基于肠道菌群的海藻多糖对部分疾病影响的研究进展

张宵 刘杨 滕博 张杰良

张宵,刘杨,滕博,等. 基于肠道菌群的海藻多糖对部分疾病影响的研究进展[J]. 食品工业科技,2021,42(18):421−426. doi:  10.13386/j.issn1002-0306.2020080239
引用本文: 张宵,刘杨,滕博,等. 基于肠道菌群的海藻多糖对部分疾病影响的研究进展[J]. 食品工业科技,2021,42(18):421−426. doi:  10.13386/j.issn1002-0306.2020080239
ZHANG Xiao, LIU Yang, TENG Bo, et al. Research Progress of the Effects of Seaweed Polysaccharides on Some Diseases Based on Intestinal Flora[J]. Science and Technology of Food Industry, 2021, 42(18): 421−426. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080239
Citation: ZHANG Xiao, LIU Yang, TENG Bo, et al. Research Progress of the Effects of Seaweed Polysaccharides on Some Diseases Based on Intestinal Flora[J]. Science and Technology of Food Industry, 2021, 42(18): 421−426. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080239

基于肠道菌群的海藻多糖对部分疾病影响的研究进展

doi: 10.13386/j.issn1002-0306.2020080239
基金项目: 李嘉诚基金会项目(2020LKSFG02E);国家自然科学基金青年基金项目(31901692)
详细信息
    作者简介:

    张宵(1995−),女,硕士研究生,研究方向:天然活性物质的开发,E-mail:18xzhang6@stu.edu.cn

    通讯作者:

    张杰良(1985−),男,博士,副教授,研究方向:天然活性物质的开发,E-mail:klcheong@stu.edu.cn

  • 中图分类号: TS201.4

Research Progress of the Effects of Seaweed Polysaccharides on Some Diseases Based on Intestinal Flora

