不同处理方式复合菌固体发酵野生构树叶制备蛋白饲料的工艺优化

吴鹏涛 李杭庆 李琛 李鹏 王珍珍 章亭洲 葛青 毛建卫

吴鹏涛,李杭庆,李琛,等. 不同处理方式复合菌固体发酵野生构树叶制备蛋白饲料的工艺优化[J]. 食品工业科技,2021,42(18):148−156. doi:  10.13386/j.issn1002-0306.2020110039
引用本文: 吴鹏涛,李杭庆,李琛,等. 不同处理方式复合菌固体发酵野生构树叶制备蛋白饲料的工艺优化[J]. 食品工业科技,2021,42(18):148−156. doi:  10.13386/j.issn1002-0306.2020110039
WU Pengtao, LI Hangqing, LI Chen, et al. Optimization of Preparation Process of Protein Feed by Solid Fermentation of Wild Broussonetia papyrifera Leaves with Different Treatment Methods[J]. Science and Technology of Food Industry, 2021, 42(18): 148−156. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110039
Citation: WU Pengtao, LI Hangqing, LI Chen, et al. Optimization of Preparation Process of Protein Feed by Solid Fermentation of Wild Broussonetia papyrifera Leaves with Different Treatment Methods[J]. Science and Technology of Food Industry, 2021, 42(18): 148−156. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020110039

不同处理方式复合菌固体发酵野生构树叶制备蛋白饲料的工艺优化

doi: 10.13386/j.issn1002-0306.2020110039
基金项目: 浙江省自然科学基金(LZY21E080002)
详细信息
    作者简介:

    吴鹏涛(1996−),男,硕士研究生,研究方向:生物质资源利用与工程,E-mail:1090811537@qq.com

    通讯作者:

    葛青(1982−),女,博士,副教授,研究方向:天然产物研究与开发,E-mail:gq0318@163.com

    毛建卫(1964−),男,硕士,教授,研究方向:农业生物资源生化制造研究,E-mail:zjhzmjw@163.com

  • 中图分类号: S816.6+1

Optimization of Preparation Process of Protein Feed by Solid Fermentation of Wild Broussonetia papyrifera Leaves with Different Treatment Methods

  • 摘要: 为降低构树叶中单宁含量,采用蒸汽爆破、球磨等方式对构树叶进行预处理,以抗营养因子单宁含量为考察指标,通过响应面分析法确定枯草芽孢杆菌、乳酸菌和酿酒酵母菌的复合菌固态发酵构树叶制备蛋白饲料的最佳工艺。结果表明:最佳工艺条件为汽爆压强1.4 MPa,维压时间90 s;球磨时间20 min;发酵时间4 d,含水量60%,发酵温度32.50 ℃,酿酒酵母菌:乳酸菌:枯草芽孢杆菌=1:1:1。构树叶经发酵、汽爆后发酵和球磨发酵后发酵单宁含量分别降低了36.2%、39.5%和60.5%;粗蛋白含量分别增加了23.59%、10.28%和7.84%;粗灰分含量分别增加了16.7%、31.80%和24.23%;粗纤维含量分别降低了15.33%、12.32%和7.85%。构树叶的钙含量为2.70%,经发酵后钙含量无明显变化,经汽爆发酵后和球磨发酵后分别增加了23.33%和22.22%(P<0.05),预处理和发酵对磷和粗脂肪的含量几乎无影响,磷含量约为0.3%,粗脂肪含量约为2.4%。原料发酵、汽爆发酵和球磨发酵的酶活力分别高达41.43、44.77和65.10 U。球磨发酵降单宁效果要远远优于汽爆发酵和原料发酵,原料发酵的蛋白增加效果最佳。
  • 图  1  维压时间对构树叶中单宁含量的影响

    Figure  1.  Effect of pressure maintaining time on tannin content in Broussonetia papyrifera leaves

    注:不同的小写字母表示差异性显著(P<0.05),相同的小写字母表示差异性不显著(P>0.05);图2~图8同。

    图  2  汽爆压强对构树叶中单宁含量的影响

    Figure  2.  Effect of steam explosion pressure on tannin content in Broussonetia papyrifera leaves

    图  3  汽爆条件对构树叶单宁含量的影响

    Figure  3.  Effect of steam explosion conditions on tannin content in Broussonetia papyrifera leaves

