谷物类食品中脱氧雪腐镰刀菌烯醇(DON)及其衍生物的研究现状

刘慧 曾祥权 周玉春 蒋世卫 黄华

刘慧,曾祥权,周玉春,等. 谷物类食品中脱氧雪腐镰刀菌烯醇(DON)及其衍生物的研究现状[J]. 食品工业科技,2021,42(18):435−445. doi:  10.13386/j.issn1002-0306.2020080272
引用本文: 刘慧,曾祥权,周玉春,等. 谷物类食品中脱氧雪腐镰刀菌烯醇(DON)及其衍生物的研究现状[J]. 食品工业科技,2021,42(18):435−445. doi:  10.13386/j.issn1002-0306.2020080272
LIU Hui, ZENG Xiangquan, ZHOU Yuchun, et al. Research Progress of Deoxynivalenol (DON) and Its Derivatives in Cereal Foods[J]. Science and Technology of Food Industry, 2021, 42(18): 435−445. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080272
Citation: LIU Hui, ZENG Xiangquan, ZHOU Yuchun, et al. Research Progress of Deoxynivalenol (DON) and Its Derivatives in Cereal Foods[J]. Science and Technology of Food Industry, 2021, 42(18): 435−445. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080272

谷物类食品中脱氧雪腐镰刀菌烯醇(DON)及其衍生物的研究现状

doi: 10.13386/j.issn1002-0306.2020080272
详细信息
    作者简介:

    刘慧(1985−),女,博士,讲师,研究方向:食品质量与安全、食品功能成分,E-mail:ndliuhui@126.com

  • 中图分类号: TS207.5

Research Progress of Deoxynivalenol (DON) and Its Derivatives in Cereal Foods

  • 摘要: 脱氧雪腐镰刀菌烯醇(DON)是由镰刀菌在侵染小麦等禾谷类作物过程中产生的一种有毒次级代谢产物,广泛分布于谷物及其相关制品中,给世界粮食产业造成巨大经济损失,也给人类健康带来重大威胁。DON在植物、微生物作用下会转化形成各种衍生物,且这些衍生物可与DON原型同时存在,增加了谷物及相关制品的安全风险。本文对DON的理化性质、影响产生的因素及其衍生物类型进行了讨论,并重点阐述了DON及其衍生物的污染状况以及在食品加工过程中的变化等方面的研究进展,以期为谷物及其制品中DON的风险评估及防控策略的制定提供有利参考。
  • 图  1  DON及其衍生物

    Figure  1.  DON and its derivatives

    表  1  部分国家和地区对DON在食品中的限量标准[24]

    Table  1.   Limit standards of DON in food in several countries and regions[24]

    国家/地区食品类别限量(μg/kg)
    中国谷物及其制品:玉米、玉米面、大麦、小麦、麦片、小麦粉1000
    欧盟未经加工的硬质小麦和燕麦、湿磨法处理的玉米1750
    除硬质小麦、燕麦、玉米外的未经加工谷物1250
    直接食用的谷物加工食品、≤500 μm的玉米研磨碎片750
    面包、点心、甜点及早餐谷物500
    婴幼儿谷物食品200
    美国食用磨粉用小麦2000
    用于食用的小麦制品(面粉、麸皮和胚芽)1000
    加拿大未清洗软质小麦2000
    软质小麦面粉(成人食品)1200
    软质小麦面粉(婴儿食品)600
    俄罗斯小麦700
    大麦1000
    白俄罗斯小麦700
    婴幼儿食品不允许
    日本去皮小麦1100
    保加利亚直接食用或作为加工食品配料的谷物及其加工产品1000
    玉米及其加工产品1000
    直接食用或作为加工食品配料之前拟贮藏或进行其他物理处理的谷物2000
    古巴进口谷物300
    塞浦路斯谷粒1200
    塞尔维亚未加工玉米1750
    下载: 导出CSV

    表  2  近些年全球部分地区谷物及其制品中DON及其衍生物检出情况

    Table  2.   Detection of DON and its derivatives in cereal and their products around the world recently