  • 摘要: 肠道菌群是微生态系统的重要组成部分,参与宿主的能量代谢和免疫调节,对机体具有重要的生理学意义。大量研究表明,肠道菌群在疾病的发生发展过程中发挥着重要的作用。海藻多糖是从海藻中提取出来的由多个单糖通过糖苷键连接而成的碳水化合物,因其具有抗肿瘤、免疫调节、降血糖等多种生物活性,而受到国内外学者的广泛关注。研究发现海藻多糖可以通过促进肠道益生菌的增殖、抑制有害菌的生长,调节肠道微生态平衡,从而发挥治疗疾病的作用。本文论述了海藻多糖通过调节肠道菌群对部分疾病产生的影响,旨在为海藻多糖的开发利用提供参考,为相关疾病的预防和治疗提供新思路。
  • [1] Eckburg P B, Bik E M, Bernstein C N, et al. Diversity of the human intestinal microbial flora[J]. Science,2005,308(5728):1635. doi:  10.1126/science.1110591
    [2] 彭帅, 沈磊. 肠道菌群与炎症性肠病的研究进展[J]. 医学综述,2019,25(16):3141−3145, 3150. [Peng Shuai, Shen Lei. Research progress in intestinal flora and inflammatory bowel disease[J]. Medical Recapitulate,2019,25(16):3141−3145, 3150. doi:  10.3969/j.issn.1006-2084.2019.16.005
    [3] Liu H N, Wu H, Chen Y Z, et al. Altered molecular signature of intestinal microbiota in irritable bowel syndrome patients compared with healthy controls: A systematic review and meta-analysis[J]. Digestive and Liver Disease,2017,49(4):331−337. doi:  10.1016/j.dld.2017.01.142
    [4] Kang M S, Martin A. Microbiome and colorectal cancer: Unraveling host-microbiota interactions in colitis-associated colorectal cancer development[J]. Seminars in Immunology,2017,32:3−13. doi:  10.1016/j.smim.2017.04.003
    [5] Velmurugan G, Dinakaran V, Rajendhran J, et al. Blood microbiota and circulating microbial metabolites in diabetes and cardiovascular disease[J]. Trends in Endocrinology & Metabolism,2020,31(11):835−847.
    [6] Gholizadeh P, Mahallei M, Pormohammad A, et al. Microbial balance in the intestinal microbiota and its association with diabetes, obesity and allergic disease[J]. Microbial Pathogenesis,2019,127:48−55. doi:  10.1016/j.micpath.2018.11.031
    [7] Zheng L X, Chen X Q, Cheong K L. Current trends in marine algae polysaccharides: The digestive tract, microbial catabolism, and prebiotic potential[J]. International Journal of Biological Macromolecules,2020,151:344−354. doi:  10.1016/j.ijbiomac.2020.02.168
    [8] 王安利, 胡俊荣. 海藻多糖生物活性研究新进展[J]. 海洋科学,2002,26(9):36−39. [Wang A L, Hu J R. Recent progress in biological activities of seaweed polysaccharides[J]. Marine Sciences,2002,26(9):36−39. doi:  10.3969/j.issn.1000-3096.2002.09.011
    [9] Ngo D H, Kim S K. Sulfated polysaccharides as bioactive agents from marine algae[J]. International Journal of Biological Macromolecules,2013,62:70−75. doi:  10.1016/j.ijbiomac.2013.08.036
    [10] Wijesekara I, Pangestuti R, Kim S K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae[J]. Carbohydrate Polymers,2011,84(1):14−21. doi:  10.1016/j.carbpol.2010.10.062
    [11] Filomena M, Raposo D J, Bernardo A M, et al. Marine polysaccharides from algae with potential biomedical applications[J]. Marine Drugs,2015,13(5):2967−3028. doi:  10.3390/md13052967
    [12] Shang Q S, Jiang H, Cai C, et al. Gut microbiota fermentation of marine polysaccharides and its effects on intestinal ecology: An overview[J]. Carbohydrate Polymers,2018,179:173−185. doi:  10.1016/j.carbpol.2017.09.059
    [13] Cui M, Zhang M, Wu J, et al. Marine polysaccharides from Gelidium pacificum Okamura and Cereus sinensis reveal prebiotic functions[J]. International Journal of Biological Macromolecules,2020,164:4381−4390. doi:  10.1016/j.ijbiomac.2020.08.255
    [14] Lekshmi V S, Kurup G M. Sulfated polysaccharides from the edible marine algae Padina tetrastromatica protects heart by ameliorating hyperlipidemia, endothelial dysfunction and inflammation in isoproterenol induced experimental myocardial infarction[J]. Journal of Functional Foods,2019,54:22−31. doi:  10.1016/j.jff.2019.01.004
