生物传感器检测食物过敏原的研究进展

叶茂 李欣 武涌 陈红兵 高金燕 文学方

叶茂,李欣,武涌,等. 生物传感器检测食物过敏原的研究进展[J]. 食品工业科技,2021,42(18):397−406. doi:  10.13386/j.issn1002-0306.2020080167
引用本文: 叶茂,李欣,武涌,等. 生物传感器检测食物过敏原的研究进展[J]. 食品工业科技,2021,42(18):397−406. doi:  10.13386/j.issn1002-0306.2020080167
YE Mao, LI Xin, WU Yong, et al. Research Progress of Biosensors in Detecting Food Allergens[J]. Science and Technology of Food Industry, 2021, 42(18): 397−406. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080167
Citation: YE Mao, LI Xin, WU Yong, et al. Research Progress of Biosensors in Detecting Food Allergens[J]. Science and Technology of Food Industry, 2021, 42(18): 397−406. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020080167

生物传感器检测食物过敏原的研究进展

doi: 10.13386/j.issn1002-0306.2020080167
基金项目: 科技部重点研发计划(2018YFC1604205);国家自然科学基金项目(31760431);食品科学与技术国家重点实验室目标导向课题(SKLF-ZZA-201912);江西省科学院重大科研开发专项(2020-YZD-1);江西省科学院博士人才引进项目(2019-YYB-10)
详细信息
    作者简介:

    叶茂(1997−),女,硕士研究生,研究方向:食物过敏,E-mail:1459993965@qq.com

    通讯作者:

    文学方(1985−),男,博士,副研究员,研究方向:药食资源开发利用,E-mail:wen_xuefang@live.cn

  • 中图分类号: TS201.6

Research Progress of Biosensors in Detecting Food Allergens

  • 摘要: 食物过敏是严重的公共卫生问题,它影响全世界5%的成人和8%的儿童,且患病率仍在上升。食物过敏目前尚无根治疗法,避免摄入或接触含过敏原的食物仍是患者的最佳选择。食物过敏原的检测与食物生产、标识及风险管理等息息相关,是保障食品安全的关键环节之一,故开发出快速、灵敏、准确、可重现和标准化的方法对保护过敏患者至关重要。相较于传统的检测方法,生物传感器作为一类多学科交叉融合的新兴技术,具有灵敏度高、高度自动化、易操作、响应快速和样品用量微等优点,已广泛应用于食物过敏原的检测。本文从原理、优缺点和应用等方面对光学生物传感器、电化学生物传感器、压电免疫生物传感器在检测食物过敏原上进行了阐述和总结,对生物传感器在食物过敏原检测中未来发展的趋势进行了展望,以期为快速现场定量检测食物过敏原提供参考。
  • 图  1  生物传感器工作原理

    Figure  1.  Working principle of biosensor

    图  2  生物识别元件与受体结合示意图

    Figure  2.  Schematic diagram of the binding of biological recognition element and receptor

    注:a.亚甲蓝(MB)标记的β-乳球蛋白(β-Lg)适配体与β-Lg特定的核酸序列特异性结合,适配体构象发生改变[26];b.抗卵清蛋白(OVA)抗体与OVA特异性结合[27];c.虾肌球蛋白与抗虾肌球蛋白IgE预敏化细胞结合刺激细胞脱颗粒[28]

    图  3  基于SPR生物传感器的食物过敏原实时定量检测工作原理[47]

    Figure  3.  Principle of an SPR biosensor for food allergen real-time detection[47]

    表  1  常见的食物过敏原及其家族[5]

    Table  1.   Examples of major class food allergens[5]