    国家食品类别毒素类型阳性数量/样品量检出含量(μg/kg)参考文献
    捷克小麦粉DON16/2228~594[49]
    DON-3-Glc15/225~72
    NIV0/22n.d.
    早餐谷物DON2/731~347
    DON-3-Glc6/719~66
    NIV1/731
    精白面粉制品DON16/1713~350
    DON-3-Glc14/175~30
    NIV0/17n.d.
    混合面粉制品DON32/3613~431
    DON-3-Glc28/367~41
    NIV1/36
    比利时玉米DON6/6411~5245[50]
    3-AcDON6/663~613
    15-AcDON6/661~792
    DON-3-Glc6/636~1003
    小麦DON5/6<LOQ~150
    3-AcDON3/6<LOQ~17
    15-AcDON1/6<LOQ
    DON-3-Glc2/618
    燕麦DON1/646
    3-AcDON6/634~116
    15-AcDON6/6<LOQ~27
    DON-3-Glc4/628~97
    玉米片DON1/6<LOQ~207
    3-AcDON5/629~52
    15-AcDON5/6<LOQ~17
    DON-3-Glc3/624~28
    面包DON6/6<LOQ~102
    3-AcDON6/629~51
    15-AcDON4/6<LOQ~18
    DON-3-Glc5/626~28
    中国大米DON1/260~120.3[51]
    DON-3-Glc0/26n.d.
    小麦粉DON18/260~2133.2
    DON-3-Glc8/260~252.4
    挂面DON20/240~2156.4
    DON-3-Glc12/240~552.8
    其他谷物及制品DON1/200~99.0
    DON-3-Glc0/20n.d.
    小麦粉DON349/3591.3~825.9[52]
    3-AcDON40/3590.6~3.6
    15-AcDON51/3892.0~11.1
    DON-3-Glc120/3590.2~15.7
    全麦粉DON35/3544.64~924.16[53]
    3-AcDON10/35<LOD~54.88
    15-AcDON6/35<LOD~23.72
    精面粉DON31/50<LOD~401.83
    3-AcDON3/50<LOD~21.02
    15-AcDON1/50<LOD~14.73
    阿根廷小麦DON84/84<LOD~9480[54]
    DON-3-Glc79/84<LOD~850
    美国大麦DON3.0×103~6.3×104[55]
    DON-3-Glc200~3110
    婴幼儿谷类辅食DON42/641.4~146.5[56]
    西班牙啤酒DON<LOD~46.74[57]
    DON-3-Glc<LOD~14.0
    婴幼儿谷类辅食DON12/3012/30[58]
    突尼斯早餐谷物DON5/105~17[59]
    饼干DON2/74~10
    婴儿谷物DON6/610~110
    混合谷物DON7/912~109
    摩洛哥意大利面DON41/10616~900[60]
    3-AcDON1/1063.03
    巴西小麦粉DON134/17273.50~2794.63[61]
    大麦DON72/761700~7500[62]
    下载: 导出CSV
  • [1] Stanciu O, Banc R, Cozma A, et al. Occurence of Fusarium mycotoxins in wheat from Europe-A review[J]. Acta Universitatis Cibiniensis. Series E: Food Technology,2015,19(1):35−60. doi:  10.1515/aucft-2015-0005
    [2] Khaneghah A M, Martins L M, Von Hertwig A M, et al. Deoxynivalenol and its masked forms: Characteristics, incidence, control and fate during wheat and wheat based products processing-A review[J]. Trends in Food Science & Technology,2018,71:13−24.
    [3] 何伟杰, 刘易科, 朱展望, 等. 镰刀菌毒素脱氧雪腐镰刀菌烯醇脱毒菌及脱毒酶研究进展[J]. 植物病理学报,2019,49(5):577−589. [He Weijie, Liu Yike, Zhu Zhanwang, et al. Recent progress on microbial and enzymatic detoxification of Fusarium mycotoxin deoxynivalenol[J]. Acta Phytopathologica SinicaI,2019,49(5):577−589.
    [4] Yuan J, Sun C, Guo X, et al. A rapid Raman detection of deoxynivalenol in agricultural products[J]. Food Chemistry,2017,221:797−802. doi:  10.1016/j.foodchem.2016.11.101
    [5] Alizadeh A, Braber S, Akbari P, et al. Deoxynivalenol and its modified forms: Are there major differences?[J]. Toxins,2016,8(11):334. doi:  10.3390/toxins8110334
    [6] Zhang H, Sun J, Zhang Y, et al. Retention of deoxynivalenol and its derivatives during storage of wheat grain and flour[J]. Food Control,2016,65:177−181. doi:  10.1016/j.foodcont.2015.12.019
