Detection of Aroma Components in Three Cultivars of Mango with Headspace Solid Phase Microextraction-Comprehensive Two-dimensional Gas Chromatograph/Time of Flight Mass Spectrometer
-
摘要: 本文采用顶空固相微萃取(Headspace Solid Phase Microextraction,HS-SPME)与全二维气相色谱/飞行时间质谱联用仪(Comprehensive Two-dimensional Gas Chromatograph/Time of Flight Mass Spectrometer,GC×GC-TOFMS)比较了不同萃取头、萃取温度、萃取时间、解吸温度等因素对萃取效果的影响,对三个品种的芒果香气成分进行了分析鉴定。结果表明,最适萃取条件为:萃取头50/30 μm DVB/CAR /PDMS(Divinylbenzene/Carboxen/Polydimethylsiloxane),萃取温度60 ℃,萃取时间60 min,解吸温度250 ℃。凭借全二维气相色谱/飞行时间质谱联用仪强大的分离及定性能力,可以获得比常规一维气相色谱/质谱联用仪更多的香气成分信息。3种芒果共检测出170种香气成分,金煌芒、小台芒、青皮芒中分别测到96、90、68种香气成分,峰面积含量占各自挥发性成分总量的74.04%、90.75%、78.91%。170种香气成分中醇类25种、芳香烃4种、醛类15种、酸类6种、酮类18种、烯烃56种、酯类46种,7类化合物中烯烃类化合物在三种芒果中含量占比最高,金煌芒中含有相比其他两种芒果具有更多的酯类、醛类和醇类等香气成分,相应的青皮芒独有的香味成分则相对较少,这也是金煌芒香气浓郁,而青皮芒香气较寡淡的原因。3种芒果共有的香气成分有26种,比如萜品油烯、3-蒈烯、β-月桂烯、石竹烯、珂巴烯和γ-依兰油烯等烯烃组成芒果基本的香气,但共有成分在不同品种芒果中的含量存在明显差异。比如,金煌芒中3-蒈烯明显更高,含量为10.783%,小台芒中萜品油烯明显更高,含量为17.545%。
-
关键词:
- 芒果 /
- 品种 /
- 香气成分分析 /
- 顶空固相微萃取(HS-SPME) /
- 全二维气相色谱-飞行时间质谱联用仪(GC×GC-TOFMS)
Abstract: A headspace solid-phase microextraction coupled with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometer was used to compare different extraction heads, extraction temperature, extraction time, desorption temperature and time on the extraction effect, aroma components of the three mango varieties were analyzed and identified. The results showed that the optimum extraction conditions were as follows: extraction head 50/30 μm DVB/CAR/PDMS, extraction temperature 60 ℃, extraction time 60 min and desorption temperature 250 ℃. With the powerful separation and qualitative capabilities of the comprehensive two-dimensional gas chromatography time-of-flight mass spectrometer, more information about aroma components c be obtained than the conventional one-dimensional gas chromatography mass spectrometer. A total of 170 aroma components were detected in the three types of mangoes. A total of 96, 90 and 68 aroma components were detected in the JinHuang mango, XiaoTai mango and QingPi mango, respectively, and the peak area content of these aroma components accounted for 74.04%, 90.75% and 78.91% of the total volatile components, respectively. In the 170 aroma components, 