    分类家族作用过敏原(来源)
    植物源性食物过敏原
    蛋白质家族
    醇溶蛋白种子贮藏蛋白Sec c 20(黑麦);Tri a 19(小麦);Tri a 36(小麦)
    非特异性脂质转移蛋白参与脂质运输,植物防御Act d 10(奇异果);Api g 2(芹菜);Ara h 9(花生);Cas s 8(栗子);Cor a 8(榛子);Jug r 3(胡桃);Lyc e 3(土豆);Mus a 3(香蕉);Pru du 3(杏仁);Pru p 3(桃子);Tri a 14(小麦);Zea m 14/maize
    2S清蛋白种子贮藏蛋白Ana o 3(腰果);Ara h 2(花生);Ber e 1(巴西果);Fag e 2/(荞麦);Gly m 8(大豆);Jug r 1(胡桃);Ses i 1(芝麻);Sin a 1(芥末)
    Bet v 1家族发病相关蛋白Api g 1(芹菜);Ara h 8(花生);Cor a 1(榛子);Dau c 1(胡萝卜);Gly m 4(大豆);Mal d 1(苹果);Pru p 1(桃子)
    Cupin超家族
    7S球蛋白种子贮藏蛋白Ana o 1(腰果);Ara h 1(花生);Gly m 5(大豆);Jug r 2(胡桃)
    11S球蛋白种子贮藏蛋白Ana o 2(腰果);Ara h 3(花生);Ber e 2(巴西果);Cor a 9(榛子);Gly m 6(大豆);Jug r 4(胡桃);Pru du 6(杏仁)
    半胱氨酸蛋白酶C1家族半胱氨酸蛋白酶Act d 1(奇艺果);Gly m Bd 30K(大豆)
    抑制蛋白肌动蛋白的结合蛋白Act d 9(奇异果);Api g 4(芹菜);Ara h 5(花生);Cuc m 2(甜瓜);Dau c 4(胡萝卜);Gly m 3(大豆);Lyc e 1(土豆);Mus a 1(香蕉);Ory s 12(米饭);Pru av 4(樱桃);Pru du 4(杏仁);Pru p 4(桃子);Tri a 12(小麦)
    动物源性食物过敏原
    蛋白质家族
    原肌球蛋白家族肌肉中的肌动蛋白结合蛋白Pen m 1(虾)
    小清蛋白家族肌肉蛋白,参与肌肉收缩Cyp c 1(鲤鱼);Gad c 1(鳕鱼);Ran e 2(蛙);Sal s 1(鲑鱼);Xip g 1(旗鱼)
    酪蛋白哺乳动物乳蛋白,形成稳定的胶束复合物Bos d 8~Bos d 12(牛奶)
    转铁蛋白家族牛奶和母鸡的蛋清中富含硫离子结合糖蛋白Bos d Lactoferrin(牛奶);Gal d 3(鸡蛋)
    丝氨酸蛋白酶抑制剂丝氨酸蛋白酶抑制剂Gal d 2(鸡蛋)
    精氨酸激酶三磷酸腺苷:胍基磷酸转移酶Pen m 2(虾)
    脂蛋白载体蛋白Bos d 5(牛奶)
    溶菌酶家族酶活性,牛奶中的乳糖合成Bos d 4(牛奶);Gal d 4(鸡蛋)
    卵类粘蛋白Kazal型蛋白酶抑制剂Gal d 1(鸡蛋)
    清蛋白血清白蛋白,转运蛋白Bos d 6(牛奶);Gal d 5(鸡蛋)
    下载: 导出CSV

    表  2  检测食物过敏原的生物传感器的基本原理及优缺点

    Table  2.   Pros cons and principles of various biosensors for detection of food allergens

    传感器类型基本原理优点缺点
    光学生物传感器通过识别待测物与生物受体相互作用后对光学结构表面的有效折射率、荧光或者颜色等的变化实现待测物的检测无需标识
    样品用量少
    多路复用
    响应速度快
    仪器设备过于庞大昂贵
    操作复杂
    电化学生物传感器由生物识别元件作为敏感元件,电极等作为换能元件,将识别到的待测物结合到电极表面发生化学反应,从而引起电极上的电阻、电势或电流等的变化仪器简易便携
    成本低廉
    操作简单
    灵敏度高
    适用范围广
    电极表面易钝化
    待测样本被电活性物质干扰
    长期使用稳定性差
    受食品基质影响较大
    压电免疫传感器将抗体固定在晶体表面,当抗原抗体结合时,质量增加,晶片的振荡频率会相应减少,通过减少值与吸附量之间的相关性对待测物进行定量分析分析时间短
    重复性好
    无需标识
    稳定性好
    不适合现场检测
    检测限较低
    下载: 导出CSV

    表  3  生物传感器在牛乳过敏原β-乳球蛋白检测中的应用

    Table  3.   Application of biosensors in the detection of milk allergen β-lactoglobulin

