基于微观结构和蛋白质组学分析影响猪肉持水性的差异蛋白

杨波若 李华健 苏娅宁 李霞 瞿静 陈韬

杨波若,李华健,苏娅宁,等. 基于微观结构和蛋白质组学分析影响猪肉持水性的差异蛋白[J]. 食品工业科技,2021,42(7):136−144. doi:  10.13386/j.issn1002-0306.2020070148
引用本文: 杨波若,李华健,苏娅宁,等. 基于微观结构和蛋白质组学分析影响猪肉持水性的差异蛋白[J]. 食品工业科技,2021,42(7):136−144. doi:  10.13386/j.issn1002-0306.2020070148
YANG Boruo, LI Huajian, SU Yaning, et al. Analysis of Different Proteins Affecting Water Holding Capacity of Pork Based on Microstructure and Proteomics[J]. Science and Technology of Food Industry, 2021, 42(7): 136−144. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020070148
Citation: YANG Boruo, LI Huajian, SU Yaning, et al. Analysis of Different Proteins Affecting Water Holding Capacity of Pork Based on Microstructure and Proteomics[J]. Science and Technology of Food Industry, 2021, 42(7): 136−144. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020070148

基于微观结构和蛋白质组学分析影响猪肉持水性的差异蛋白

doi: 10.13386/j.issn1002-0306.2020070148
基金项目: 国家自然科学基金地区项目(31660441)
详细信息
    作者简介:

    杨波若(1994−),女,硕士研究生,研究方向:畜产品加工与品质控制研究,E-mail:yangboruo@163.com

    通讯作者:

    陈韬(1963−),男,博士,教授,研究方向:畜产品加工与品质控制研究,E-mail:chentao63@163.com

  • 中图分类号: TS251.1

Analysis of Different Proteins Affecting Water Holding Capacity of Pork Based on Microstructure and Proteomics

  • 摘要: 为探究宰后初期生鲜猪肉肌细胞微观结构和蛋白质组变化对持水能力的影响,将猪背最长肌样品按照汁液流失的高低分为高汁液流失组(High drip loss group≥5.93%, H组, n=3)和低汁液流失组(Low drip loss group≤0.81%, L组, n=3),对两组样品的微观结构和蛋白质组进行比较。采用透射电镜(Transmission Electron Microscopy, TEM)观测细胞间隙,并用多肽体外标记技术(Tandem Mass Tag, TMT)鉴定高低汁液流失组间的差异蛋白。结果表明,宰后24 h时,H组的细胞外间隙极显著大于L组的细胞外间隙(P<0.01)。宰后肌肉中葡萄糖磷酸变位酶-1、热休克蛋白70(Heat shock protein 70, Hsp70)、锚蛋白、硒蛋白W和层黏连蛋白的表达量越高,汁液流失越低,持水性越好,而磷酸甘油变位酶和转酮醇酶的表达量越高,汁液流失越高,持水性越差。
  • 图  1  宰后9 h和24 h时的两组不同汁液流失率肉样微观图片

    注:A:宰后9 h的L组细胞间隙;B:宰后24 h的L组细胞间隙;C:宰后9 h的H组细胞间隙;D:宰后24 h的H组细胞间隙;A~D图中的箭头指向是肌细胞膜分离的位置;黑色的圆圈内为肌原纤维间。

    Figure  1.  Microscopic photos of two groups of meat samples with different drip loss at 9 h and 24 h after slaughter

    图  2  差异蛋白的GO功能分类图

    Figure  2.  Identification of the differential proteins by GO functional classification

    图  3  差异蛋白的KEGG通路的富集图

    Figure  3.  Identification of the differential proteins by KEGG pathway enrichment analysis

    图  4  宰后差异蛋白的互作网络图

    Figure  4.  Identification of the differential proteins by interaction network diagram

    表  1  宰后存放在4 ℃下9 和24 h的H组与L组的样品的肉质指标

    Table  1.   Meat quality indicators of samples in the H-group and L-group after slaughter at 4 ℃ for 9 and 24 h