25 were alcohols, 4 were aromatic hydrocarbons, 15 were aldehydes, 6 were acids, 18 were ketones, 56 were olefins, 46 were esters. Among the 7 kinds of compounds, olefins were found in three kinds of mangoes. The highest content in the golden mango, JinHuang mango contained more esters, aldehydes and alcohols than the other two mangoes, and the corresponding unique aroma components of the QingPi mango were relatively less, which was also golden. This was also the reason why the aroma of JinHuang mango was full-bodied while the aroma of QingPi mango was relatively less aromatic.There were 26 types of aroma components shared by the three types of mangoes, such as terpene olefins, 3-carene, β-laurelene, stigmene, cobalene and γ-ylangene which made up the basic aroma of mangoes, but the contents of common components in different varieties of mango were significantly different. For example, the content of 3-carene in JinHuang mango was significantly higher with 10.783%, and the content of terpinene in XiaoTai mango was significantly higher with 17.545%. -
表 1 不同萃取头的萃取效果
Table 1. Extraction effect of different fiber
萃取头类型 PDMS DVB/CAR/PDMS 总峰面积 795360 945479 检出有效化合物总数(个) 88 114 表 2 不同萃取温度下的萃取效果
Table 2. Extraction effect of different extraction temperature
萃取头温度(℃) 50 60 70 总峰面积 902356 945479 923432 检出有效化合物总数(个) 98 114 110 表 3 不同萃取时间下的萃取效果
Table 3. Extraction effect of different extraction time
萃取头时间(min) 50 60 70 总峰面积 894556 945479 933227 检出有效化合物总数(个) 93 114 110 表 4 不同解吸温度下的萃取效果
Table 4. Extraction effect of different desorption temperature
解吸温度(℃) 240 250 260 总峰面积 927956 945479 944678 检出有效化合物总数(个) 101 114 110 表 5 三种芒果的香气成分及相对含量
Table 5. Aroma components and relative contents of three kinds of mangos
序号 类别 化合物名称 化学式 一维时间(min) 二维时间(s) 金煌芒(%) 小台芒(%) 青皮芒(%) 1 醇类 乙醇 C2H6O 4.28 0.61 0.707 1.040 0.088 2 异戊醇 C5H12O 10.95 0.83 − 0.007 − 3 1-己醇 C6H14O 14.95 0.90 0.010 − − 4 3-己烯-1-醇 C6H12O 15.78 0.86 0.321 0.001 0.003 5 环己基甲醇 C7H14O 20.45 2.23 0.004 − − 6 4-萜烯醇 C10H18O 21.03 1.60 − − 0.002 7 3-环戊基-1-丙醇 C8H16O 22.53 2.63 − 0.009 − 8 顺式-3-壬烯-1-醇 C9H18O 23.12 1.08 0.013 − − 9 α-松油醇 C10H18O 23.28 1.32 − − 0.053 10 (6Z)-壬烯-1-醇 C9H18O 23.78 1.06 − 0.005 − 11 对薄荷-1,5-二烯-8-醇 C10H16 24.03 1.20 0.010 − − 12 (E,Z)-3,6-亚壬基-1-醇 C9H16O 24.53 1.01 − 0.853 − 13 (E,Z)-3,6-壬二烯-1-醇 C9H16O 24.62 1.00 0.313 − − 14 反式,顺式-2,6-壬二烯-1-醇 C9H16O 24.95 0.98 0.010 0.005 − 15 (E)-2-癸烯-1-醇 C10H20O 25.78 2.44 0.025 − − 16 4-丙基-1,6-庚二烯-4-醇 C10H18O 26.03 2.43 − 0.088 − 17 异香芹醇 C10H16O 26.28 1.29 0.063 0.010 − 18 α,α,4-三甲基苯甲醇 C10H14O 26.70 1.04 0.384 0.551 0.239 19 醇类 苯甲醇 C7H8O 27.28 0.73 0.126 0.060 0.005 20 苯乙醇 C8H10O 27.95 0.84 0.006 0.004 − 21 1-十二醇 C12H26O 29.03 1.34 0.010 − − 22 二-表-1,10-库贝醇 C15H26O 30.70 2.28 − − 0.029 23 蓝桉醇 C15H26O 33.37 1.92 0.217 − − 24 α-杜松醇 C15H26O 33.87 1.73 − 0.046 − 25 1-十六醇 C16H34O 36.53 1.70 2.366 − − 26 芳香烃类 对伞花烃 C10H14 12.28 2.65 − 2.776 − 27 邻伞花烃 C10H14 12.48 2.69 1.983 0.440 3.784 28 4-异丙烯基甲苯 C10H12 16.95 2.01 0.042 − − 29 去氢白菖烯 C15H22 25.95 3.27 0.396 0.600 0.007 30 醛类 2-己烯醛 C6H10O 11.03 1.49 0.015 − − 31 苯甲醛 C7H6O 19.12 1.18 0.048 0.301 − 32 (E)-2-壬醛 C9H16O 19.37 1.76 0.164 0.013 − 33 (E,Z)-2,6-壬醛 C9H14O 20.70 1.57 0.194 − − 34 苯乙醛 C8H8O 22.12 1.18 0.156 − − 35 十四醛 C14H28O 28.03 2.49 4.534 − − 36 4-甲氧基苯甲醛 C8H8O2 30.12 1.11 0.504 − − 37 十五醛 C15H30O 30.12 2.51 0.031 − − 38 (4,6,6-三甲基双环[3.1.1]庚-3-烯-2-基)乙醛 C12H18O 30.62 2.51 0.243 − − 39 (Z)-13-十八碳烯醛 C18H34O 30.70 2.42 0.178 − − 40 十六醛 C16H32O 32.12 2.61 0.444 − − 41 胡椒醛 C15H24 33.95 1.02 1.017 − − 42 2-异丙基-5-甲基己基-4-烯醛 C10H16O 34.37 0.89 − 0.008 − 43 顺式,顺式,顺式-7,10,13-十六碳三醛 C16H26O 36.62 2.18 0.022 − − 44 香兰素 C8H8O3 39.78 0.77 − 0.310 0.006 45 酸类 丁酸 C4H8O2 22.37 0.51 − 0.123 − 46 己酸 C6H12O2 27.03 0.55 0.007 0.115 − 47 辛酸 C8H16O2 31.62 0.56 0.003 − − 48 壬酸 C9H18O2 33.62 0.59 − 0.055 − 49 十四烷酸 C14H28O2 41.95 0.83 0.297 0.080 0.007 50 正十六酸 C16H32O2 45.37 1.03 0.004 − − 51 酮类 2,2,4-三甲基-3-戊酮 C8H14O6 16.03 0.52 − 0.007 − 52 4-羟基-2-戊酮 C5H10O2 17.70 0.77 0.001 − − 53 3,5-辛二烯-2-酮 C8H12O 19.12 1.45 − 0.053 − 54 5-乙基二氢-2(3H)-呋喃酮 C6H10O2 23.37 1.15 0.007 − − 55 4,6,6-三甲基-(1S)-双环[3.1.1] -3-庚烯-2-酮 C10H14O 24.37 1.84 − 0.148 − 56 1-(4-甲基苯基)-乙酮 C9H10O 24.87 1.36 − − 0.098 57 1-(3-甲基苯基)-乙酮 C9H10O 24.87 1.36 − 0.037 − 58 (Z)-6,10-二甲基-5,9-十二烯-2-酮 C13H22O 26.62 2.08 0.033 − − 59 (E)-6,10-二甲基-5,9-十一碳二烯-2-酮 C13H22O 26.70 2.08 0.330 0.176 0.013 60 反式-β-紫罗兰酮 C13H20O 28.28 2.14 0.048 0.174 − 61 四氢-6-丙基-2H-吡喃-2-酮 C8H14O2 28.87 1.35 − 0.238 − 62 二氢-5-戊基-2(3H)-呋喃酮 C9H16O2 