    [7] Wu L, Wang B. Transformation of deoxynivalenol and its acetylated derivatives in Chinese steamed bread making, as affected by pH, yeast, and steaming time[J]. Food Chemistry,2016,202:149−155. doi:  10.1016/j.foodchem.2016.01.124
    [8] Pedroso Pereira L T, Putnik P, Tadashi Iwase C H, et al. Deoxynivalenol: Insights on genetics, analytical methods and occurrence[J]. Current Opinion in Food Science,2019,30(4):85−92.
    [9] Bryła M, Ksieniewicz-Woźniak E, Waśkiewicz A, et al. Co-occurrence of nivalenol, deoxynivalenol and deoxynivalenol-3-Glccoside in beer samples[J]. Food Control,2018,92:319−324. doi:  10.1016/j.foodcont.2018.05.011
    [10] Sun J, Wu Y. Evaluation of dietary exposure to deoxynivalenol (DON) and its derivatives from cereals in China[J]. Food Control,2016,69:90−99. doi:  10.1016/j.foodcont.2016.04.040
    [11] Stadler D, Lambertini F, Bueschl C, et al. Untargeted LC-MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread[J]. Food Chemistry,2019,279:303−311. doi:  10.1016/j.foodchem.2018.11.150
    [12] Vidal A, Ambrosio A, Sanchis V, et al. Enzyme bread improvers affect the stability of deoxynivalenol and deoxynivalenol-3-glccoside during breadmaking[J]. Food Chemistry,2016,208:288−296. doi:  10.1016/j.foodchem.2016.04.003
    [13] Zhang H, Wang B. Fates of deoxynivalenol and deoxynivalenol-3-glccoside during bread and noodle processing[J]. Food Control,2015,50:754−757. doi:  10.1016/j.foodcont.2014.10.009
    [14] 谭洋岚, 刘娜, 朱闰月, 等. 隐蔽型真菌毒素的主要类型与分析方法研究进展[J]. 中国科学(化学),2016,46(3):251−256. [Tan Yanglan, Liu Na, Zhu Runyue, et al. Major types of masked mycotoxins and state-of-the-art methodological advance for their detection[J]. Scientia Sinica Chimica,2016,46(3):251−256. doi:  10.1360/N032015-00205
    [15] Yu M, Chen L, Peng Z, et al. Mechanism of deoxynivalenol effects on the reproductive system and fetus malformation: Current status and future challenges[J]. Toxicology in Vitro,2017,41:150−158. doi:  10.1016/j.tiv.2017.02.011
    [16] Payros D, Alassanekpembi I, Pierron A, et al. Toxicology of deoxynivalenol and its acetylated and modified forms[J]. Archives of Toxicology,2016,90(12):2931−2957. doi:  10.1007/s00204-016-1826-4
    [17] Zhou H, Guog T, Dai H, et al. Deoxynivalenol: Toxicological profiles and perspective views for future research[J]. World Mycotoxin Journal,2019,13(2):179−188.
    [18] Freire L, Sant'ana A S. Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects[J]. Food and Chemical Toxicology,2018,111:189−205. doi:  10.1016/j.fct.2017.11.021
    [19] Yoshizawa T, Morooka N. Deoxynivalenol and its monoacetate: New mycotoxins from Fusarium roseum and moldy barley[J]. Agricultural Biology and Chemistry,1973,37:1933−2934.
    [20] 姜冬梅, 王荷, 武琳霞, 等. 小麦中呕吐毒素研究进展[J]. 食品安全质量检测学报,2020,11(2):423−432. [Jiang Dongmei, Wang He, Wu Linxia, et al. Research progress of deoxynivalenol in wheat[J]. Journal of Food Safety and Quality,2020,11(2):423−432.
    [21] 靳梦曈. 小麦中隐蔽型脱氧雪腐镰刀菌烯醇真菌毒素产生规律及分离纯化技术研究[D]. 上海: 上海海洋大学, 2015.

