, 等. 白灵菇多糖对果蝇寿命及抗氧化活性的影响[J]. 食品工业科技,2018,39(5):313−318. [Wang Y H, Ren H H, Wang J X, et al. Effect of polysaccharides of Pleurotus nebrodensis on the life-span and antioxidant activities of Drosophila melanogaster[J]. Science and Technology of Food Industry,2018,39(5):313−318.
    [32] 邵婵. 酸枣提取物对果蝇抗衰老机理的研究[D]. 天津: 天津科技大学, 2012.

    Shao C. Studies on anti-aging mechanism of Choerospondias axillaries extraction on Drosophila melanogaster[D]. Tianjin: Tianjin University of Science and Technology, 2012.
    [33] 周翔, 辛中国, 孙国光. 血清过氧化脂质的正常值和衰老的关系[J]. 中国老年学杂志,1985(2):4−7. [Zhou X, Xin Z G, Sun G G. Relationship between normal serum lipid peroxidation and senescence[J]. Chinese Journal of Gerontology,1985(2):4−7.
    [34] Lushchak O V, Gospodaryov D V, Rovenko B M, et al. Specific dietary carbohydrates differentially influence the life span and fecundity of Drosophila melanogaster[J]. Journals of Gerontology,2014(1):3−12.
    [35] 地里热巴·沙它尔. 姜黄素与糖/蛋白平衡对果蝇的协同抗衰老作用研究[D]. 杭州: 浙江大学, 2015.

    Dilireba S T E. Studies on collaborative anti-aging effect of curcumin and sugar/protein balance on Drosophila[D]. Hangzhou: Zhejiang University, 2015.
    [36] 唐润东, 宋思远, 吴薇. 饮食中糖分控制对雌黑腹果蝇寿命和中肠干细胞的影响[J]. 实验动物与比较医学,2019,39(2):118−123. [Tang R D, Song S Y, Wu W. Effects of sugar concentration control on the longevity and the mid-gut stem cells of female Drosophila melanogaster[J]. Laboratory Animal and Comparative Medicine,2019,39(2):118−123.
    [37] Diao J X, Ou J Y, Dai H, et al. Antioxidant and antiapoptotic polyphenols from green tea extract ameliorate CCl4-induced acute liver injury in mice[J]. Chinese Journal of Integrative Medicine,2020,26(10):736−744. doi:  10.1007/s11655-019-3043-5
    [38] Idma B, Cpl A, Jpr A, et al. Optimization of the thiobarbituric acid-malonaldehyde reaction in non-aqueous medium. Direct analysis of malonaldehyde in oil samples by HPLC with fluorimetric detection[J]. Microchemical Journal,2020,159:105318. doi:  10.1016/j.microc.2020.105318
    [39] Harman D. Aging: A theory based on free radical and radiation chemistry[J]. Journal of Gerontology,1956,11(3):298−300. doi:  10.1093/geronj/11.3.298
    [40] Harman D. The aging process[J]. Proceedings of the National Academy of Sciences of the United States of America,1981,78(11):7124−7128. doi:  10.1073/pnas.78.11.7124
    [41] 孙奇林, 陈雯洁, 杨叶虹, 等. 黄芪多糖改善高糖诱导的H9C2心肌细胞氧化应激损伤的机制研究[J]. 老年医学与保健,2019,25(5):583−589. [Sun Q L, Chen W J, Yang Y H, et al. The mechanism of Astragalus polysaccharides in improving the oxidative stress injury induced by high glucose in H9C2 cardiomyocytes[J]. Geriatrics and Health Care,2019,25(5):583−589. doi:  10.3969/j.issn.1008-8296.2019.05.011
    [42] 朱国丽, 尹方超, 王丽, 等. 基于微流控芯片的高糖对模式生物线虫寿命影响及白藜芦醇苷保护性作用考察[J]. 色谱,2016,34(2):140−145. [Zhu G L, Yin F C, Wang L, et al. Microdevice for the investigation of high-glucose induced lifespan and the protective effect of polydatin in C. elegans[J]. Chinese Journal of Chromatography,2016,34(2):140−145. doi:  10.3724/SP.J.1123.2015.10009
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  17
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-16
  • 网络出版日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。