30.20 1.32 0.168 0.272 − 63 环辛酮 C8H14O 31.45 0.70 − − 0.004 64 5-己基二氢-2(3H)-呋喃酮 C10H18O2 32.28 1.39 − 0.018 − 65 四氢-6-戊基- 2H-吡喃-2-酮 C10H18O2 33.28 1.45 0.006 0.010 − 66 四氢-6-(2-戊烯基)-(Z)-2H-吡喃-2-酮 C10H16O2 34.45 1.37 0.071 − − 67 5,6,7,7a-四氢-4,4,7a-三甲基-(R)-2(4H)-苯并呋喃酮 C11H16O2 35.70 1.43 − 0.044 − 68 5,6,7,7a-四氢-4,4,7a-三甲基-2(4H)-苯并呋喃酮 C11H16O2 35.78 1.43 0.004 − − 69 烯烃/环烷烃 α-蒎烯 C10H16 5.62 3.56 − − 10.418 70 3,6,6-三甲基 -双环[3.1.1]-2-庚烯 C10H16 5.62 3.73 − 0.030 − 71 1-甲基-2,4-环二烯 C7H10 5.95 1.72 − − 0.003 72 莰烯 C10H16 6.62 3.60 − − 0.013 73 4-甲基-3-(1-甲基亚乙基)-环己烯 C10H16 8.12 3.97 0.009 − − 74 烯烃/环烷烃 2-蒈烯 C10H16 8.12 3.97 − − 0.495 75 β-蒎烯 C10H16 8.12 3.98 − 0.153 0.560 76 3-蒈烯 C10H16 8.62 3.68 10.783 9.569 8.905 77 α-水芹烯 C10H16 9.12 3.51 0.366 1.297 1.504 78 β-月桂烯 C10H16 9.28 3.01 1.181 2.173 2.417 79 (+)-2-蒈烯 C10H16 9.53 3.52 1.480 6.021 5.216 80 1-甲基-4-(1-甲基乙基)-1,3-环己二烯 C10H16 9.78 3.32 − − 0.308 81 柠檬烯 C10H16 10.12 3.34 1.487 3.305 3.623 82 β-水芹烯 C10H16 10.37 3.38 0.555 2.235 2.172 83 (Z)-3,7-二甲基-1,3,6-辛二烯 C10H16 11.37 2.88 − 0.020 0.014 84 γ-松油烯 C10H16 11.53 3.35 0.007 0.376 0.850 85 Β-罗勒烯 C10H16 11.78 2.83 − 0.212 0.140 86 萜品油烯 C10H16 12.62 3.15 12.851 17.545 12.975 87 4,5-二甲基-2,6-辛二烯 C10H18 13.12 2.37 − 0.104 − 88 1,3,8-对薄荷三烯 C12H22O2 15.70 2.55 0.889 1.490 1.518 89 1,5,8-对薄荷三烯 C15H24 16.45 2.65 0.542 1.150 1.076 90 E,E-2,6-二甲基-1,3,5,7-辛四烯 C10H14 16.87 2.39 − − 0.183 91 2,4-二甲基苯乙烯 C10H12 16.87 2.05 1.627 3.791 0.590 92 α-毕澄茄烯 C15H24 17.20 4.73 − 0.356 − 93 3-乙基-1,4-己二烯 C8H14 17.70 1.29 − 0.108 − 94 (E,E)-2,4-庚二烯 C7H10O 17.70 1.30 0.070 0.134 − 95 依兰烯 C15H24 17.87 4.77 − − 0.010 96 珂巴烯 C15H24 18.03 4.80 1.218 7.791 2.587 97 (-)-α-古芸烯 C15H24 19.03 5.00 − − 0.002 98 (E)2,5-二甲基-1,6-辛二烯 C10H18 19.53 2.17 2.532 0.726 − 99 β-珂巴烯 C15H24 20.45 4.30 − − 0.738 100 α-愈创木烯 C15H24 20.53 4.31 − 0.260 − 101 β-榄香烯 C15H24 20.53 3.49 − − 2.065 102 石竹烯 C15H24 20.62 4.18 0.180 0.608 − 103 顺式-穆罗拉-3,5-二烯 C15H24 21.45 4.23 1.489 2.171 0.759 104 2-亚甲基-5-(1-甲基乙烯基)-8-甲基-
双环[5.3.0]癸烷C15H24 21.78 3.88 − 0.015 0.131 105 (+)-香橙烯 C15H24 21.78 4.23 − − 0.114 106 1R,3Z,787-9-4,11,11三甲基-8-亚甲基
双环[7.2.0]-3-十一碳烯C15H24 21.78 3.95 0.098 0.414 0.708 107 葎草烯 C15H24 22.28 3.74 1.362 − − 108 1,2,3,3a,4,5,6,7-八氢-1,4-二甲基-7-(1-甲基乙烯基)-