    Jin Mengtong. Production patterns, isolation and purification of masked deoxynivalenol mycotoxin in wheat[D]. Shanghai: Shanghai Ocean University, 2015.
    [22] Pestka J J. Deoxynivalenol: Mechanisms of action, human exposure, and toxicological relevance[J]. Archives of Toxicology,2010,84(9):663−679. doi:  10.1007/s00204-010-0579-8
    [23] Tardivel C, Airault C, Djelloul M, et al. The food born mycotoxin deoxynivalenol induces low-grade inflammation in mice in the absence of observed-adverse effects[J]. Toxicology Letters,2015,232(3):601−611. doi:  10.1016/j.toxlet.2014.12.017
    [24] 祭芳, 张新明, 徐学万, 等. 镰刀菌毒素限量及检测方法标准现状研究[J]. 农产品质量与安全,2018(4):59−65. [Ji Fang, Zhang Xinming, Xu Xuewan, et al. Current status of limit and detection standard ofFusarium toxin[J]. Quality and Safety of Agro-products,2018(4):59−65. doi:  10.3969/j.issn.1674-8255.2018.04.011
    [25] 王小丹, 梁江, 高芃, 等. 婴幼儿谷类辅助食品中脱氧雪腐镰刀菌烯醇污染水平及其风险评估[J]. 中国食品卫生杂志,2019,31(3):255−259. [Wang Xiaodan, Liang Jiang, Gao Peng, et al. Contamination of deoxynivalenol in cereal-based complementary foods and its health risk in infants and young children[J]. Chinese Journal of Food Hygiene,2019,31(3):255−259.
    [26] Miller J D. Fungi and mycotoxins in grain: Implications for stored product research[J]. Journal of Stored Products Research,1995,31(1):1−16. doi:  10.1016/0022-474X(94)00039-V
    [27] Wegulo S N. Factors influencing deoxynivalenol accumulation in small grain cereals[J]. Toxins,2012,4(11):1157−1180. doi:  10.3390/toxins4111157
    [28] Scherm B, Balmas V, Spanu F, et al. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat[J]. Molecular Plant Pathology,2013,14(4):323−341. doi:  10.1111/mpp.12011
    [29] Panthi A, Hallen-Adams H, Wegulo S N, et al. Chemotype and aggressiveness of isolates of Fusarium graminearum causing head blight of wheat in Nebraska[J]. Canadian Journal of Plant Pathology,2014,36(4):447−455. doi:  10.1080/07060661.2014.964775
    [30] Pitt J I, Taniwaki M H, Cole M B. Mycotoxin production in major crops as influenced by growing, harvesting, storage and processing, with emphasis on the achievement of food safety objectives[J]. Food Control,2013,32(1):205−215. doi:  10.1016/j.foodcont.2012.11.023
    [31] Hope R, Aldred D, Magan N. Comparison of environmental profiles for growth and deoxynivalenol production byFusarium culmorum and F. graminearum on wheat grain[J]. Letters in Applied Microbiology,2005,40(4):295−300. doi:  10.1111/j.1472-765X.2005.01674.x
    [32] 徐得月, 王伟, 陈西平, 等. 禾谷镰刀菌产毒影响因子预测微生物学筛选[J]. 中国公共卫生,2013,29(1):72−76. [Xu Deyue, Wang Wei, Chen Xiping, et al. Screening of toxin production influence factors of Fusarium graminearum with predictive microbiology method[J]. Chinese Journal of Public Health,2013,29(1):72−76. doi:  10.11847/zgggws2013-29-01-23
    [33] 张紊玮, 王艳玲, 薛华丽, 等. 镰刀菌单端孢霉烯族毒素的生物合成及分子调控研究进展[J]. 食品科学,2019,40(5):267−275. [Zhang Wenwei, Wang Yanling, Xue Huali, et al. Advances in biosynthesis and regulation of Fusarium Trichothecenes[J]. Food Science,2019,40(5):267−275. doi:  10.7506/spkx1002-6630-20180305-056
    [34] 侯瑞, 金巧军. 禾谷镰刀菌真菌毒素DON生物合成途径及调控机制研究进展[J]. 江苏农业科学,2018,46(17):9−13. [Hou Rui, Jin Qiaojun. Research progress on biosynthesis pathway and regulatory mechanism ofFusarium graminearum mycotoxin DON[J]. Jiangsu Agricultural Sciences,2018,46(17):9−13.
    [35] 余佃贞, 田野, 武爱波. 粮食中隐蔽型真菌毒素污染的研究进展[J]. 食品安全质量检测学报,2018,9(2):349−354. [Yu Dianzhen, Tian Ye, Wu Aibo, et al. Research advance of masked mycotoxins contaminated in grains[J]. Journal of Food Safety and Quality,2018,9(2):349−354. doi:  10.3969/j.issn.2095-0381.2018.02.022