    指标汁液流失率
    L组(n=3)H组(n=3)
    汁液流失率(%)0.81 ± 0.145.93 ± 0.22**
    肌间脂肪(%)3.26 ± 0.063.01 ± 0.05*
    pH9 h5.74 ± 0.125.52 ± 0.01*
    pH24 h5.78 ± 0.075.62 ± 0.03
    温度9 h(℃)7.03 ± 0.077.13 ± 0.86
    温度24 h(℃)6.03 ± 1.357.08 ± 0.56**
    细胞内间隙9 h0.32 ± 0.100.39 ± 0.11
    细胞内间隙24 h0.54 ± 0.260.66 ± 0.29
    细胞外间隙9 h2.39 ± 1.252.93 ± 0.65
    细胞外间隙24 h2.43 ± 0.745.21 ± 1.39**
    注:*表示L组与H组组间差异显著,P<0.05;**表示L组与H组组间差异极显著,P<0.01;细胞内间隙和细胞外间隙单位为微米(μm)。
    下载: 导出CSV

    表  2  宰后背最长肌中细胞内外间隙与汁液流失率的相关性

    Table  2.   Correlation between intracellular and extracellular spaces and drip loss rate in the longissimus dorsi muscle

    细胞内间隙细胞外间隙
    时间(h)9 24 9 24
    汁液流失率(%)0.5360.8040.5980.882*
    注:*表示在0.05 水平(双侧)上显著相关。
    下载: 导出CSV

    表  3  宰后9 h和24 h高低汁液流失组存在显著差异的57个蛋白

    Table  3.   57 proteins with significant differences in high and low drip loss groups were identified at 9 h and 24 h postmortem

