Optimization of Extraction Process of Soluble Dietary Fiber from Artichoke Dietary Fiber
-
摘要: 研究洋蓟膳食纤维经超微粉碎(高能纳米冲击磨)和高压均质改性预处理后,提取洋蓟可溶性膳食纤维(Soluble Dietary Fiber,SDF),采用单因素和响应面试验设计,优化高压均质改性工艺,以得到更高的得率。单因素实验考察均质温度、均质压力和物料浓度对洋蓟SDF得率的影响。用响应面法以三因素三水平对洋蓟SDF提取工艺进行优化,建立洋蓟SDF提取条件与得率之间的模型并进行分析,以得到最优的工艺参数,提高洋蓟SDF的得率。结果表明:经超微粉碎-高压均质复合改性后,洋蓟SDF的得率受复合改性的影响显著,其提取洋蓟SDF的最佳工艺为均质温度41 ℃、均质压力97 MPa、物料浓度2.5%,洋蓟SDF理论最高得率为20.70%。采用该工艺,实际洋蓟SDF得率的均值为20.13%。傅里叶变化红外光谱图显示经复合改性后,洋蓟膳食纤维的化学成分没有发生变化。Abstract: To study the extraction rate of soluble dietary fiber (soluble dietary fiber, SDF) contained in the artichoke after ultrafine crushing and high pressure homogenization composite modification, single factor experiment was conducted to investigate the homogenization temperature, homogenization pressure and material concentration on artichoke SDF yield. The response surface method was used to optimize the artichoke SDF extraction process with three factors and three levels. The model between artichoke SDF extraction conditions and yield was established and analyzed to obtain the optimal process parameters and improve the artichoke SDF yield. The results showed that after ultrafine crushing and high pressure homogenization compound modification, the yield of artichoke SDF was significantly affected by the compound modification. The best process for extracting artichoke SDF was a homogenization temperature of 41 ℃ and a homo-genization pressure of 97 MPa, material concentration 2.5%. The theoretical maximum yield of artichoke SDF was 20.70%. With this process, the average yield of artichoke SDF was 20.13%. The Fourier infrared spectroscopy showed that the chemical composition of artichoke dietary fiber had not changed after compound modification.
-
表 1 响应面试验设计因素与水平
Table 1. Design factors and levels of response surface test
水平因素 A均质压力(MPa) B物料浓度(%) C均质温度(℃) −1 80 2.0 35 0 90 2.5 40 1 100 3.0 45 表 2 响应面设计方案及结果
Table 2. Response surface design and results
试验号 A均质压力 B物料浓度 C均质温度 Y洋蓟SDF得率(%) 1 −1 −1 0 15.74 2 1 −1 0 16.37 3 −1 1 0 16.42 4 1 1 0 15.36 5 −1 0 −1 16.78 6 1 0 −1 16.52 7 −1 0 1 15.96 8 1 0 0 18.94 9 0 −1 −1 17.08 10 0 1 −1 16.53 11 0 −1 1 15.84 12 0 1 1 17.74 13 0 0 0 20.96 14 0 0 0 21.84 15 0 0 0 21.43 16 0 0 0 22.07 17 0 0 0 21.98 表 3 方差分析表
Table 3. Variance analysis table
方差来源 平方和 自由度 均方 F值 P值 显著性 模型 98.46 9 10.94 27.64 0.0001 ** A均质压力 0.66 1 0.66 1.66 0.2391 B物料浓度 0.13 1 0.13 0.33 0.5845 C均质温度 0.31 1 0.31 0.78 0.4069 AB 0.71 1 0.71 1.80 0.2212 AC 2.62 1 2.62 6.63 0.0367 * BC 1.50 1 1.50 3.79 0.0926 A2 31.05 1 31.05 78.43 <0.0001 ** B2 37.09 1 37.09 93.70 <0.0001 ** C2 15.05 1 15.05 38.02 0.0005 ** 回归 2.77 7 0.40 失拟项 1.93 3 0.64 3.04 0.1557 不显著 纯误差 0.85 4 0.21 总回归 101.23 16 R2=0.9726 CV=3.48% 注:*表示差异显著,P<0.05;**表示差异极显著,P<0.01。 表 4 洋蓟膳食纤维成分表(g/100 g)
Table 4. Artichoke dietary fiber composition table (g/100 g)
组分 水分 蛋白含量 粗脂肪 粗灰分 可溶性膳食纤维 不可溶性膳食纤维 未处理 5.79±0.76b 3.06±1.86b 2.04±0.26d 2.93±1.96d 6.45±1.26d 79.73±1.36a 超微粉碎处理 5.49±1.07d 3.15±1.26a 2.15±1.11c 3.13±0.78a 10.36±1.59c 75.72±1.27b 高压均质处理 5.84±0.36a 3.05±1.33c 2.23±0.98b 2.96±1.26c 15.06±1.38b 70.86±0.98c 复合改性处理 5.59±1.03c 2.93±1.26d 2.28±1.27a 3.11±1.35b 20.51±0.56a 65.58±0.89d 注:不同字母(a~d)表示差异性显著(P<0.05)。 -