[1R-(1α,3aβ,4α,7β)]-天蓝烯C15H24 22.45 4.12 − 1.299 0.184 109 顺式-β-金合欢烯 C15H24 22.45 3.21 − − 1.543 110 马兜铃烯 C15H24 22.53 3.80 − − 0.010 111 (+)-喇叭烯 C15H24 22.95 4.02 − − 1.629 112 3,7-二甲基-(Z)-2,6-辛二烯 C10H16O 23.03 1.33 0.673 0.487 0.060 113 大根香叶烯 C15H24 23.20 3.67 − − 0.031 114 异长叶烯 C15H24 23.37 3.89 − 2.018 − 115 α-布藜烯 C15H24 23.37 3.99 − 1.396 − 116 β-布藜烯 C15H24 23.37 3.73 − − 1.883 117 γ-依兰油烯 C15H24 23.45 3.83 4.575 − − 118 α-依兰烯 C15H24 23.62 3.63 3.369 1.954 1.396 119 紫苏烯 C15H24 23.62 3.68 − 2.591 0.066 120 毕澄茄烯 C15H24 24.78 3.59 2.358 − 0.448 121 螺环[4.4]-1-壬烯 C10H16O 25.62 2.46 − 0.185 0.408 122 双环[5.2.0]-1-壬烯 C9H14 25.62 2.41 0.199 − − 123 α-白菖考烯 C15H20 27.70 2.83 − 3.097 − 124 2-甲基-1-烯-3-壬炔 C10H16 27.03 1.23 − 0.207 0.067 125 酯类 乙酸乙酯 C4H8O2 3.45 1.08 − 0.096 0.580 126 丙酸乙酯 C5H10O2 4.53 1.50 − − 0.039 127 酯类 丁酸乙酯 C6H12O2 6.20 1.96 − 0.002 − 128 2-丁烯酸-(Z)-甲酯 C5H8O2 6.53 1.44 − 1.884 − 129 环丙基羧酸乙酯 C6H10O2 7.87 1.83 − − 0.003 130 丁酸丙酯 C7H14O2 8.28 2.44 0.032 − 0.472 131 2-丁烯酸-(Z)-乙酯 C6H10O2 9.45 1.74 − 0.017 − 132 丁酸丁酯 C8H16O2 10.95 2.67 − 0.035 0.008 133 己酸乙酯 C8H16O2 11.45 2.51 − 0.010 − 134 2-丙烯酸-2-甲基-环氧乙烷基甲酯 C7H10O3 12.53 1.71 − 0.048 − 135 乙酸己酯 C8H16O2 12.53 2.23 − 0.004 − 136 (Z)-3-己烯-1-醇乙酯 C8H14O2 13.62 1.96 0.014 − − 137 (E)-3-己烯-1-醇乙酯 C8H14O2 13.78 1.95 0.002 − − 138 (E)-2-己烯-1-醇乙酯 C8H14O2 14.28 1.91 1.290 − 0.617 139 丁酸-(Z)-2-戊烯酯− C9H16O2 15.12 2.41 0.007 − − 140 (Z)-丙酸-3-己烯酯 C9H16O2 15.62 2.28 0.014 − − 141 辛酸乙酯 C10H20O2 16.87 2.68 0.618 0.136 142 顺-3-己烯基丁酯 C10H18O2 17.37 2.51 − 0.463 − 143 环丙烷羧酸-2-戊酯 C9H16O2 17.45 2.19 0.011 0.214 0.508 144 戊二酸戊酯 C7H14O3 17.45 3.03 0.003 − − 145 丁酸-4-己烯-1-酯 C10H18O2 17.53 2.50 − − 0.002 146 丁酸-(E)- 2-己烯酯 C10H18O2 17.95 2.46 2.306 − − 147 (E)-2-甲基-2-丁烯-1-甲基丙烯酸甲酯 C9H14O2 18.78 1.96 0.008 − − 148 2-丁烯酸-2-甲基丙酯 C8H14O2 19.95 2.28 0.107 − − 149 1,2-丙二醇-1-乙酸酯 C5H10O3 20.70 0.69 0.028 − − 150 2-丁烯酸-3-(E,Z)-己烯酯 C10H16O2 21.03 2.04 0.015 − − 151 丁酸辛酯 C12H24O2 21.37 2.91 1.517 − 0.937 152 4-甲基丙烯酸戊酯 C11H20O2 21.45 2.53 − 0.004 − 153 1,2-丙二醇-2-乙酸酯 C5H10O3 21.70 0.68 − − 0.002 154 丁内酯 C4H6O2 21.78 0.95 0.005 − − 155 癸酸乙酯 C12H24O2 21.87 2.78 0.002 − − 156 (E)-六角-3-烯基(E)-2-甲基-2-丁烯酸酯 C11H18O2 22.53 2.32 − 0.805 − 157 4Z-己烯基苯甲酸酯 C11H18O2 22.53 2.29 0.394 − − 158 4Z-己烯酸己烯酯 