    [36] 唐语谦, 潘药银, 刘晨迪, 等. 脱氧雪腐镰刀菌烯醇的生物转化及其隐蔽型毒素的形成研究进展[J]. 食品科学,2019:1−12. [Tang Yuqian, Pan Yaoyin, Liu Chendi, et al. Advances in biotransformation of deoxynivalenol and its masked mycotoxins[J]. Food Science,2019:1−12. doi:  10.7506/spkx1002-6630-20180910-092
    [37] Gilbert J, Brûlé-Babel A, Guerrieri A T, et al. Ratio of 3-ADON and 15-ADON isolates ofFusarium graminearum recovered from wheat kernels in Manitoba from 2008 to 2012[J]. Canadian Journal of Plant Pathology,2014,36(1):54−63. doi:  10.1080/07060661.2014.887033
    [38] Woelflingseder L, Warth B, Vierheilig I, et al. The Fusarium metabolite culmorin suppresses the in vitro glccuronidation of deoxynivalenol[J]. Archives of Toxicology,2019,93(6):1729−1743. doi:  10.1007/s00204-019-02459-w
    [39] Valle-Algarra F M, Mateo E M, Medina Á, et al. Changes in ochratoxin A and type B trichothecenes contained in wheat flour during dough fermentation and bread-baking[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment,2009,26(6):896−906.
    [40] Karlovsky P, Suman M, Berthiller F, et al. Impact of food processing and detoxification treatments on mycotoxin contamination[J]. Mycotoxin Research,2016,32(4):179−205. doi:  10.1007/s12550-016-0257-7
    [41] Peters J, Van Dam R, Van Doorn R, et al. Mycotoxin profiling of 1000 beer samples with a special focus on craft beer[J]. Plos One,2017,12(10):e185887.
    [42] Zachariasova M, Vaclavikova M, Lacina O, et al. Deoxynivalenol oligoglycosides: New “masked” fusarium toxins occurring in malt, beer, and breadstuff[J]. Journal of Agricultural and Food Chemistry,2012,60(36):9280−9291. doi:  10.1021/jf302069z
    [43] Berthiller F, Krska R, Domig K J, et al. Hydrolytic fate of deoxynivalenol-3-glccoside during digestion[J]. Toxicology Letters,2011,206(3):264−267. doi:  10.1016/j.toxlet.2011.08.006
    [44] 李瑞园, 刘红河, 康莉. HPLC-MS/MS法同时测定粮食中脱氧雪腐镰刀菌烯醇及其衍生物[J]. 分析测试学报,2014,33(6):660−665. [Li Ruiyuan, Liu Honghe, Kang Li. Determination of six deoxynivalenols in grain by high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis,2014,33(6):660−665. doi:  10.3969/j.issn.1004-4957.2014.06.007
    [45] 陆晶晶, 杨大进. 2013年中国小麦粉中脱氧雪腐镰刀菌烯醇污染调查[J]. 卫生研究,2015,44(4):658−660. [Lu Jingjing, Yang Dajin. Pollution investigation of deoxynivalenol in wheat flour of China in 2013[J]. Journal of Hygiene Research,2015,44(4):658−660.
    [46] Tangni E K, Pussemier L, Schneider Y, et al. Mycotoxines dans les céréales et produits dérivés: Revue de la littérature sur les fi lières biologiques et conventionnelles en Europe[J]. Cahiers Agricultures,2013,22:152−164. doi:  10.1684/agr.2013.0623
    [47] Rychlik M, Humpf H, Marko D, et al. Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins[J]. Mycotoxin Research,2014,30(4):197−205. doi:  10.1007/s12550-014-0203-5
    [48] Broekaert N, Devreese M, Van Bergen T, et al. In vivo contribution of deoxynivalenol-3-β-D-glccoside to deoxynivalenol exposure in broiler chickens and pigs: Oral bioavailability, hydrolysis and toxicokinetics[J]. Archives of Toxicology,2017,91:699−712. doi:  10.1007/s00204-016-1710-2
    [49] Malachova A, Dzuman Z, Veprikova Z, et al. Deoxynivalenol, deoxynivalenol-3-Glccoside, and enniatins: The major mycotoxins found in cereal-based products on the Czech market[J]. Journal of Agricultural and Food Chemistry,2011,59(24):12990−12997. doi:  10.1021/jf203391x