    蛋白检索号a蛋白质名称a基因检索号a物种a蛋白得分/肽段质谱得分(%)差异倍数
    9 h24 h
    F1SRI8肌球蛋白结合蛋白CMYBPC1Sus scrofa323.31/6962.41.32b1.22c
    F1RZM4层粘连蛋白亚基α4LAMA4Sus scrofa52.118/50.0421.08c1.21c
    B5KJG2磷酸甘油酸酯变位酶PGAM2Sus scrofa323.31/1863.61.21b1.24b
    F1S814葡萄糖磷酸变位酶1PGM1Sus scrofa323.31/3056.61.34c1.23c
    A0A287ARW1肌钙蛋白TTNNT3Sus scrofa11.937/2145.11.23c1.35b
    A0A287BHG2肌钙蛋白TTNNT3Sus scrofa323.31/2147.31.61b1.15b
    Q6S4N2热休克蛋白70HSPA1BSus scrofa323.31/2344.31.21c1.19c
    A0A287ANE3LIM和衰老细胞含抗原样结构域蛋白MYOM3Sus scrofa323.31/2625.61.35c1.01c
    I3LIE7结合蛋白HMYBPHSus scrofa323.31/1650.71.72c1.10c
    F2Z5S8微管蛋白α链TUBA4ASus scrofa278.04/15471.25c1.11c
    P43368钙蛋白酶-3CAPN3Sus scrofa225.79/1930.21.22c1.21c
    K7GQ48巨球蛋白α2A2MSus scrofa170.36/1715.11.22b1.14b
    I3LN42维生素D结合蛋白GCSus scrofa267.86/1128.51.24b1.04b
    A0A287BTD0LIM和衰老细胞含抗原样结构域蛋白LIMS1Sus scrofa25.352/311.41.33c1.03
    P01846链C区域N/ASus scrofa141.98/573.31.58b1.13b
    I3L9X0冠蛋白CORO6Sus scrofa80.9/514.31.29b1.01c
    F1S431丙氨酰AARSSus scrofa25.266/44.91.21b1.02b
    F2Z4Y0小核核糖核蛋白SNRPD3Sus scrofa25.11/223.81.20c1.04c
    P36968磷脂过氧化氢谷胱甘肽过氧化物酶GPX4Sus scrofa19.056/314.71.49c1.66c
    Q2919740号核糖体蛋白RPS9Sus scrofa17.985/318.53.26b/
    I3L804酪氨酸- tRNA连接酶YARSSus scrofa17.626/37.21.20b1.12b
    I3LB80溶质载体家族3成员2SLC3A2Sus scrofa39.458/37.81.53c1.35b
    K7GRK7腱生蛋白-XTNXBSus scrofa31.477/31.81.95b/
    Q07717微球蛋白β2B2MSus scrofa12.148/216.91.28b/
    F1RQC1具有序列相似性的家族114成员A2FAM114A2Sus scrofa15.059/26.41.35c1.35b
    F2Z5N9蛋白质回力球同族体PELOSus scrofa14.704/26.81.22b1.47b
    Q95KL4硒蛋白WSELENOWSus scrofa11.99/224.13.55c2.74c
    A0A287A781中心体蛋白85CEP85Sus scrofa6.7513/111.73b/
    A0A287A816磷脂磷酸酶7(非活性)PLPP7Sus scrofa6.4318/16.31.90b1.24b
    F1RN28旁斑区域1PSPC1Sus scrofa9.2318/15.91.46b1.47b
    I3LPU8异质核核糖核蛋白LHNRNPLSus scrofa6.4381/141.38b1.08c
    F1SSL4ATP结合区域ABCF2Sus scrofa104.22/35.81.03b1.37b
    A0A287BI36PDZ和LIM区域5PDLIM5Sus scrofa59.067/738.31.07b1.37c
    F1SAW8肌集钙蛋白CASQ2Sus scrofa40.941/26.81.31b1.35b
    F1RYZ1跨膜四蛋白CD151Sus scrofa91.064/13.21.04b1.23c
    F2Z5N9蛋白质回力球同族体PELOSus scrofa74.392/251.22b1.47b
    A0A286ZTL8层粘连蛋白β2LMNB2Sus scrofa56.139/59.11.02c1.26c
    P6284440S核糖体蛋白RPS1Sus scrofa45.28/291.13b1.78b
    A0A287B3D6支链氨基酸氨基转移酶BCAT2Sus scrofa125.22/29.11.08b1.30b
    A0A287ACR8N(α)-乙酰转移酶50,NatE催化亚基NAA50Sus scrofa34.773/214.31.02b1.39b
    F1RJ93转凝蛋白TAGLN2Sus scrofa90.15/318.11.06b1.06b
    D6QST62,4-dienoyl-CoA还原酶1DECR1Sus scrofa58.699/25.181.25b1.34b
    F1SKI0肌球蛋白-11MYH11Sus scrofa58.433/53.21.07c1.49c
    A0A287AAD5Alpha-1B-糖蛋白α1A1BGSus scrofa59.067/49.21.36b1.23c
    F1RLL9IV型- 2型胶原链COL4A2Sus scrofa49.715/43.11.05b1.26b
    A0A287B1F9溶质载体家族12名成员2SLC12A2Sus scrofa110.08/111.05c1.23b
    A0A286ZLW9磷酸肌醇磷脂酶CPLCL2Sus scrofa29.58/11.61.14b1.05c
    P43368钙蛋白酶-3CAPN3Sus scrofa96.299/914.31.22c1.21b
    A5A8V7热休克蛋白70HSPA1LSus scrofa55.353/812.51.07c4.70c
    D2ST34富亮氨酸重复蛋白4FBXL4Sus scrofa446.001/11.6/2.73b
    F1SJ306-磷酸甘露糖异构酶MPISus scrofa45.433/517.51.23b1.23b
    A0A287BEP2锚蛋白1ANK1Sus scrofa79.809/10.6/1.32c
    I3LB80溶质载体家族3成员2SLC3A2Sus scrofa48.091/25.22.64b3.30c
    A0A287A5C9信号转换器和转录激活器STAT1Sus scrofa46.88/24.32.59b2.77c
    A8U4R4转酮醇酶TKTSus scrofa74.533/11.42.50b1.60b
    注:a: 从Uniprot数据库中提取蛋白序列、蛋白名称和基因;b: H组质谱峰面积度与L组质谱峰面积 的比值,即该蛋白在H组中的表达量高;c: L组质谱峰面积度与H组质谱峰面积的比值,即该蛋白在L组中的表达量高。
    下载: 导出CSV