    图  4  球磨时间对构树叶中单宁含量的影响

    Figure  4.  Effect of ball milling time on tannin content in Broussonetia papyrifera leaves

    图  5  菌种配比对发酵构树叶单宁含量的影响

    Figure  5.  Effect of strain ratio on tannin content in fermented Broussonetia papyrifera leaves

    图  6  发酵温度对构树叶中单宁含量的影响

    Figure  6.  Effect of fermentation temperature on tannin content in Broussonetia papyrifera leaves

    图  7  发酵时间对构树叶中单宁含量的影响

    Figure  7.  Effect of fermentation time on tannin content in Broussonetia papyrifera leaves

    图  8  含水量对构树叶中单宁含量的影响

    Figure  8.  Effect of water content on tannin content in Broussonetia papyrifera leaves

    图  9  各因素交互作用对构树叶中单宁含量的影响

    Figure  9.  Effect of interaction of various factors on tannin content in Broussonetia papyrifera leaves

    图  10  构树叶发酵过程中的酶活力

    Figure  10.  Enzyme activity of Broussonetia papyrifera leaves during fermentation

    表  1  汽爆条件优化设计

    Table  1.   Optimization design of steam explosion conditions

    编号汽爆发酵时间(s)汽爆发酵压强(MPa)
    1901.3
    21201.3
    31501.3
    4901.4
    51201.4
    61501.4
    7901.5
    81201.5
    91501.5
    下载: 导出CSV

    表  2  Box-Behnken实验因素水平表及编码

    Table  2.   Box-Behnken experimental factor level table and coding

    因素水平
    −101
    A发酵温度(℃)303336
    B发酵时间(d)345
    C含水量(%)506070
    下载: 导出CSV

    表  3  响应面试验设计与结果

    Table  3.   Design and results of response surface experiment

    实验号发酵时间(d)含水量(%)发酵温度(℃)单宁含量(%)
    1350332.58
    2460331.25
    3560302.17
    4550332.47
    5460331.39
    6450302.13
    7460331.42
    8360362.39
    9570332.43
    10360302.01
    11470362.46
    12470302.32
    13560362.25
    14450362.52
    15460331.42
    16370332.35
    17460331.28
    下载: 导出CSV

    表  4  回归模型方差分析

    Table  4.   Variance analysis of regression model

    方差来源平方和自由度均方FP显著性
    模型3.7590.4261.73<0.0001***
    A0100.0020.9669
    B0.00210.0020.360.5657
    C0.1210.1218.170.0037**
    AB0.00910.0091.340.2853
    AC0.02310.0233.340.1105
    BC0.01610.0162.320.1718
    A20.9610.96141.77<0.0001***
    B21.6711.67247.03<0.0001***
    C20.610.688.51<0.0001***
    残差0.04770.007
    失拟项0.02130.0071.060.4584不显著
    纯误差0.02640.007
    总回归3.7916
    注:***差异高度显著(P<0.001);**差异极显著(P<0.01);*差异显著(P<0.05);R2=0.9876,RAdj2=0.9716。
    下载: 导出CSV

    表  5  常规营养成分表(%,干基)

    Table  5.   Table of conventional nutrients (%, dry basis)

    类别原料原料发酵汽爆发酵球磨发酵
    单宁2.1±0.05a1.34±0.03b1.27±0.02b0.85±0.02c
    粗蛋白16.83±0.15b20.80±0.25a18.56±0.01b18.15±0.21b
    粗灰分16.26±0.29d16.32±0.26c16.43±0.13a16.20±0.29b
    粗纤维15.66±0.29a13.26±0.13b13.73±0.44b14.43±0.34ab
    粗脂肪2.37±0.052.36±0.042.36±0.032.45±0.04
    0.29±0.010.31±0.020.32±0.010.32±0.02
    2.70±0.05b2.78±0.10b3.33±0.03a3.30±0.22a
    注:同行相比,肩标不同的小写字母表示差异性显著(P<0.05),肩标相同的小写字母表示差异性不显著(P>0.05)。
    下载: 导出CSV

    表  6  构树叶发酵过程中的益生菌计数结果

    Table  6.   Probiotic counting results during fermentation of Broussonetia papyrifera leaves