    [50] De Boevre M, Di Mavungu J D, Maene P, et al. Development and validation of an LC-MS/MS method for the simultaneous determination of deoxynivalenol, zearalenone, T-2-toxin and some masked metabolites in different cereals and cereal-derived food[J]. Food Additives & Contaminants Part A Chemistry Analysis, Control Exposure & Risk Assessment,2012,29(5):819−835.
    [51] 龚蕾, 韩智, 程慧, 等. 谷物及其制品中脱氧雪腐镰刀菌烯醇及其衍生物的检测及污染规律分析[J]. 食品科学,2020,41(4):307−312. [Gong Lei, Han Zhi, Cheng Hui, et al. Determination and contamination pattern of deoxynivalenol and derivatives in cereals and their products[J]. Food Science,2020,41(4):307−312. doi:  10.7506/spkx1002-6630-20181018-196
    [52] Li F, Jiang D, Zhou J, et al. Mycotoxins in wheat flour and intake assessment in Shandong province of China[J]. Food Additives & Contaminants Part B,2016,9(3):170−175.
    [53] Nakagawa H, He X, Matsuo Y, et al. Analysis of the masked metabolite of deoxynivalenol and Fusarium resistance in CIMMYT wheat germplasm[J]. Toxins,2017,9(8):238. doi:  10.3390/toxins9080238
    [54] Zhang Y, Pei F, Fang Y, et al. Comparison of concentration and health risks of 9 Fusarium mycotoxins in commercial whole wheat flour and refined wheat flour by multi-IAC-HPLC[J]. Food Chemistry,2019,275:763−769. doi:  10.1016/j.foodchem.2018.09.127
    [55] Palacios S A, Erazo J G, Ciasca B, et al. Occurrence of deoxynivalenol and deoxynivalenol-3-glccoside in durum wheat from Argentina[J]. Food Chemistry,2017,230:728−734. doi:  10.1016/j.foodchem.2017.03.085
    [56] Schmeitzl C, Warth B, Fruhmann P, et al. The metabolic fate of deoxynivalenol and its acetylated derivatives in a wheat suspension culture: Identification and detection of DON-15-O-glccoside, 15-acetyl-DON-3-O-glccoside and 15-acetyl-DON-3-sulfate[J]. Toxins,2015,7(8):3112−3126. doi:  10.3390/toxins7083112
    [57] Al-Taher F, Cappozzo J, Zweigenbaum J, et al. Detection and quantitation of mycotoxins in infant cereals in the U.S. market by LC-MS/MS using a stable isotope dilution assay[J]. Food Control,2017,72:27−35. doi:  10.1016/j.foodcont.2016.07.027
    [58] Pascari X, Ortiz-Solá J, Marín S, et al. Survey of mycotoxins in beer and exposure assessment through the consumption of commercially available beer in Lleida, Spain[J]. LWT-Food Science and Technology,2018,92:87−91. doi:  10.1016/j.lwt.2018.02.021
    [59] Cano-Sancho G, Gauchi J, Sanchis V, et al. Quantitative dietary exposure assessment of the Catalonian population (Spain) to the mycotoxin deoxynivalenol[J]. Food Additives & Contaminants. Part A Chemistry Analysis Control, Exposure & Risk Assessment,2011,28(8):1098−1109.
    [60] Oueslati S, Berrada H, Mañes J, et al. Presence of mycotoxins in Tunisian infant foods samples and subsequent risk assessment[J]. Food Control,2018,84:362−369. doi:  10.1016/j.foodcont.2017.08.021
    [61] Bouafifssa Y, Manyes L, Rahouti M, et al. Multi-occurrence of twenty mycotoxins in pasta and a risk assessment in the Moroccan population[J]. Toxins,2018,10(11):432. doi:  10.3390/toxins10110432
    [62] Silva M V, Pante G C, Romoli J, et al. Occurrence and risk assessment of population exposed to deoxynivalenol in foods derived from wheat flour in Brazil[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment,2018,35(3):546−554.
    [63] Piacentini K C, Rocha L O, Savi G D, et al. Occurrence of deoxynivalenol and zearalenone in brewing barley grains from Brazil[J]. Mycotoxin Research,2018,34(3):173−178. doi:  10.1007/s12550-018-0311-8
    [64] Warth B, Fruhmann P, Wiesenberger G, et al. Deoxynivalenol-sulfates: Identification and quantification of novel conjugated (masked) mycotoxins in wheat[J]. Analytical and Bioanalytical Chemistry,2015,407(4):1033−1039. doi:  10.1007/s00216-014-8340-4