    换能器类型检测方法基质线性范围(ng/mL)LOD(ng/mL)检测时间(min)发表时间参考文献
    光学





    基于直接法的金簇REA光学免疫传感器奶粉5 × 108302007[29]
    基于金纳米粒子(AuNPs)标记抗体的REA光学免疫传感器经热处理和胰蛋白酶消化的牛奶样品10~1×106102009[30]
    基于直接法的多通道SPR光学免疫传感器牛奶样品、乳清馏分和乳源产品4.0×1062010[31]
    基于流通式多孔氧化铝膜平台/量子点的SPR光学免疫传感器33.7<602014[32]
    基于双抗体夹心法的SPR光学免疫传感器5~405.542016[33]
    基于直接法的SPR光学免疫传感器检测1642018[34]
    基于磁性纳米粒子(Fe3O4)结合碳点修饰适配体的荧光光学传感器低致敏配方奶粉0.25~500.0372018[35]
    电化学

    基于石墨烯固定抗β-乳球蛋白抗体的无标识伏安法电化学免疫传感器蛋糕、奶酪零食和甜饼干0.001~1008.5 × 10-42012[36]
    基于适配体/石墨烯的SWV法电化学生物传感器0.1~1000.02202017[37]
    基于聚苯胺-邻氨基苯甲酸/石墨(PANI/PAA)膜修饰电极的DPV电化学适配体传感器牛奶样品10~100053402019[38]
    下载: 导出CSV

    表  4  检测食物过敏原的光学传感器的基本原理及优缺点

    Table  4.   Pros cons and principles of optical biosensors for detection of food allergens

    传感器类型基本原理优点缺点
    基于REA光学生物传感器当抗原与金簇抗体在表面上结合时,反射镜上方产生了共振增强吸收现象,通过光学传感器观察到强烈的颜色效应进行分析
    检测速度快
    操作简单
    无损伤分析
    重复性差
    制作工艺复杂
    难以标准化
    基于荧光的光学生物传感器通过荧光信号分子与待测物结合时,荧光团内在的光物理特性被激活,进而释放出荧光信号
    分析时间短
    灵敏度高
    特定的储存条件
    不适合现场检测
    基于SPR的光学生物传感器金属薄膜表面固定的生物识别元件与其捕获的食物过敏原的界面处发生SPR现象,传感器实时记录光折射率的变化来进行分析无需标识
    实时监控
    可高通量分析样品
    样品用量微
    检测限较低
    下载: 导出CSV

    表  5  检测食物过敏原的电化学传感器的基本原理及优缺点

    Table  5.   Basic principle, advantages and disadvantages of electrochemical biosensors for detection of food allergens

