羊栖菜褐藻糖胶对AAPH诱导的斑马鱼氧化应激模型的保护作用

王胜男 付晓婷 许加超 高昕

王胜男,付晓婷,许加超,等. 羊栖菜褐藻糖胶对AAPH诱导的斑马鱼氧化应激模型的保护作用[J]. 食品工业科技,2021,42(18):356−365. doi:  10.13386/j.issn1002-0306.2020120007
引用本文: 王胜男,付晓婷,许加超,等. 羊栖菜褐藻糖胶对AAPH诱导的斑马鱼氧化应激模型的保护作用[J]. 食品工业科技,2021,42(18):356−365. doi:  10.13386/j.issn1002-0306.2020120007
WANG Shengnan, FU Xiaoting, XU Jiachao, et al. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356−365. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120007
Citation: WANG Shengnan, FU Xiaoting, XU Jiachao, et al. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356−365. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020120007

羊栖菜褐藻糖胶对AAPH诱导的斑马鱼氧化应激模型的保护作用

doi: 10.13386/j.issn1002-0306.2020120007
基金项目: 科技部重点研发计划(2018YFD0901104)
详细信息
    作者简介:

    王胜男(1996−),女,硕士研究生,研究方向:食品科学,E-mail:SSSWWWang@163.com

    通讯作者:

    付晓婷(1980−),女,博士,副教授,研究方向:海藻精深加工,E-mail:xiaotingfu@ouc.edu.cn

  • 中图分类号: TS201.4

Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model

  • 摘要: 目的:探究羊栖菜褐藻糖胶(SFPS)对2, 2-偶氮二(2-甲基丙基咪)二盐酸盐(AAPH)诱导氧化应激斑马鱼模型的保护作用。方法:通过检测SFPS对2, 2'-联氮-双-(3-乙基苯并噻唑啉-6-磺酸)二铵盐(ABTS)及1, 1-二苯基-2-苦基肼(DPPH)自由基的清除能力,来评价及验证SFPS的体外抗氧化能力,优化AAPH诱导斑马鱼氧化应激模型,并分别以三个表型指标胚胎存活率、卵黄囊大小和心跳速率以及斑马鱼体内细胞死亡率和活性氧(ROS)生成率来评价SFPS的体内抗氧化活性。结果:SFPS主要由75.30%±1.77%的总糖、21.39%±1.07%的硫酸根,1.78%±0.19%的蛋白质以及1.47%±0.02%的多酚组成,对DPPH、ABTS自由基清除的IC50值分别为0.59、0.69 mg/mL。此外,SFPS在50~200 μg/mL范围内对斑马鱼胚胎无毒性,并对AAPH诱导引起的斑马鱼氧化损伤起到保护作用,且呈剂量依赖型。其中,在最优浓度200 μg/mL显著提高斑马鱼胚胎存活率(100%,P<0.05), 显著降低心跳速率(101.37%,P<0.05)和卵黄囊大小(111.80%,P<0.05),对斑马鱼体内细胞死亡和活性氧生成的抑制率最高分别可达70.55%和50.68%。结论:SFPS具有较强的体外抗氧化作用,并对AAPH诱导氧化损伤的斑马鱼表现出优越的体内抗氧化能力及氧化损伤修复能力,这表明SFPS作为天然抗氧化剂在保健食品及化妆品领域具有广泛应用前景。
  • 图  1  AAPH诱导浓度对斑马鱼胚胎存活率的影响

    Figure  1.  Effect of AAPH-induced concentration on the survival rates of zebrafish embryos

    注:柱状图上方不同字母表示具有显著性差异,P<0.05;图2~图9同。

    图  2  不同浓度AAPH对斑马鱼胚胎卵黄囊大小的影响

    Figure  2.  Effect of different concentrations of AAPH on the yolk sac size of zebrafish embryos

    图  3  不同浓度AAPH对斑马鱼幼鱼体内细胞死亡率的影响

    Figure  3.  Effect of different concentrations of AAPH on the cell death of zebrafish larvae

    图  4  不同浓度AAPH对斑马鱼幼鱼体内活性氧生成率的影响

    Figure  4.  Effect of different concentrations of AAPH on the reactive oxygen species (ROS) production rate in zebrafish larvae

    图  5  SFPS浓度对斑马鱼胚胎存活发育的影响

    Figure  5.  Effect of different concentrations of SFPS on the survival rate and development of zebrafish embryos