    项目发酵时间(d)酵母菌
    (CFU·g−1
    枯草芽孢杆菌
    (CFU·g−1
    乳酸菌
    (CFU·g−1
    原料发酵19.5×1059.5×1057.5×105
    21.5×1067.5×1062.25×106
    36.0×1071.1×1083.0×106
    42.0×1074.0×1079.5×104
    球磨发酵11.1×1054.0×1052.7×105
    22.5×1068.0×1067.5×105
    32.25×1071.1×1085.5×106
    42.5×1052.0×1069.0×104
    汽爆发酵11.55×1058.0×1057.0×105
    23.5×1059.0×1061.5×106
    32.0×1079.0×1072.5×106
    41.5×1051.0×1069.5×105
    下载: 导出CSV
  • [1] 李兰海, 王自蕊, 游金明, 等. 构树叶在畜禽生产中的研究进展[J]. 饲料工业,2018,39(1):24−26. [Li L H, Wang Z R, You J M. Research advances on the application of Broussonetia papyrifera leaves for livestock and poultry[J]. Feed Industry,2018,39(1):24−26.
    [2] Mei C J, Wang Q C, Gui J C, et al. Molecular identification of ‘Candidatus phytoplasma asteris’ related strain (16SrI-B) associated with Broussonetia papyrifera in Nanjing, China[J]. European Journal of Plant Pathology,2016,145(1):203−207. doi:  10.1007/s10658-015-0808-3
    [3] 李艳芝. 构树叶对蛋鸡生产性能、蛋品质、血液生化指标及免疫功能的影响[D]. 保定: 河北农业大学, 2011.

    Li Y Z. Effect of leaves of Broussonetia on production performance, egg quality, serum biochemical parameters and immunity of laying hens[D]. Baoding: Hebei Agriculture University, 2011.
    [4] Huang Q Q, Liu X L, Zhao G Q, et al. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production[J]. Animal Nutrition,2018,4(2):137−150. doi:  10.1016/j.aninu.2017.09.004
    [5] Espinosa-Gómez F C, Serio-Silva J C, Santiago-García J D, et al. Salivary tannin-binding proteins are a pervasive strategy used by the folivorous/frugivorous black howler monkey[J]. American Journal of Primatology,2018:e22737.
    [6] Frazier R A, Deaville E R, Creen R J, et al. Interacyions of tea tannins and condensed tannins with proteins[J]. Journal of Phannaceutical and Biomedical Analysis,2010,51:490−495. doi:  10.1016/j.jpba.2009.05.035
    [7] 李海庆, 吴跃明. 饲料中单宁对动物的影响[J]. 饲料研究,2006,17:26−29. [Li H Q, Wu Y M. Effect of tannin in feed on animals[J]. Feed Research,2006,17:26−29. doi:  10.3969/j.issn.1002-2813.2006.02.009
    [8] Teixeira L, Pinto C F D, Kessler A D M, et al. Effect of partial substitution of rice with sorghum and inclusion of hydrolyzable tannins on digestibility and postprandial glycemia in adult dogs[J]. Plos One,2019,14(5):1−14.
    [9] Omnes M, Goasduff J R, Delliou H L, et al. Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (Dicentrarchus labrax L.)[J]. Aquaculture Reports,2017,6:21−27. doi:  10.1016/j.aqrep.2017.01.004
    [10] Shang Y F, Cao H, Ma Y L, et al. Effect of lactic acid bacteria fermentation on tannins removal in Xuan Mugua fruits[J]. Food Chemistry,2019,274:118−122. doi:  10.1016/j.foodchem.2018.08.120
    [11] 蔡淑娟. 产单宁酶酵母菌株的筛选[D]. 淄博: 齐鲁工业大学, 2012.

    Cai S J. A thesis submitted for the application of the master’s degree of engineering[D]. Zibo: Qilu University of Technology, 2012.
    [12] 赵亮. 发酵改性降低秸秆成型能耗及提高成型耐水性机理研究[D]. 北京: 华北电力大学, 2016.