[1] 王瑶, 张明, 王兆升, 等. 果蔬加工副产物膳食纤维改性及应用研究进展[J]. 中国果菜,2019,39(1):36−41. [WANG Y, ZHANG M, WANG Z S, et al. Research progress on the modification and application of dietary fiber from fruit and vegetable processing by-products[J]. China Fruit and Vegetable,2019,39(1):36−41. doi: 10.19590/j.cnki.1008-1038.2019.01.009 [2] 杨美莲, 程桂广, 蔡圣宝, 等. 朝鲜蓟叶多酚提取及抗氧化活性研究[J]. 现代食品科技,2019,35(4):157−165, 121. [YANG M L, CHENG G G, CAI S B, et al. Study on polyphenol extraction and antioxidant activity of artichoke leaves[J]. Modern Food Science and Technology,2019,35(4):157−165, 121. doi: 10.13982/j.mfst.1673-9078.2019.4.022 [3] 师明月, 曹清明, 钟文惠, 等. 朝鲜蓟多酚类化合物研究进展[J]. 食品与机械,2018,34(12):160−165. [SHI M Y, CAO Q M, ZHONG W H, et al. Advances in the study of polyphenolic compounds of artichoke[J]. Food and Machinery,2018,34(12):160−165. doi: 10.13652/j.issn.1003-5788.2018.12.032 [4] ZHANG L L, ZHU M T, SHI T, et al. Recovery of dietary fiber and polyphenol from grape juice pomace and evaluation of their functional properties and polyphenol compositions[J]. Food & Function,2017,8(1):341−351. [5] 雷颂, 王伯华, 鲁小琳. 朝鲜蓟叶片多酚提取条件的工艺优化[J]. 农产品加工,2015(21):30−33. [LEI S, WANG B H, LU X L. Process optimization of polyphenol extraction conditions from artichoke leaves[J]. Agricultural Product Processing,2015(21):30−33. doi: 10.16693/j.cnki.1671-9646(X).2015.11.009 [6] 戴倩倩, 樊雨梅, 张晓旭, 等. 朝鲜蓟茎叶副产物青贮过程中多酚及其功能活性的研究[J]. 中国食品学报,2020,20(2):263−270. [DAI Q Q, FAN Y M, ZHANG X X, et al. Study of polyphenols and their functional activities in artichoke stem and leaf by-products during silage[J]. Chinese Journal of Food Science,2020,20(2):263−270. doi: 10.16429/j.1009-7848.2020.02.032 [7] ZHAO Y S, JAYACHANDRAN M, XU B J. In vivo antioxidant and anti-inflammatory effects of soluble dietary fiber konjac glucomannan in type-2 diabetic rats[J]. International Journal of Biological Macromolecules,2020,159:1186−1196. doi: 10.1016/j.ijbiomac.2020.05.105 [8] SATOH H, URUSHIDANI T. Soluble dietary fiber can protect the gastrointestinal mucosa against nonsteroidal anti-inflammatory drugs in mice[J]. Digestive Diseases and Sciences,2016,61(7):1903−1914. doi: 10.1007/s10620-016-4086-5 [9] 任雨离, 刘玉凌, 何翠, 等. 微波和微粉碎改性对方竹笋膳食纤维性能和结构的影响[J]. 食品与发酵工业,2017,43(8):145−150. [REN Y L, LIU Y L, HE C, et al. Effect of microwave and micronization modification on the properties and structure of dietary fiber of opposing bamboo shoots[J]. Food and Fermentation Industry,2017,43(8):145−150. doi: 10.13995/j.cnki.11-1802/ts.013592 [10] 丁莎莎, 黄立新, 张彩虹, 等. 高压均质和胶体磨改性对油橄榄果渣水不溶性膳食纤维性能的影响[J]. 食品与机械,2017,33(8):10−13, 18. [DING S S, HUANG L X, ZHANG C H, et al. Effect of high pressure homogenization and colloid mill modification on the properties of water insoluble dietary fiber from olive pomace[J]. Food and Machinery,2017,33(8):10−13, 18. doi: 10.13652/j.issn.1003-5788.2017.08.003 [11] 王兆升, 刘传富, 董海洲, 等. 麦麸加酸挤压改性及对其理化特性的影响[J]. 中国粮油学报,2010,25(3):11−15. [WANG Z S, LIU C F, DONG H Z, et al. Modification of wheat bran by acid extrusion and the effect on its physicochemical properties[J]. Chinese Journal of Cereals and Oils,2010,25(3):11−15. [12] 付晓康, 苏玉, 黄亮, 等. 蒸汽爆破-超微粉碎对米糠膳食纤维结构和功能性质的影响[J]. 中国粮油学报,2020,35(4):142−150. [FU X K, SU Y, HUANG L, et al. Influence of steam blasting-ultra-microcomminution on the structural and functional properties of rice bran dietary fiber[J]. Chinese Journal of Cereals and Oils,2020,35(4):142−150. doi: 10.3969/j.issn.1003-0174.2020.04.023 [13] 张洪微, 杨铭铎, 樊祥富, 等. 3种改性方法对小麦麸皮膳食纤维结构与性质的影响[J]. 