    传感器类型基本原理优点缺点
    基于阻抗法的电化学生物传感器通过电极表面的生物识别元件与待测物结合引起阻抗值的变化来定量分析灵敏度高
    稳定性好
    不能同时对多种物质进行分析
    基于安培法的电化学生物传感器当电位恒定时,待测物在电极表面或其修饰层内发生氧化还原反应,根据产生的电流随时间的变化来定量分析结果直观
    应用广泛
    重复性差
    基于伏安法的电化学生物传感器通过生物识别元件与待测物结合后引起电极表面电活性物质发生改变,根据峰电流强度和浓度的关系进行定量分析稳定性好
    重复性好
    可同时分析多种物质
    灵敏度低
    下载: 导出CSV
  • [1] Sicherer S H, Sampson H A. Food allergy: a review and update on epidemiology, pathogenesis, diagnosis, prevention, and management[J]. Journal of Allergy and Clinical Immunology,2018,141(1):41−58. doi:  10.1016/j.jaci.2017.11.003
    [2] Mahdavinia M. Food allergy in adults: presentations, evaluation, and treatment[J]. Medical Clinics of North America,2020,104(1):145−155. doi:  10.1016/j.mcna.2019.08.008
    [3] Sova C, Feuling M B, Baumler M, et al. Systematic review of nutrient intake and growth in children with multiple IgE-mediated food allergies[J]. Nutrition in Clinical Practice,2013,28(6):669−675. doi:  10.1177/0884533613505870
    [4] Ho M H K, Wong W H S, Chang C. Clinical spectrum of food allergies: A comprehensive review[J]. Clinical Reviews in Allergy and Immunology,2014,46(3):225−240. doi:  10.1007/s12016-012-8339-6
    [5] Valenta R, Hochwallner H, Linhart B, et al. Food allergies: The basics[J]. Gastroenterology,2015,148(6):1120−1131. doi:  10.1053/j.gastro.2015.02.006
    [6] Courtois J, Bertholet C, Tollenaere S, et al. Detection of wheat allergens using 2D western blot and mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2020,178(2020):112907.
    [7] Monaci L, Visconti A. Immunochemical and DNA-based methods in food allergen analysis and quality assurance perspectives[J]. Trends in Food Science and Technology,2010,21(6):272−283. doi:  10.1016/j.jpgs.2010.02.003
    [8] Xu H F, Zhu X, Wang J, et al. Electrochemiluminescent functional nucleic acids-based sensors for food analysis[J]. Luminescence,2019,2019, 34(3):308−315.
    [9] 陈红兵. 食物过敏原检测技术的新动态[J]. 食品安全质量检测学报,2019,10(7):1743−1744. [Chen Hongbing. Update on the detection of food allergens[J]. Journal of Food Safety and Quality,2019,10(7):1743−1744. doi:  10.3969/j.issn.2095-0381.2019.07.001
    [10] 郭颖慧, 霍胜楠, 孟静, 等. 食品过敏原检测技术研究进展[J]. 食品安全质量检测学报,2019,10(16):5276−5281. [Guo Yinghui, Huo Shengnan, Mengjing, et al. Research progress of detection technologies for allergen in food[J]. Journal of Food Safety and Quality,2019,10(16):5276−5281. doi:  10.3969/j.issn.2095-0381.2019.16.009
    [11] Kim M J. Rapid on-site detection of shrimp allergen tropomyosin using a novel ultrafast PCR system[J]. Food Science and Biotechnology,2019,28(2):591−597. doi:  10.1007/s10068-018-0479-x
    [12] Yuan D, Kong J, Li X, et al. Colorimetric LAMP microfluidic chip for detecting three allergens: Peanut, sesame and soybean[J]. Scientific Reports,2018,8(2018):8682.
    [13] Villa C, Costa J, Oliveira M B P P, et al. Cow’s milk allergens: Screening gene markers for the detection of milk ingredients in complex meat products[J]. Food Control,2020,108(2020):106823.
    [14] Eischeid A C. Development and evaluation of a real-time PCR assay for detection of lobster, a crustacean shellfish allergen[J]. Food Control,2016,59(2016):393−399.
    [15] Costa J, Melo V S, Santos C G, et al. Tracing tree nut allergens in chocolate: A comparison of DNA extraction protocols[J]. Food Chemistry,2015,187:469−476. doi:  10.1016/j.foodchem.2015.04.073
    [16] Orcajo J, Lavilla M, Martínez-De-Marañón I, et al. Specific and sensitive ELISA for measurement of IgE-binding variations of milk allergen β-lactoglobulin in processed foods[J]. Analytica Chimica Acta,2019,1052(2019):163−169.
    [17] Li X, Li Z, Xu E, et al. Determination of lactoferrin in camel milk by ultrahigh-performance liquid chromatography-tandem mass spectrometry using an isotope-labeled winged peptide as internal standard[J]. Molecules,2019,24(22):1−11.
    [18] Zhang M Y, Wu P, Wu J, et al. Advanced DNA-based methods for the detection of peanut allergens in processed food[J]. Trends in Analytical Chemistry,2019,114(2019):278−292.
    [19] Gomaa A, Boye J. Simultaneous detection of multi-allergens in an incurred food matrix using ELISA, multiplex flow cytometry and liquid chromatography mass spectrometry (LC-MS)[J]. Food Chemistry,2015,175(2015):585−592.
    [20] Wang Y, Deng R, Zhang G, et al. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test[J]. Journal of Agricultural and Food Chemistry,2015,63(8):2172−2178. doi:  10.1021/jf5052128