C11H18O2 22.53 2.28 − 0.012 − 159 丁酸壬酯 C13H26O2 23.70 3.02 − − 1.059 160 丁酸-1-乙烯己酯 C12H22O2 24.28 2.78 0.027 − − 161 乙酸-顺式- -3-壬烯酯 C11H20O2 24.28 2.74 0.006 − − 162 烟酸乙酯 C8H9NO2 25.78 1.35 − 0.213 − 163 十二酸乙酯 C14H28O2 26.37 2.88 − 0.035 − 164 丙位辛内酯 C8H14O2 27.95 1.28 − 0.741 − 165 丁酸-(E)-3,7-二甲基-2,6-辛二烯基酯 C14H24O2 27.45 2.63 0.239 0.028 − 166 三醋酸甘油酯 C9H14O6 31.28 1.01 0.592 − − 167 1,2,3-丙三醇-1-乙酸酯 C5H10O4 34.37 0.66 0.447 − − 168 三氟-3,7-二甲基辛基乙酸酯 C12H21F3O2 34.78 1.59 0.003 − − 169 δ-十二内酯 C12H22O2 37.28 1.58 0.002 − − 170 苯甲酸苄酯 C14H12O2 40.53 1.58 0.168 − − 注:“−”为未检出。 -
[1] Engel K H, Tressl R. Studies on the volatile components of two mango varieties[J]. Journal of Agricultural & Food Chemistry,1983,31(4):796−801. [2] 高爱平, 陈业渊, 朱敏, 等. 中国芒果科研进展综述[J]. 中国热带农业,2006(6):21−23. doi: 10.3969/j.issn.1673-0658.2006.06.009 [3] 顾承真, 刘菲菲, 姚元成, 等. 芒果叶的化学成分研究[J]. 天然产物研究与开发,2013,25(1):36−39. doi: 10.3969/j.issn.1001-6880.2013.01.008 [4] 乜兰春, 孙建设, 黄瑞虹. 果实香气形成及其影响因素[J]. 植物学通报,2004,21(5):631−637. [5] 张涵, 鲁周民, 王锦涛, 等. 4种主要柑橘类香气成分比较[J]. 食品科学,2017,38(4):198−202. [6] 刘传和, 刘岩. 四种芒果香气品质分析[J]. 广东农业科学,2016,43(10):123−127. [7] 张浩, 安可婧, 徐玉娟, 等. 基于电子舌与SPME-GC-MS技术的芒果风味物质的比较分析[J]. 现代食品科技,2018,34(10):214−224. [8] Liu Z, Phillips J B. Comprehensive two-dimensional gas chromatography using an on-column thermal modulator interface[J]. Journal of Chromatographic Science,1991,29(6):227−231. doi: 10.1093/chromsci/29.6.227 [9] Marriott P J, Shellie R, Cornwell C. Gas chromatographic technologies for the analysis of essential oils[J]. Journal of Chromatography A,2001,936(1):1−22. [10] 花瑞香, 阮春海, 王京华, 等. 全二维气相色谱法用于不同石油馏分的族组成分布研究[J]. 化学学报,2002,60(12):2185−2191. doi: 10.3321/j.issn:0567-7351.2002.12.018 [11] Santos F J, Galceran M T. Modem developments in gas chromatography-mass spectrometry-based environmental analysis[J]. Journal of Chromatography A,2003,1000(1-2):125−151. doi: 10.1016/S0021-9673(03)00305-4 [12] Shellie R, Mondello L, Marriott P, et al. Characterisation of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography[J]. Journal of Chromatography A,2002,970(1-2):225−234. doi: 10.1016/S0021-9673(02)00653-2 [13] 吴曼曼, 岑延相, 杨丽华, 等. 用于与全二维气相色谱联用的高通量飞行时间质谱仪的研制[J]. 