    [15] Ying L Q, Eri R D, Helen F J, et al. Fucoidan extracts ameliorate acute colitis[J]. PloS One,2015,10(6):e0128453. doi:  10.1371/journal.pone.0128453
    [16] Wang X L, Wang X, Jiang H, et al. Marine polysaccharides attenuate metabolic syndrome by fermentation products and altering gut microbiota: An overview[J]. Carbohydrate Polymers,2018,195:601−612. doi:  10.1016/j.carbpol.2018.05.003
    [17] Praveen M A, Parvathy K R K, Balasubramanian P, et al. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota[J]. Trends in Food Science & Technology,2019,92:46−64.
    [18] Venema K, van den Abbeele P. Experimental models of the gut microbiome[J]. Best Practice & Research Clinical Gastroenterology,2013,27(1):115−126.
    [19] Xu S Y, Chen X Q, Liu Y, et al. Ultrasonic/microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis[J]. International Journal of Biological Macromolecules,2020,152:748−756. doi:  10.1016/j.ijbiomac.2020.02.305
    [20] Zhang X, Liu Y, Chen X Q, et al. Catabolism of Saccharina japonica polysaccharides and oligosaccharides by human fecal microbiota[J]. LWT,2020,130:109635. doi:  10.1016/j.lwt.2020.109635
    [21] Kong Q, Dong S, Gao J, et al. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota[J]. International Journal of Biological Macromolecules,2016,91:867−871. doi:  10.1016/j.ijbiomac.2016.06.036
    [22] Di T, Chen G, Sun Y, et al. In vitro digestion by saliva, simulated gastric and small intestinal juices and fermentation by human fecal microbiota of sulfated polysaccharides from Gracilaria rubra[J]. Journal of Functional Foods,2018,40:18−27. doi:  10.1016/j.jff.2017.10.040
    [23] Lovegrove A, Edwards C H, De Noni I, et al. Role of polysaccharides in food, digestion, and health[J]. Critical Reviews in Food Science & Nutrition,2017:237−253.
    [24] 刘萍, 赵金标, 耿正颖, 等. 日粮添加褐藻糖胶对断奶仔猪抗炎能力和肠道微生物多样性的影响[J]. 微生物学报,2019,59(4):700−710. [Liu Ping, Zhao Jinbiao, Geng Zhengying, et al. Influence of dietary fucoidan on inflammatory response and intestinal microbial diversity in weaned pigs[J]. Acta Microbiologica Sinica,2019,59(4):700−710.
    [25] An C, Kuda T, Yazaki T, et al. FLX pyrosequencing analysis of the effects of the brown-algal fermentable polysaccharides alginate and laminaran on rat cecal microbiotas[J]. Applied & Environmental Microbiology,2013,79(3):860−866.
    [26] Shang Q S, Shan X D, Cai C, et al. Dietary fucoidan modulates the gut microbiota in mice by increasing the abundance of Lactobacillus and Ruminococcaceae[J]. Food & Function,2016,7:3224−3232.
    [27] 吴曼婷, 唐红珍. 浅谈肠道菌群与肥胖[J]. 大众科技,2019,21(12):50−52. [Wu Manting, Tang Hongzhen. A brief discussion on intestinal flora and obesity[J]. Popular Science and Technology,2019,21(12):50−52. doi:  10.3969/j.issn.1008-1151.2019.12.017
    [28] 黄楠, 任锡凯, 苏苗赏. 肠道菌群调节机制与肥胖治疗研究进展[J]. 温州医科大学学报,2019,49(9):695−699. [Huang Nan, Ren Xikai, Su miaozhang. Research progress of intestinal flora regulation mechanism and obesity treatment[J]. Journal of Wenzhou Medical University,2019,49(9):695−699. doi:  10.3969/j.issn.2095-9400.2019.09.016
    [29] Sun X, Duan M, Liu Y, et al. The beneficial effects of Gracilaria lemaneiformis polysaccharides on obesity and the gut microbiota in high fat diet-fed mice[J]. Journal of Functional Foods,2018,46:48−56. doi:  10.1016/j.jff.2018.04.041
    [30] Duan M, Sun X, Ma N, et al. Polysaccharides from Laminaria japonica alleviated metabolic syndrome in BALB/c mice by normalizing the gut microbiota[J]. International Journal of Biological Macromolecules,2019,121:996−1004. doi:  10.1016/j.ijbiomac.2018.10.087
    [31] 段萌萌, 艾春青. 海带多糖通过调节肠道微生物群正常化来减轻小鼠肥胖[A]. 中国食品科学技术学会. 中国食品科学技术学会第十五届年会论文摘要集[C]. 北京: 中国食品科学技术学会, 2018: 1.