  • [1] Diniz W J, Banerjee P, Regitano L C, et al. Cross talk between mineral metabolism and meat quality: A systems biology overview[J]. Physiological Genomics,2019,51(11):529−538. doi:  10.1152/physiolgenomics.00072.2019
    [2] 肖智超, 王桂瑛, 王雪峰, 等. 云南盐津乌骨鸡与武定鸡肌肉蛋白质组学差异研究[J]. 食品工业科技,2019,40(16):102−106, 117.
    [3] 马静, 武开乐, 库西塔别克·买买提依不拉音, 等. iTRAQ技术在动物生产中的应用[J]. 中国细胞生物学学报,2017,39(12):1599−1604.
    [4] 金绍明, 宁霄, 曹进, 等. 非标记蛋白定量方法在掺假肉鉴别中的应用[J]. 食品安全质量检测学报,2019,10(1):71−74. doi:  10.3969/j.issn.2095-0381.2019.01.012
    [5] 牟永颖, 顾培明, 马博, 等. 基于质谱的定量蛋白质组学技术发展现状[J]. 生物技术通报,2017,33(9):73−84.
    [6] 赵雅娟, 苏琳, 尹丽卿, 等. 蛋白质组学技术在肉品质中的研究进展[J]. 食品工业,2016,37(4):233−236.
    [7] Lee S H, Kim J M, Ryu Y C, et al. Effects of morphological characteristics of muscle fibers on porcine growth performance and pork quality[J]. Korean Journal for Food Science of Animal Resources,2016,36(5):583−593. doi:  10.5851/kosfa.2016.36.5.583
    [8] 杨汝男, 李燕清, 陈韬. 宰后猪最长肌踝蛋白降解与汁液流失的关系[J]. 食品工业科技,2018,39(20):12−17.
    [9] Wang Z, He F, Rao W, et al. Proteomic analysis of goat longissimus dorsi muscles with different drip loss values related to meat quality traits[J]. Food Science & Biotechnology,2016,25(2):425−431.
    [10] Pas M F W T, Kruijt L, Pierzchala M, et al. Identification of proteomic biomarkers in longissimus dorsi as potential predictors of pork quality[J]. Meat Science,2013,95(3):679−687. doi:  10.1016/j.meatsci.2012.12.015
    [11] Luca A D, Mullen A M, Elia G, et al. Centrifugal drip is an accessible source for protein indicators of pork ageing and water-holding capacity[J]. Meat Science,2011,88(2):261−270. doi:  10.1016/j.meatsci.2010.12.033
    [12] Gap-Don, Kim, Jin-Yeon, et al. Differential abundance of proteome associated with intramuscular variation of meat quality in porcine longissimus thoracis et lumborum muscle[J]. Meat Science,2019:85−95.
    [13] Sandberg A, Brance R M, Lehtio J, et al. Quantitative accuracy in mass spectrometry based proteomics of complex samples: The impact of labeling and precursor interference[J]. Journal of Proteomics,2014:133−144.
    [14] Warner R D, Kaufman R G, Greaser M L. Muscle protein changes post mortem in relation to pork quality traits[J]. Meat Science,1997,45(3):339−352. doi:  10.1016/S0309-1740(96)00116-7
    [15] Florowski T, Pisula A, Rola M, et al. Comparison of meatiness and the technological quality of pork from Polish Pulawy breed and its crosses with Polish Large White and Polish Landrace pigs[J]. Meat Science,2008,64(5):673−676.
    [16] Honikel K O. Reference methods for the assessment of physical characteristics of meat[J]. Meat Science,1998,49(4):447−457. doi:  10.1016/S0309-1740(98)00034-5
    [17] Luo X, Zhu Y, Zhou G. Electron microscopy of contractile bands in low voltage electrical stimulation beef[J]. Meat Science,2008,80(3):948−951. doi:  10.1016/j.meatsci.2008.03.017
    [18] 吴霜, 陈韬, 张冬怡, 等. 猪屠宰后正常肉与PSE肉中整联蛋白变化与持水性的相关性[J]. 食品工业科技,2015,36(21):64−67, 72.
    [19] Schäfer A, Rosenvold K, Purslow P. Physiological and structural events post mortem of importance for drip loss in pork[J]. Meat Science,2002,61(4):355−366. doi:  10.1016/S0309-1740(01)00205-4
    [20] 雄安秀. 锚蛋白研究进展[J]. 国外医学(儿科分册),2003(3):159−161.