    [21] Alves R C, Pimentel F B, Nouws H P A. Improving the extraction of Ara h 6 (a peanut allergen) from a chocolate-based matrix for immunosensing detection: Influence of time, temperature and additives[J]. Food Chemistry,2017,218(2017):242−248.
    [22] Shukla S, Haldorai Y, K V. Electrochemical coupled immunosensing platform based on graphene oxide/gold nanocomposite for sensitive detection of cronobacter sakazakii in powdered infant formula[J]. Biosensors and Bioelectronics,2018,109(2018):139−149.
    [23] Juronen D, Kuusk A, Kivirand K, et al. Immunosensing system for rapid multiplex detection of mastitis-causing pathogens in milk[J]. Talanta,2018,178(2018):949−954.
    [24] Yakes B, Buijs J, Elliott C, et al. Surface plasmon resonance biosensing: Approaches for screening and characterising antibodies for food diagnostics[J]. Talanta,2016,157(2016):55−63.
    [25] 王彬, 曾冬冬, 徐晓慧, 等. 电化学生物传感器的应用[J]. 北京生物医学工程,2020,39(3):311−312. [Wang Bin, Zeng Dongdong, Xu Xiaohui, et al. Application of electrochemical biosensor[J]. Beijing Biomedical Engineering,2020,39(3):311−312. doi:  10.3969/j.issn.1002-3208.2020.03.015.
    [26] Amor-Gutiérrez O, Buijs J, Elliott C T, et al. Folding-based electrochemical aptasensor for the determination of β-lactoglobulin on poly-l-lysine modified graphite electrodes[J]. Sensors,2020,20(8):2349. doi:  10.3390/s20082349
    [27] Čadková M, Metelka R, Holubová L, et al. Magnetic beads-based electrochemical immunosensor for monitoring allergenic food proteins[J]. Analytical Biochemistry,2015,484(1):4−8.
    [28] Jiang D L, Jian J, Lu A, et al. Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin)[J]. Biosensors and Bioelectronics,2013,50(2013):150−156.
    [29] Hohensinner V, Maier I, Pittner F. A ‘gold cluster-linked immunosorbent assay’: Optical near-field biosensor chip for the detection of allergenic β-lactoglobulin in processed milk matrices[J]. Journal of Biotechnology,2007,130(2007):385−388.
    [30] Maier I, Lindner W, Pittner F, et al. Antigenicity of heat-treated and trypsin-digested milk samples studied by an optical immunochip biosensor[J]. Monatshefte für Chemie - Chemical Monthly,2009,140(2009):921−929.
    [31] Billakanti J M, Fee C J, Lane F R, et al. Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance[J]. International Dairy Journal,2010,20(2010):96−105.
    [32] Álvarez J, Laura S, Marina C, et al. Real time optical immunosensing with flow-through porous alumina membranes[J]. Sensors and Actuators, B: Chemical,2014,202:834−839. doi:  10.1016/j.snb.2014.06.027
    [33] Wu X L, Cheng Q, Cui W, et al. Two-site antibody immunoanalytical detection of food allergens by surface plasmon resonance[J]. Food Analytical Methods,2016,9(3):582−588. doi:  10.1007/s12161-015-0232-5
    [34] Ashley J, Roberta D A, Monika P, et al. Development of a β-lactoglobulin sensor based on SPR for milk allergens detection[J]. Biosensors,2018,8(32):2−11.
    [35] Shi M L, Cen Y, Sohail M, et al. Aptamer based fluorometric β-lactoglobulin assay based on the use of magnetic nanoparticles and carbon dots[J]. Microchimica Acta,2018,185(1):1−8. doi:  10.1007/s00604-017-2562-z
    [36] Eissa S, Tlili C, L’hocine L, et al. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes[J]. Biosensors and Bioelectronics,2012,38(2012):308−313.
    [37] Eissa S, Zourob M. In vitro selection of DNA aptamers targeting β-lactoglobulin and their integration in graphene-based biosensor for the detection of milk allergen[J]. Biosensors and Bioelectronics,2017,91(2017):169−174.
    [38] Lettieri M, Oana H, Alina A, et al. Beta-lactoglobulin electrochemical detection based with an innovative platform based on composite polymer[J]. Electroanalysis,2019,31(2019):1−10.
    [39] Chen Y, Wang P, Wang W, et al. Optical thin film biochips for detecting allergens in food[J]. Handbook of Food Allergen Detection and Control,2015:265−271.
    [40] Sun X L, Guan L, Shan X, et al. Electrochemical detection of peanut allergen ara h 1 using a sensitive dna biosensor based on stem-loop probe[J]. Journal of Agricultural and Food Chemistry,2012,60(44):10979−10984. doi:  10.1021/jf3027233
    [41] Nehra M, Lettieri M, Dilbaghi N, et al. Nano-biosensing platforms for detection of cow’s milk allergens: An overview[J]. Sensors,2020,20(1):1−21. doi:  10.1109/JSEN.2019.2959158
    [42] Maier I, Morgan M R A, Lindner W, et al. Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection[J]. Analytical Chemistry,2008,80(8):2694−2703. doi:  10.1021/ac702107k
    [43] 张一芳. 基于纳米材料的生物传感技术在食品安全中的应用[D]. 长沙: 湖南大学, 2011.