中国粮油学报,2016,31(12):12−17. [ZHANG H W, YANG M D, FAN X F, et al. Effects of three modi-fication methods on the structure and properties of wheat bran dietary fiber[J]. Chinese Journal of Cereals and Oils,2016,31(12):12−17. doi: 10.3969/j.issn.1003-0174.2016.12.003 [14] 王磊, 袁芳, 向俊, 等. 响应面法优化高压均质提取椪柑渣中可溶性膳食纤维及抗氧化活性研究[J]. 中国食品学报,2015,15(5):82−89. [WANG L, YUAN F, XIANG J, et al. Optimization of soluble dietary fiber and antioxidant activity in ponkan pomace by high pressure homogenization with response surface meth-odology[J]. Chinese Journal of Food Science,2015,15(5):82−89. doi: 10.16429/j.1009-7848.2015.05.011 [15] 陈力, 吴懿平, 张乐福. 超微粉碎技术及其在中药加工中的应用[J]. 中药材,2002,25(1):55−57. [CHEN L, WU Y P, ZHANG L F. Ultramicro pulverization technology and its application in the processing of traditional Chinese medicine[J]. Chinese Medicinal Materials,2002,25(1):55−57. doi: 10.3321/j.issn:1001-4454.2002.01.026 [16] LI M, DAI M F, HUANG Y G, et al. Effects of high pressure homogenization on rheological properties of rice starch[J]. CyTA-Journal of Food,2019,17(1):716−723. doi: 10.1080/19476337.2019.1642386 [17] XU J X, WANG W B, WANG A Q. Stable formamide/palygorskite nanostructure hybrid material fortified by high-pressure homogenization[J]. Powder Technology,2017,318:1−7. doi: 10.1016/j.powtec.2017.05.032 [18] CHEN H H, ZHAO C M, LI J, et al. Effects of extrusion on structural and physicochemical properties of soluble dietary fiber from nodes of lotus root[J]. LWT,2018,93:204−211. doi: 10.1016/j.lwt.2018.03.004 [19] SHAMES ALEXANDER I, MOGILYANSKY D, PANICH ALEXANDER M, et al. XRD, NMR, and EPR study of polycrystalline micro- and nano-diamonds prepared by a shock wave compression method[J]. Physica Status Solidi,2015,212(11):2400−2409. doi: 10.1002/pssa.201532154 [20] 陈慕莹, 张可珺, 吴嘉豪, 等. 响应面优化高压均质法制备纳米竹笋膳食纤维[J]. 粮食与油脂,2017,30(3):57−60. [CHEN M Y, ZHANG K J, WU J H, et al. Response surface optimization of high-pressure homogenization method for the preparation of dietary fiber from bamboo shoots[J]. Grain and Fats,2017,30(3):57−60. doi: 10.3969/j.issn.1008-9578.2017.03.015 [21] TANGSUPHOOM N, COUPLAND JOHN N. Effect of thermal treatments on the properties of coconut milk emulsions prepared with surface-active stabilizers[J]. Food Hydrocolloids,2009,23(7):1792−1800. doi: 10.1016/j.foodhyd.2008.12.001 [22] 周丽媛, 李宁阳, 徐晶晶, 等. 黑小麦麸皮可溶性膳食纤维改性制备及性质研究[J]. 中国粮油学报,2020,35(9):7−14. [ZHOU L Y, LI N Y, XU J J, et al. Preparation and properties of modified soluble dietary fiber from black wheat bran[J]. Chinese Journal of Cereals and Oils,2020,35(9):7−14. [23] GUO Haiyan, MA Lunjie, SHEN Fei, et al. Effects of La-involvement on biomass pyrolysis behaviors and properties of produced biochar[J]. Journal of Rare Earths,2017,35(6):593−601. doi: 10.1016/S1002-0721(17)60952-9 [24] GASTALDIG G, CAPRETTI G, FOCHER B, et al. Characterization and proprieties of cellulose isolated from the Crambe abyssinica Hull[J]. Industrial Crops & Products,1998,8(3):205−218. [25] 牛希, 史乾坤, 赵城彬, 等. 超声改性对燕麦膳食纤维理化性质及结构的影响[J]. 食品科学,2020,41(23):130−136. [NIU X, SHI Q K, ZHAO C B, et al. Effect of ultrasonic modification on the physicochemical properties and structure of oat dietary fiber[J]. Food Science,2020,41(23):130−136. doi: 10.7506/spkx1002-6630-20191118-201 -