    Zhao L. Research on the mechanism of decreasing the energy consumption and improving the water resistance of straw briquetting by anaerobic fermentation pretreatment[D]. Beijing: North China Electric Power University, 2016.
    [13] 杨华, 李建仓, 赵富善, 等. 秸秆汽爆饲料化利用自动化生产线研制[J]. 农业开发与装备,2020(7):141−145. [Yang H, Li J C, Zhao F S, et al. Development of automatic production line for straw steam explosion feed utilization[J]. Agricultural Development and Equipment,2020(7):141−145. doi:  10.3969/j.issn.1673-9205.2020.07.105
    [14] 王全杰, 任方萍, 高龙. 植物单宁的含量测定方法[J]. 西部皮革,2010,32(23):26−31. [Wang Q J, Ren F P, Gao L. Testing methods of the vegetable tannin content[J]. West Leather,2010,32(23):26−31. doi:  10.3969/j.issn.1671-1602.2010.23.009
    [15] 李淑颖. 单宁降解菌筛选及其降解木本饲料中单宁的研究[D]. 长春: 吉林农业大学, 2017.

    Li S Y. Screening and isolation of tannic acid degrading microorganisms and the study about the reduction of tannic acid in Woody forage[D]. Changchun: Jilin Agricultura University, 2017.
    [16] 张雷. 基于蒸汽爆破技术生产无抗化豆粕饲料的研究[D]. 郑州: 河南农业大学, 2017.

    Zhang L. Study on manufacturing technique of antinutritional factors-free soybean meal feed based on steam explosion[D]. Zhengzhou: Henan Agricultural University, 2017.
    [17] 林益明, 黄舒静, 黄玉杰, 等. 不同温度处理对两种木麻黄单宁提取的影响[J]. 厦门大学学报(自然科学版),2007(4):583−586. [Lin Y M, Huang S J, Huang Y J, et al. Effect of different temperature on estimates effect of different temperature on estimates[J]. Journal of Xiamen University (Natural Science),2007(4):583−586.
    [18] Al-Ashen S, Duvnjak Z. Phytase production and decrease of phytic acid content in canola meal by Aspergillus in solid-state fermentation[J]. Word Journal of Microbiology and Biotechnology,1995,11:228−231. doi:  10.1007/BF00704655
    [19] Naushad M E, John R T. Sorghum kafirin interaction with various phenolic compounds[J]. Journal of the Science of Food and Agriculture,2010,83:402−407.
    [20] 王晓东, 麦康森, 张彦娇, 等. 双低菜粕中植酸和单宁的黑曲霉发酵降解及条件优化[J]. 中国海洋大学学报(自然科学版),2013,43(2):15−22. [Wang S D, Mai K S, Zhang Y J, et al. Degradation of tannins and phytic acid in double-low rapeseed meal by Aspergillusniger in solid fermentation and optimization of fermenting condition[J]. Periodical of Ocean University of China (Natural Science),2013,43(2):15−22.
    [21] 周梦佳, 李涛, 曾燕, 等. 含水率对发酵饲料品质的影响[J]. 中国饲料,2013(7):12−14. [Zhou M J, Li T, Zeng Y, et al. Effects of moisture content on fermentation feed quality[J]. China Feed,2013(7):12−14.
    [22] 李海新. 发酵构树叶对生长猪营养物质消化率、肥育性能、屠宰性能及肉质的影响[D]. 湛江: 广东海洋大学, 2010.

    Li H X. Influence of ferment Broussonetia papyrifera leaf on nutrients, growing performance, carcass characteristics and meat quality[D]. Shenjiang: Guangdong Ocean University, 2010.
    [23] 管维, 兰时乐, 詹逸舒, 等. 复合微生物固态发酵菜籽饼粕对抗营养因子去除条件的研究[J]. 安徽农业科学,2020,48(2):189−191, 196. [Guan W, Lan S L, Zhan Y S, ey al. Study on the removal conditions of anti-nutrients study on the removal conditions of anti-nutrients[J]. Journal of Anhui Agricultural Sciences,2020,48(2):189−191, 196. doi:  10.3969/j.issn.0517-6611.2020.02.055
    [24] 叶添梅, 李霞, 李飞鸣, 等. 桑叶粉饲料生物发酵工艺试验[J]. 四川蚕业,2020,48(2):33−36. [Ye T M, Li X, Li F M, et al. Experimental study on biological fermentation technology of mulberry leaf powder feed[J]. Sichuan Sericulture,2020,48(2):33−36.
    [25] Jazi V, Boldaji F, Dastar B, et al. Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens[J]. British Poultry Science,2017,58(4):402−408. doi:  10.1080/00071668.2017.1315051
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  60
  • HTML全文浏览量:  30
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-05
  • 网络出版日期:  2021-08-06
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。