分析化学,2016(11):1786−1792. [14] Eganhouse R P, Pontolillo J, Gaines R B, et al. Isomer-specific determination of 4-nonylphenols using comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry[J]. Environmental Science & Technology,2009,43(24):9306− 9313. [15] 路鑫, 武建芳, 吴建华, 等. 全二维气相色谱/飞行时间质谱用于柴油组成的研究[J]. 色谱,2004,22(1):5−11. doi: 10.3321/j.issn:1000-8713.2004.01.002 [16] Cheong K W, Tan C P, Mirhosseini H, et al. Optimization of equilibrium headspace analysis of volatile flavor compounds of malaysian soursop (Annona muricata): Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS)[J]. Food Chemistry,2011,125(4):1481−1489. doi: 10.1016/j.foodchem.2010.10.067 [17] Weldegergis B T, Crouch A M, Tadeusz Górecki, et al. Solid phase extraction in combination with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry for the detailed investigation of volatiles in South African red wines[J]. Analytica Chimica Acta,2011,701(1):98−111. doi: 10.1016/j.aca.2011.06.006 [18] Gao X, Yang X, Mitrevski B S, et al. Headspace solid-phase microextraction combined with GC×GC-TOFMS for the analysis of volatile compounds of Coptis species rhizomes[J]. Journal of Separation Science,2011,34(10):81−89. [19] 何晓蕾, 俞勇梅, 李咸伟, 等. 全二维气相色谱/飞行时间质谱法快速定性分析飞灰样品中的二噁英[J]. 分析化学,2010,38(7):28−33. [20] Pangallo K, Nelson R K, Teuten E L, et al. Expanding the range of halogenated 1prime-methyl-1, 2prime-bipyrroles (MBPs) using GC/ECNI-MS and GCxGC/TOF-MS[J]. Chemosphere Oxford,2008,71(8):1557−1565. doi: 10.1016/j.chemosphere.2007.11.051 [21] Torregiani E, Lorier S, Sagratini G, et al. Comparative analysis of the volatile profile of 20 commercial samples of truffles, truffle sauces, and truffle-flavored oils by using HS-SPME-GC-MS[J]. Food Anal Methods,2018,10(6):1857−1862. [22] 王建霞, 郭洪伟, 刘一涵, 等. GC-MS结合保留指数分析轮钟花果实的挥发性成分[J]. 西南民族大学学报,2020,26(4):380−385. [23] 唐会周, 明建, 程月皎, 等. 顶空固相微萃取-气质联用技术分析芒果的芳香成分[J]. 食品科技,2008(5):229−232. doi: 10.3969/j.issn.1005-9989.2008.05.068 [24] Pandi S S, Chidley H G, Kulkarni R S, et al. Cultivar relationships in mango based on fruit volatile profiles[J]. Food Chemistry,2009,114:363−372. doi: 10.1016/j.foodchem.2008.09.107 [25] 乜兰春, 孙建设, 黄瑞虹. 果实香气形成及其影响因素[J]. 植物学通报,2004(5):631−637. [26] 张宝明. 芒果香精的调配[J]. 中国食品添加剂,2013(3):198−204. doi: 10.3969/j.issn.1006-2513.2013.03.027 -