    Duan M M, Ai C Q. Laminarin japonica polysaccharides alleviate obesity in mice by normalizing the intestinal microbiota[A]. Chinese Institute of Food Science and Technology. The 15th Annual Meeting of the Chinese Institute of Food Science and Technology[C]. Beijing: Chinese Institute of Food Science and Technology, 2018: 1.
    [32] 缪志刚, 吴文惠, 包斌, 等. 草叶马尾藻多糖调节肥胖小鼠肠道菌群的作用[J]. 中华航海医学与高气压医学杂志,2017,24(1):56−60, 68. [Liao Z G, Wu W H, Bao B, et al. Effects of polysaccharides from Sargassum graminifolium on regulating intestinal flora of obese mice[J]. Chinese Journal of Nautical Medicine and Hyperbaric Medicine,2017,24(1):56−60, 68. doi:  10.3760/cma.j.issn.1009-6906.2017.01.013
    [33] 王洁, 谢国旗, 倪军, 等. 2型糖尿病与肠道菌群失衡关系研究进展[J]. 新乡医学院学报,2020,37(6):597−600. [Wang J, Xie G Q, Ni J, et al. Research progress on the relationship between type 2 diabetes mellitus and imbalanced intestinal microflora[J]. Journal of Xinxiang Medical University,2020,37(6):597−600.
    [34] 付志飞, 杨丽, 尚非, 等. 基于肠道微生物的中药多糖与2型糖尿病关系研究进展[J]. 世界科学技术-中医药现代化,2019,21(6):1110−1117. [Fu Z F, Yang L, Shang F, et al. Research progress on the relationship between traditional Chinese medicine polysaccharides and type 2 diabetes mellitus based on intestinal flora[J]. Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2019,21(6):1110−1117.
    [35] Ma Q, Li Y, Li P, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora[J]. Biomedicine & Pharmacotherapy,2019,117:109138.
    [36] Cheng Y, Sibusiso L, Hou L, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice[J]. International Journal of Biological Macromolecules,2019,131:1162−1170. doi:  10.1016/j.ijbiomac.2019.04.040
    [37] Yang C F, Lai S S, Chen Y H, et al. Anti-diabetic effect of oligosaccharides from seaweed Sargassum confusum via JNK-IRS1/PI3K signalling pathways and regulation of gut microbiota[J]. Food and Chemical Toxicology,2019,131:110562. doi:  10.1016/j.fct.2019.110562
    [38] 李莉莎. 肠道菌群及其代谢物TMAO与动脉粥样硬化相关性的研究进展[J]. 国际检验医学杂志,2019,40(21):2666−2670. [Li L S. Research progress on the correlation between intestinal flora and its metabolites TMAO and atherosclerosis[J]. International Journal of Laboratory Medicine,2019,40(21):2666−2670. doi:  10.3969/j.issn.1673-4130.2019.21.026
    [39] Liu Q, Li Y, Song X, et al. Both gut microbiota and cytokines act to atherosclerosis in ApoE−/− mice[J]. Microbial Pathogenesis,2020,138:103827. doi:  10.1016/j.micpath.2019.103827
    [40] Chen L, Xu W, Chen D, et al. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro[J]. International Journal of Biological Macromolecules,2018,112:1055−1061. doi:  10.1016/j.ijbiomac.2018.01.183
    [41] Nguyen S G, Kim J, Guevarra R B, et al. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet[J]. Food & Function,2016,7(10):4193−4201.
    [42] Lynch M B, Sweeney T, Callan J J, et al. The effect of dietary Laminaria derived laminarin and fucoidan on intestinal microflora and volatile fatty acid concentration in pigs[J]. Livestock Science,2010,133(1-3):157−160. doi:  10.1016/j.livsci.2010.06.052
    [43] 李悦, 刘肃志, 张志君, 等. 探讨炎症性肠病与肠道菌群[J]. 辽宁中医杂志,2020,47(6):49−52. [Li R, Liu S Z, Zhang Z J, et al. The relationship between inflammatory bowel disease and intestinal flora[J]. Liaoning Journal of Traditional Chinese Medicine,2020,47(6):49−52.