    Zhang Y F. Analytical application of biosensing technology based on nano materials in the food safety[D]. Changsha: Hunan University, 2011.
    [44] Jiang D L, Jiang H, Ji J, et al. Mast cell-based fluorescence biosensor for rapid detection of major fish allergen parvalbumin[J]. Journal of Agricultural and Food Chemistry,2014,62(27):6473−6480. doi:  10.1021/jf501382t
    [45] Chen Z, Li H, Jia W, et al. Bivalent aptasensor based on silver-enhanced fluorescence polarization for rapid detection of lactoferrin in milk[J]. Analytical Chemistry,2017,89(11):5900−5908. doi:  10.1021/acs.analchem.7b00261
    [46] Phadke C, Seiichi T, Izumi K, et al. Instantaneous detection of αs-casein in cow’s milk using fluorogenic peptide aptamers[J]. Analytical Methods,2020,12(10):1368−1373. doi:  10.1039/C9AY02542A
    [47] Zhou J, Qi Q Q, Wang C, et al. Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices[J]. Biosensors and Bioelectronics,2019,142(4):111449.
    [48] Weng X, Gaur G, Neethirajan S, et al. Rapid detection of food allergens by microfluidics ELISA-based optical sensor[J]. Biosensors,2016,6(24):2−10.
    [49] Weng X, Neethirajan S. A microfluidic biosensor using graphene oxide and aptamer-functionalized quantum dots for peanut allergen detection[J]. Biosensors and Bioelectronics,2016,85(2016):649−656.
    [50] Pollet J, Delport F, Janssen K P F, et al. Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor[J]. Talanta,2011,83(2011):1436−1441.
    [51] Angelopoulou M, Petrou P S, Makarona E, et al. Ultrafast multiplexed-allergen detection through advanced fluidic design and monolithic interferometric silicon chips[J]. Analytical Chemistry,2018,90(15):9559−9567. doi:  10.1021/acs.analchem.8b02321
    [52] Tuteja S K, Duffield T, Neethirajan S. Liquid exfoliation of 2D MoS2 nanosheets and their utilization as a label-free electrochemical immunoassay for subclinical ketosis[J]. Nanoscale,2017,9(2017):10886−10896.
    [53] Sun X B, Ye Y, He S, et al. A novel oriented antibody immobilization based voltammetric immunosensor for allergenic activity detection of lectin in kidney bean by using AuNPs-PEI-MWCNTs modified electrode[J]. Biosensors and Bioelectronics,2019,143(2019):111607.
    [54] Alves R C, Barroso M F. New trends in food allergens detection: towards biosensing strategies[J]. Critical Reviews in Food Science and Nutrtion,2016,56(14):2304−2319. doi:  10.1080/10408398.2013.831026
    [55] Ruiz-Valdepeñas M V, Campuzano S, Conzuelo F, et al. Electrochemical magnetoimmunosensing platform for determination of the milk allergen β-lactoglobulin[J]. Talanta,2015,131(2015):156−162.
    [56] 惠媛媛, 王毕妮, 彭海霞. 电化学生物传感器在黄曲霉毒素检测中的应用研究进展[J]. 食品工业科技,2019,40(2):300−305. [Hui Yuanyuan, Wang Bini, Peng Haixia. Application research development of electrochemical biosensors in detection of aflatoxins[J]. Science and Technology of Food Industry,2019,40(2):300−305.
    [57] 孙秀兰, 管露, 单晓红, 等. 食品过敏原体外检测方法研究进展[J]. 东北农业大学学报,2012,43(2):126−132. [Sun Xiulan, Guan Lu, Shan Xiaohong, et al. Research on food allergen detection methods in vitro[J]. Journal of Northeast Agricultural University,2012,43(2):126−132. doi:  10.3969/j.issn.1005-9369.2012.02.025
    [58] Jiang H, Jiang D L, Wang L F, et al. A novel mast cell co-culture microfluidic chip for the electrochemical evaluation of food allergen[J]. Biosensors and Bioelectronics,2016,83(2016):126−133.