    图  6  SFPS浓度对斑马鱼幼鱼体内细胞死亡率的影响

    Figure  6.  Effect of different concentrations of SFPS on the cell death of zebrafish larvae

    图  7  不同浓度SFPS对AAPH诱导的斑马鱼胚胎存活率(a)、卵黄囊大小(b)、心跳速率(c)的影响

    Figure  7.  Effect of different concentrations of SFPS on the survival rate (a), yolk sac size (b) and heart-beat rate (c) of AAPH-induced zebrafish

    图  8  不同浓度SFPS对AAPH诱导的斑马鱼幼鱼体内细胞死亡率的影响

    Figure  8.  Effect of different concentrations of SFPS on the cell death rate of AAPH-induced zebrafish in vivo

    图  9  不同浓度SFPS对AAPH诱导的斑马鱼幼鱼体内活性氧生成率的影响

    Figure  9.  Effect of different concentrations of SFPS on ROS production of AAPH-induced zebrafish in vivo

    表  1  标准曲线方程

    Table  1.   Equations of standard curves

    指标标准曲线方程R2
    总糖y=3.5706x+0.06180.9990
    硫酸根y=0.2959x+0.03310.9996
    蛋白质y=4.0167x+0.21760.9968
    多酚y=22.952x+0.04120.9991
    下载: 导出CSV

    表  2  SFPSC与SFPS的化学组成

    Table  2.   Chemical components of SFPSC and SFPC

    SFPSCSFPS
    总糖含量(%)40.41±0.1975.30±1.77
    硫酸根含量(%)17.10±0.4221.39±1.07
    蛋白质含量(%)2.01±0.171.78±0.19
    多酚含量(%)1.50±0.091.47±0.02
    下载: 导出CSV

    表  3  SFPSC与SFPS的自由基清除能力

    Table  3.   Free radical scavenging activities of SFPSC and SFPS obtained from S. fusiform