    [65] Suman M, Bergamini E, Catellani D, et al. Development and validation of a liquid chromatography/linear ion trap mass spectrometry method for the quantitative determination of deoxynivalenol-3-glccoside in processed cereal-derived products[J]. Food Chemistry, 136(3): 1568−1576.
    [66] Schwarz P B, Qian S Y, Zhou B, et al. Occurrence of deoxynivalenol-3-glccoside on barley from the upper midwestern United States[J]. Journal of The American Society of Brewing Chemists,2014,72(3):208−213. doi:  10.1094/ASBCJ-2014-0703-01
    [67] Brera C, Debegnach F, Grossi S, et al. Effect of industrial processing on the distribution of fumonisin B1 in dry milling corn fractions[J]. Journal of Food Protection,2004,67(6):1261. doi:  10.4315/0362-028X-67.6.1261
    [68] Vidal A, Sanchis V, Ramos A J, et al. The fate of deoxynivalenol through wheat processing to food products[J]. Current Opinion in Food Science,2016,11:34−39. doi:  10.1016/j.cofs.2016.09.001
    [69] Zhang H, Wang B. Fate of deoxynivalenol and deoxynivalenol-3-glccoside during wheat milling and Chinese steamed bread processing[J]. Food Control,2014,44:86−91. doi:  10.1016/j.foodcont.2014.03.037
    [70] Zheng Y, Hossen S M, Sago Y, et al. Effect of milling on the content of deoxynivalenol, nivalenol, and zearalenone in Japanese wheat[J]. Food Control,2014,40(40):193−197.
    [71] Savi G D, Piacentini K C, Tibola C S, et al. Deoxynivalenol in the wheat milling process and wheat-based products and daily intake estimates for the Southern Brazilian population[J]. Food Control,2016,62:231−236. doi:  10.1016/j.foodcont.2015.10.029
    [72] Wang L, Shao H, Luo X, et al. Effect of ozone treatment on deoxynivalenol and wheat quality[J]. PLoS One,2016,11(1):e147613.
    [73] Samar M M, Neira M S, Resnik S L, et al. Effect of fermentation on naturally occurring deoxynivalenol (DON) in Argentinean bread processing technology[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment,2001,18(11):1004−1010.
    [74] De Angelis E, Monaci L, Pascale M, et al. Fate of deoxynivalenol, T-2 and HT-2 toxins and their glccoside conjugates from flour to bread: An investigation by high-performance liquid chromatography high-resolution mass spectrometry[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment,2013,30(2):345−355.
    [75] Bergamini E, catellani D, Dallasta C, et al. Fate of Fusarium mycotoxins in the cereal product supply chain: The deoxynivalenol (DON) case within industrial bread-making technology[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment,2010,27(5):677−687.
    [76] Young J C, Fulcher R G, Hayhoe J H, et al. Effect of milling and baking on deoxynivalenol (vomitoxin) content of eastern Canadian wheats[J]. Journal of Agricultural and Food Chemistry,1984,32(3):659−664. doi:  10.1021/jf00123a058
    [77] Vidal A, Marin S, Morales H, et al. The fate of deoxynivalenol and ochratoxin A during the breadmaking process, effects of sourdough use and bran content[J]. Food and Chemical Toxicology,2014,68:53−60. doi:  10.1016/j.fct.2014.03.006
    [78] Just I, Selzer J, Wilm M, et al. Glccosylation of Rho proteins by Clostridium difficile toxin B[J]. Nature,1995,375(6531):500−503. doi:  10.1038/375500a0
    [79] Boyacioğlu D, Heltiarachchy N S, D'appolonia B L. Additives affect deoxynivalenol (vomitoxin) flour during bread baking[J]. Jounal of Food Science,2006,58(2):416−418.
    [80] 常敬华. 脱氧雪腐镰刀菌烯醇(DON)在面制品加工中的变化规律研究[D]. 北京: 中国农业科学院, 2014.