    [59] 关桦楠, 宋岩, 龚德状, 等. 基于电化学生物传感器检测食源性致病菌及其毒素的研究进展[J]. 食品研究与开发,2019,40(8):206−211. [Guan Huanan, Song Yan, Gong Dezhuang, et al. Research progress in the detection of food-borne pathogenic bacteria and toxins based on electrochemical biosensor[J]. Food Research and Development,2019,40(8):206−211. doi:  10.3969/j.issn.1005-6521.2019.08.036
    [60] Sun X L, Jia M. Enzymatic amplification detection of peanut allergen Ara h1 using a stem-loop DNA biosensor modified with a chitosan-mutiwalled carbon nanotube nanocomposite and spongy gold film[J]. Talanta,2015,131(2015):521−527.
    [61] Ruiz-Valdepeñas M V, Campuzano S, Torrente-Rodríguez R M, et al. Electrochemical magnetic beads-based immunosensing platform for the determination of α-lactalbumin in milk[J]. Food Chemistry,2016,213(2016):595−601.
    [62] Angulo-Ibáñez A, Eletxigerra U. Electrochemical tropomyosin allergen immunosensor for complex food matrix analysis[J]. Analytica Chimica Acta,2019,1079(2019):94−102.
    [63] Conzuelo F, Gamella M, Campuzano S, et al. Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk[J]. Analytica Chimica Acta,2012,737(2012):29−36.
    [64] Cao Q, Zhao H. Electrochemical immunosensor for casein based on gold nanoparticles and poly (L-arginine)/multi-walled carbon nanotubes composite film functionalized interface[J]. Biosensors and Bioelectronics,2011,26(2011):3469−3474.
    [65] Haghshenas E, Madrakian T, Afkhami A, et al. A label-free electrochemical biosensor based on tubulin immobilized on gold nanoparticle/glassy carbon electrode for the determination of vinblastine[J]. Analytical and Bioanalytical Chemistry,2017,409(22):5269−5278. doi:  10.1007/s00216-017-0471-y
    [66] López M Sánchez P. Development of a genosensor for peanut allergen Ara h 2 detection and its optimization by surface response methodology[J]. Biosensors and Bioelectronics,2014,62(2014):350−356.
    [67] Alves R C, Pimentel F B, Nouws H P A, et al. Detection of the peanut allergen Ara h 6 in foodstuffs using a voltammetric biosensing approach[J]. Analytical and Bioanalytical Chemistry,2015,407(2015):7157−7163.
    [68] Kokkinos C, Angelopoulou M, Economou A, et al. Lab-on-a-membrane foldable devices for duplex drop-volume electrochemical biosensing using quantum dot tags[J]. Analytical Chemistry,2016,88(13):6897−6904. doi:  10.1021/acs.analchem.6b01625
    [69] Farooq U, Yang Q, Ullah M W, et al. Bacterial biosensing: recent advances in phage-based bioassays and biosensors[J]. Biosensors and Bioelectronics,2018,118(2018):204−216.
    [70] Sun X L, Yin Z Z, Jing D S, et al. A quartz crystal microbalance-based immunosensor for shrimp allergen determination in food[J]. European Food Research Technology,2010,231(2010):563−570.
    [71] Chu Pei-Tzu, Lin C, Chen W, et al. Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles[J]. Journal of Agricultural and Food Chemistry,2012,60(26):6483−6492. doi:  10.1021/jf2047866
    [72] Funari R, Terracciano I, Della V B, et al. Label-free detection of gliadin in food by quartz crystal microbalance-based immunosensor[J]. Journal of Agricultural and Food Chemistry,2017,65(6):1281−1289. doi:  10.1021/acs.jafc.6b04830
  • 加载中
图(3) / 表(5)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  38
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 网络出版日期:  2021-08-09
  • 刊出日期:  2021-09-14

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》编辑部携手万方数据开通学术不端专属检测通道,具体信息参见本刊动态。