    [44] Gevers D, Kugathasan S, Denson L A, et al. The treatment-naive microbiome in new-onset Crohn’s disease[J]. Cell Host & Microbe,2014,15(3):382−392.
    [45] Miyoshi J, Qiao Y, Chang E B. The role of the intestinal microbiota in the pathogenesis and treatment of inflammatory bowel diseases[J]. Seminars in Colon and Rectal Surgery,2018,29(1):21−27. doi:  10.1053/j.scrs.2017.09.005
    [46] Sudirman S, Hsu Y H, He J L, et al. Dietary polysaccharide-rich extract from Eucheuma cottonii modulates the inflammatory response and suppresses colonic injury on dextran sulfate sodium-induced colitis in mice[J]. PloS One,2018,13(10):e0205252. doi:  10.1371/journal.pone.0205252
    [47] Han R, Wang L, Zhao Z, et al. Polysaccharide from Gracilaria Lemaneiformis prevents colitis in Balb/c mice via enhancing intestinal barrier function and attenuating intestinal inflammation[J]. Food Hydrocolloids,2020,109:106048. doi:  10.1016/j.foodhyd.2020.106048
    [48] Xue M, Liang H, Ji X, et al. Effects of fucoidan on gut flora and tumor prevention in 1, 2-dimethylhydrazine-induced colorectal carcinogenesis[J]. The Journal of Nutritional Biochemistry,2020,82:108396. doi:  10.1016/j.jnutbio.2020.108396
    [49] O'Shea C J, O'Doherty J V, Callanan J J, et al. The effect of algal polysaccharides laminarin and fucoidan on colonic pathology, cytokine gene expression and Enterobacteriaceae in a dextran sodium sulfate-challenged porcine model[J]. Journal of Nutritional Science,2016,5:9. doi:  10.1017/jns.2015.40
    [50] 孙占一, 申培丽, 王盼. 岩藻多糖改善胃肠道功效研究进展[J]. 食品与发酵科技,2019,55(6):91−97. [Sun Z Y, Shen P L, Wang P. Research progress of fucoidan on improving gastrointestinal efficacy[J]. Food and Fermentation Sciences & Technology,2019,55(6):91−97.
    [51] Sumida K, Yamagata K, Kovesdy C P. Constipation in CKD[J]. Kidney International Reports,2020,5(2):121−134. doi:  10.1016/j.ekir.2019.11.002
    [52] 程宇娇, 马浩天, 毛雪, 等. 螺旋藻多糖对便秘小鼠肠道酶活性及微生物菌群的调节作用[J]. 激光生物学报,2019,28(6):563−570. [Cheng Y J, Ma H T, Mao X, et al. Effects of Spirulina platensis polysaccharides on intestinal enzyme activity and microflora of constipated mice[J]. Acta Laser Biology Sinica,2019,28(6):563−570.
    [53] Ren X, Liu L, Gamallat Y, et al. Enteromorpha and polysaccharides from enteromorpha ameliorate loperamide-induced constipation in mice[J]. Biomedicine & Pharmacotherapy,2017,96:1075−1081.
    [54] 苏莹莹, 任晓萌, 李缘, 等. 裙带菜多糖及其寡糖对洛哌丁胺诱导便秘小鼠的肠道菌群的影响[J]. 中国微生态学杂志,2019,31(3):297−301. [Su Y Y, Ren X M, Li Y, et al. Effects of wakame polysaccharides and its oligosaccharide on intestinal flora of loperamide induced constipation mice[J]. Chinese Journal of Microecology,2019,31(3):297−301.
    [55] 邵青玲, 杨艳君, 杜秀平. 多糖对断奶仔猪肠道菌群、绒毛形态和免疫功能的影响[J]. 中国饲料,2020(8):46−50. [Shao Q L, Yang Y J, Du X P. Effects of polysaccharides on intestinal microflora, villus morphology and immune function of weaned piglets[J]. China Feed,2020(8):46−50.
  • 加载中
计量
  • 文章访问数:  72
  • HTML全文浏览量:  29
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 网络出版日期:  2021-07-16
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。