    Chang Jinghua. Reduction of deoxynivalenol (DON) during processing of flour products[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014.
    [81] Brera C, Peduto A, Debegnach F, et al. Study of the influence of the milling process on the distribution of deoxynivalenol content from the caryopsis to cooked pasta[J]. Food Control,2013,32(1):309−312. doi:  10.1016/j.foodcont.2012.12.005
    [82] González-Osnaya L, Cortés C, Soriano J M, et al. Occurrence of deoxynivalenol and T-2 toxin in bread and pasta commercialised in Spain[J]. Food Chemistry,2011,124(1):156−161. doi:  10.1016/j.foodchem.2010.06.002
    [83] Vidal A, Bendicho J, Sanchis V, et al. Stability and kinetics of leaching of deoxynivalenol, deoxynivalenol-3-glccoside and ochratoxin A during boiling of wheat spaghettis[J]. Food Research International,2016,85:182−190. doi:  10.1016/j.foodres.2016.04.037
    [84] Maul R, Müller C, Rieß S, et al. Germination induces the glccosylation of the Fusarium mycotoxin deoxynivalenol in various grains[J]. Food Chemistry,2012,131(1):274−279. doi:  10.1016/j.foodchem.2011.08.077
    [85] Oliveira P M, Mauch A, Jacob F, et al. Fundamental study on the influence of Fusarium infection on quality and ultrastructure of barley malt[J]. International Journal of Food Microbiology,2012,156(1):32−43. doi:  10.1016/j.ijfoodmicro.2012.02.019
    [86] Lancova K, Hajslova J, Poustka J, et al. Transfer of Fusarium mycotoxins and 'masked' deoxynivalenol (deoxynivalenol-3-glccoside) from field barley through malt to beer[J]. Food Additives & Contaminants Part A Chemistry Analysis Control Exposure & Risk Assessment,2008,25(6):732−744.
    [87] Bohmschraml M, Stettner G, Geiger E. Studies into the influence of yeast on Fusarium-Toxins in Wort[J]. Cereal Research Communications,1997,25(3):729−730. doi:  10.1007/BF03543825
    [88] Kostelanska M, Zachariasova M, Lacina O, et al. The study of deoxynivalenol and its masked metabolites fate during the brewing process realised by UPLC−TOFMS method[J]. Food Chemistry,2011,126(4):1870−7876. doi:  10.1016/j.foodchem.2010.12.008
  • 加载中
图(1) / 表(2)
计量
  • 文章访问数:  41
  • HTML全文浏览量:  20
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-27
  • 网络出版日期:  2021-08-05
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。