    [21] Aslan O, Hamill R M, Mullen A M, et al. Association between promoter polymorphisms in a key cytoskeletal gene (Ankyrin 1) and intramuscular fat and water-holding capacity in porcine muscle[J]. Molecular Biology Reports,2012,39(4):3903−3914. doi:  10.1007/s11033-011-1169-4
    [22] 王州. 基于重测序研究贵州地方住猪种基因组拷贝数变异[D]. 贵阳: 贵州大学, 2019.
    [23] Ceasar A, Regitano L C, Koltes J E, et al. Putative regulatory factors associated with intramuscular fat content[J]. Plos One,2015,10(6):1−21.
    [24] Watanabe G, Motoyama M, Nakajima I, et al. Relationship between water-holding capacity and intramuscular fat content in Japanese commercial pork loin[J]. Asian Journal of Animal Sciences,2017,31(6):914−918.
    [25] 宋林霞, 徐振彪. 磷酸甘油酸变位酶[J]. 生命的化学,2011(1):90−93.
    [26] Koning D, Harlizius B, Rattink A P, et al. Detection and characterization of quantitative trait loci for meat quality traits in pigs[J]. Journal of Animal Science,2001,79(11):2812−2819. doi:  10.2527/2001.79112812x
    [27] Yang H, He J, Wei W, et al. The c. −360 T>C mutation affects PGAM2 transcription activity and is linked with the water holding capacity of the longissimus lumborum muscle in pigs[J]. Meat Science,2016,122(12):139−144.
    [28] Prejano M, Medinal F E, Fernandes P A, et al. The catalytic mechanism of human transketolase[J]. Chem Phys Chem,2019,20(21):2881−2886. doi:  10.1002/cphc.201900650
    [29] Kochetov G A. et al. Structure and functioning mechanism of transketolase[J]. Proteins & Proteomics,2014,61(12):59−68.
    [30] 谢华. 冷却猪肉汁液流失及控制研究[D]. 杨凌: 西北农林科技大学, 2006.
    [31] Trocino A, Zomeno C, Birolo M, et al. Impact of pre-slaughter transport conditions on stress response, carcass traits, and meat quality in growing rabbits[J]. Meat Science,2018:68−74.
    [32] Hu H, Chen L, Dai S, et al. Effect of glutamine on antioxidant capacity and lipid peroxidation in the breast muscle of heat-stressed broilers via antioxidant genes and Hsp70 pathway[J]. Animals,2020,10(3):404. doi:  10.3390/ani10030404
    [33] Wei Y, Li X, Zhang D, et al. Comparison of protein differences between high-and low-quality goat and bovine parts based on iTRAQ technology[J]. Food Chemistry,2019,289(AUG. 15):240−249.
    [34] Traore S, Aubry L, Gatellier P, et al. Higher drip loss is associated with protein oxidation[J]. Meat Science,2011,90(4):917−924.
    [35] Liu Z, Xiong Y L, Chen J. Protein oxidation enhances hydration but suppresses water-holding capacity in porcine longissimus muscle[J]. Journal of Agricultural & Food Chemistry,2010,58(19):10697−10704.
    [36] Jeong D W, Kim E H, Kim T S, et al. Different distributions of selenoprotein W and thioredoxin during postnatal brain development and embryogenesis[J]. Molecules and Cells,2004,17(1):156−159.
    [37] Li Jungang. Enhanced water-holding capacity of meat was associated with increased Sepw1 gene expression in pigs feed selenium-enriched yeast[J]. Meat Science,2011,13(1):101−112.
    [38] Zhang M, Wang D, Xu X, et al. Comparative proteomic analysis of proteins associated with water holding capacity in goose muscles[J]. Food Research International,2019:354−361.
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  19
  • HTML全文浏览量:  15
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-14
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要通知

    4月19-23日刊社在上海举办第四届食品科技创新论坛,届时编辑部电话无人接听,敬请谅解。