    样品
    自由基清除能力(IC50,mg/mL)
    DPPHABTS
    SFPSC1.22±0.020.93±0.01
    SFPS0.59±0.010.69±0.01
    下载: 导出CSV
  • [1] 倪立颖, 邹娅雪, 付晓婷, 等. 利用LPS诱导胚胎期斑马鱼炎症模型研究羊栖菜多酚抗炎机制[J]. 食品工业科技,2019,40(21):279−285. [Ni Liying, Zou Yaxue, Fu Xiaoting, et al. Anti-inflammatory mechanism of phenolic compounds from Sargassum fusiforme by LPS-induced zebrafish embryo model[J]. Science and Technology of Food Industry,2019,40(21):279−285.
    [2] Zhang R, Zhang X, Tang Y, et al. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review[J]. Carbohydrate Polymers,2020,228:115381. doi:  10.1016/j.carbpol.2019.115381
    [3] Draget K I, Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications[J]. Food Hydrocolloids,2011,25(2):251−256.
    [4] Yu W, Maochen X, Qi C, et al. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies[J]. Marine Drugs,2019,3(17):183.
    [5] Chen L, Chen P, Jian L, et al. Sargassum fusiforme polysaccharide SFP-F2 activates the NF-κB signaling pathway via CD14/IKK and P38 Axes in RAW264.7 Cells[J]. Marine Drugs,2018,16(8):264.
    [6] Wang L, Oh J Y, Jayawardena T U, et al. Anti-inflammatory and anti-melanogenesis activities of sulfated polysaccharides isolated from Hizikia fusiforme: Short communication[J]. International Journal of Biological Macromolecules,2020,142:542−550.
    [7] Cheng Y, Sibusiso L, Hou L, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice[J]. International Journal of Biological Macromolecules,2019:131.
    [8] 赵子慧, 徐曼, 刘阿梅, 等. 羊栖菜多糖通过激活JNK/Nrf2/ARE信号通路延缓小鼠衰老进程作用研究[J]. 中草药,2018,49(23):5600−5609. [Zhao Zihui, Xu Man, Liu Amei, et al. Effect of Sargassum fusiforme polysaccharides on activating JNK/Nrf2/ARE signaling pathway and slowing down aging process[J]. Chinese Traditional and Herbal Drugs,2018,49(23):5600−5609. doi:  10.7501/j.issn.0253-2670.2018.23.018
    [9] Li Y, Chen B, Wu W, et al. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme[J]. International Journal of Biological Macromolecules,2018,118:1550−1557. doi:  10.1016/j.ijbiomac.2018.06.196
    [10] Wang L, Oh J Y, Yang H W, et al. Protective effect of sulfated polysaccharides from a celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced photoaging in vitro in human keratinocytes and in vivo in zebrafsh[J]. Marine Life Science & Technology,2019(1):104−111.
    [11] 吴娟, 欧志荣, 李昭蓉, 等. 稀酸提取羊栖菜多糖的结构及其抗氧化特性研究[J]. 福建农业学报,2019,34(7):842−851. [Wu Juan, Ou Zhirong, Zhao Mouming. Structure and antioxidant activity of polysaccharides extracted from Sargassum fusiforme[J]. Fujian Journal of Agricultural Sciences,2019,34(7):842−851.
    [12] 吴利敏, 夏盛隆, 申苏建,等. L02脂肪变模型中氧化应激的发生及羊栖菜多糖的干预作用[J]. 中国现代医生,2017,34(55):17−23. [Wu Limin, Xia Shenglong, Shen sujian, et al. The occurrence of oxidative stress in L02 fatty model and the intervention of Sargassum fusiform polysaccharide[J]. China Modern Doctor,2017,34(55):17−23.
    [13] Wang W, Lu J, Wang C, et al. Effects of Sargassum fusiforme polysaccharides on antioxidant activities and intestinal functions in mice[J]. International Journal of Biological Macromolecules,2013,58:127−132. doi:  10.1016/j.ijbiomac.2013.03.062
    [14] Wang L, Oh J Y, Kim H S, et al. Protective effect of polysaccharides from celluclast-assisted extract of Hizikiafusiforme against hydrogen peroxide-induced oxidative stress in vitro in Vero cells and in vivo in zebrafish[J]. International Journal of Biological Macromolecules,2018,112:483−489. doi:  10.1016/j.ijbiomac.2018.01.212
    [15] 董乐, 董笑瀛, 王芳, 等. 羊栖菜硫酸多糖的超声辅助提取工艺优化及抗氧化活性研究[J]. 食品工业科技,2015,36(12):265−269. [Dong Le, Dong Xiaoying, Wang Fang, et al. Optimization of extraction and antioxidative activity in vitro ofsulfated polysaccharides from Sargassum fusiforme(Hary) Setch[J]. Science and Technology of Food Industry,2015,36(12):265−269.
    [16] Weihua J, Wenjing Z, Jing W, et al. A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species[J]. International Journal of Biological Macromolecules,2014,67:336−342. doi:  10.1016/j.ijbiomac.2014.03.031
    [17] Kim E, Kang M, Lee J, et al. Protective effect of marine brown algal polyphenols against oxidative stressed zebrafish with high glucose[J]. RSC Advances,2015,5:25738−25746. doi:  10.1039/C5RA00338E
    [18] Lee S, Ko C, Jee Y, et al. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model[J]. Carbohydrate Polymers,2013,92(1):84−89. doi:  10.1016/j.carbpol.2012.09.066
    [19] Lieschke G J, Currie P D. Animal models of human disease: Zebrafish swim into view[J]. Nature Reviews Genetics,2007,8(5):353−367. doi:  10.1038/nrg2091
    [20] Schoonheim P J, Chatzopoulou A, Schaaf M J M. The zebrafish as an in vivo model system for glucocorticoid resistance[J]. Steroids,2010,75(12):918−925. doi:  10.1016/j.steroids.2010.05.010
    [21] Eisen J S. Zebrafish make a big splash[J]. Cell,1996,87(6):969−977. doi:  10.1016/S0092-8674(00)81792-4
    [22] Wang L, Oh J Y, Hwang J, et al. In vitro and in vivo antioxidant activities of polysaccharides isolated from celluclast-assisted extract of an edible brown seaweed, Sargassum fulvellum[J]. Antioxidants,2019,8(10):493. doi:  10.3390/antiox8100493
    [23] Kang M, Cha S H, Wijesinghe W A J P, et al. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo[J]. Food Chemistry,2013,138(2−3):950−955. doi:  10.1016/j.foodchem.2012.11.005
    [24] Ni Liying, Wang Lei, Fu Xiaoting, et al. In vitro and in vivo anti-inflammatory activities of a fucose-rich fucoidan isolated from Saccharina japonica[J]. International Journal of Biological Macromolecules,2020,156:717−729. doi:  10.1016/j.ijbiomac.2020.04.012
    [25] 李雅静. 两品系羊栖菜(Sargassum fusiforme)的营养品质及活性成分研究[D]. 青岛: 中国海洋大学, 2018.

    Li Yajing. Study on nutritional quality and active components of two strands of Sargassum fusiforme[D]. Qingdao: Ocean University of China, 2018.
    [26] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. American Chemical Society,1956,3(28):350−356.
    [27] Kawai Y, Seno N, Anno K. A modified method for chondrosulfatase assay[J]. Analytical Biochemistry,1969(32):314−321.
    [28] Winters A L, Minchin F R. Modification of the lowry assay to measure proteins and phenols in covalently bound complexes[J]. Analytical Biochemistry,2005,346(1):43−48. doi:  10.1016/j.ab.2005.07.041
    [29] Chandler S F, Dodds J H. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum[J]. Plant Cell Reports,1983,2(4):205−208. doi:  10.1007/BF00270105
    [30] Tierney M S, Smyth T J, Rai D K, et al. Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size[J]. Food Chemistry,2013,139(1−4):753−761. doi:  10.1016/j.foodchem.2013.01.019
    [31] Li Y, Fu X, Duan D, et al. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme(Harvey) setchell[J]. Marine Drugs,2017,15(2):49. doi:  10.3390/md15020049
    [32] Frattaruolo L, Carullo G, Brindisi M, et al. Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of nf-kb/mapk pathway[J]. Antioxidants,2019,8:186. doi:  10.3390/antiox8060186
    [33] 邹娅雪, 付晓婷, 段德麟, 等. 利用斑马鱼模型研究琼胶寡糖抗氧化机制[J]. 食品工业科技,2019(4):286−298. [Zou Yaxue, Fu Xiaoting, Duan Deilin, et al. Antioxidant activities of agaro-oligosaccharides in AAPH-induced zebrafish model[J]. Science and Technology of Food Industry,2019(4):286−298.
    [34] Zou Y, Fu X, Liu N, et al. The synergistic anti-inflammatory activities of agaro-oligosaccharides with different degrees of polymerization[J]. Journal of Applied Phycology,2019,31(4):2547−2558. doi:  10.1007/s10811-019-1740-2
    [35] Na Yi-rang, Seok Seung-hyeok, Bae Min-won, et al. Protective effects of vitamin E against 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) induced toxicity in zebrafish embryos[J]. Ecotoxicology and Environmental Safety,2009,72(3):714−719. doi:  10.1016/j.ecoenv.2008.09.015
    [36] Tae-Young C, Jin-Hwa K, Han K D, et al. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds[J]. Pigment cell Research,2007,20(2):120−127. doi:  10.1111/j.1600-0749.2007.00365.x
    [37] Jacobsen C, Sørensen, Ann-Dorit M, et al. Source, extraction, characterization, and applications of novel antioxidants from seaweed[J]. Annual Review of Food Science and Technology,2019,10(1).
    [38] Dion M Z, Wang Y J, Bregante D, et al. The use of a 2,2'-azobis(2-amidinopropane) dihydrochloride stress model as an indicator of oxidation susceptibility for monoclonal antibodies[J]. Journal of Pharmaceutical Ences,2018,107(2):550−558.
    [39] Betigeri S, Thakur A, Raghavan K. Use of 2, 2′-azobis(2-amidinopropane) dihydrochloride as a reagent tool for evaluation of oxidative stability of drugs[J]. Pharmaceutical Research,2005,22(2):310−317. doi:  10.1007/s11095-004-1199-x
    [40] 陈汝家, 朱俊靖, 周盛梅, 等. 斑马鱼模型在药物毒性与安全性评价中的应用[J]. 毒理学杂志,2012,26(3):224−228. [Chen Rujia, Zhu Junjing, Zhou Shengmei. Application of zebrafish model in drug toxicity and safety evaluation[J]. Journal of Toxical,2012,26(3):224−228.
    [41] Phull A, Majid M, Haq I, et al. In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar[J]. International Journal of Biological Macromolecules,2017,97:468−480. doi:  10.1016/j.ijbiomac.2017.01.051
    [42] Lee W, Kang N, Kim E, et al. Radioprotective effects of a polysaccharide purified from Lactobacillus plantarum-fermented Ishigeokamurae against oxidative stress caused by gamma ray-irradiation in zebrafish in vivo model[J]. Journal of Functional Foods,2017,28:83−89. doi:  10.1016/j.jff.2016.11.004
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  33
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。