青钱柳调节糖脂代谢活性成分及作用机制的研究进展

陈曼雨 顾志良

陈曼雨,顾志良. 青钱柳调节糖脂代谢活性成分及作用机制的研究进展[J]. 食品工业科技,xxxx,x(x):1−8. doi:  10.13386/j.issn1002-0306.2020070001
引用本文: 陈曼雨,顾志良. 青钱柳调节糖脂代谢活性成分及作用机制的研究进展[J]. 食品工业科技,xxxx,x(x):1−8. doi:  10.13386/j.issn1002-0306.2020070001
CHEN Manyu, GU Zhiliang. Research Progress of the Active Components and Mechanism of Cyclocarya paliurus in Regulating Glucolipid Metabolism[J]. Science and Technology of Food Industry, xxxx, x(x): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070001
Citation: CHEN Manyu, GU Zhiliang. Research Progress of the Active Components and Mechanism of Cyclocarya paliurus in Regulating Glucolipid Metabolism[J]. Science and Technology of Food Industry, xxxx, x(x): 1−8. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020070001

青钱柳调节糖脂代谢活性成分及作用机制的研究进展

doi: 10.13386/j.issn1002-0306.2020070001
基金项目: 国家自然科学基金项目资助(31772593)
详细信息
    作者简介:

    陈曼雨(1996−),女,硕士,研究方向:天然产物防治代谢性疾病研究,E-mail:20185226045@stu.suda.edu.cn

    通讯作者:

    顾志良(1968−),男,博士,教授,研究方向:动物功能基因组学和表观遗传学,E-mail:zhilianggu88@hotmail.com

Research Progress of the Active Components and Mechanism of Cyclocarya paliurus in Regulating Glucolipid Metabolism

  • 摘要: 青钱柳(Cyclocarya paliurus)是胡桃科青钱柳属植物,近年来因其对改善糖脂代谢紊乱的良好作用日益成为研究热点。目前已从青钱柳中分离得到多种化合物,主要的生物活性成分包括多糖、三萜、黄酮、酚酸等。主要通过保护胰岛细胞、调节胰岛素信号通路、促进葡萄糖利用等发挥改善糖代谢的作用,并通过调控脂质代谢通路、抑制脂质过氧化等发挥改善脂代谢的作用。本文对青钱柳调节糖脂代谢活性成分及作用机制进行综述,为青钱柳防治糖尿病、高血脂、肥胖等代谢疾病提供参考。
  • 表  1  青钱柳改善糖脂代谢的物质基础

    Table  1.   The material basis of Cyclocarya paliurus improving glucose and lipid metabolism

    化合物类型 单体成分/组分 提取物类型 研究类型 参考文献
    多糖 鼠李糖,甘露糖,葡萄糖和半乳糖 水提取物 体内 [8]
    鼠李糖,阿拉伯糖,木糖,甘露糖,葡萄糖和半乳糖 水提取物 体内 [9-10]
    甘露糖,氨基葡萄糖,核糖,鼠李糖,葡萄糖醛酸,半乳糖醛酸,葡萄糖,半乳糖,木糖,阿拉伯糖 水提取物 体内 [11]
    总多糖 水提取物 体内 [12-20]
    黄酮 (1)阿福豆苷(kaempferol-3-O-α-L-rhamnopyranoside);
    (2)山柰酚-3-O-(4″-O-乙酰基) -α-L-吡喃鼠李糖苷(kaempferol-3-O-(4″-O-acetyl) -α-L-rhamnopyranoside)
    乙醇提取物 体外 [34]
    总黄酮 乙醇提取物 体内、体外 [32-33,35-36]
    三萜 (1)(20S,24R)-20,24-环氧-25-羟基-12β-(α-L-吡喃阿拉伯烷氧基)-3,4-开环-达玛烷-4(28)-烯-3-齐墩果酸((20S,24R)-20,24-epoxy-25-hydroxy-12β-(α-L-arabinopyranosyloxy)-3,4-seco-dammara-4(28)-en-3-oic acid);
    (2)3β,19α,23-三羟基-1-氧代-齐墩果-12-烯-28-齐墩果酸(3β,19α,23-trihydroxy-1-oxo-olean-12-en-28-oic acid);
    (3)积雪草酸(asiatic acid);
    (4)青钱柳苷I(cyclocarioside I);
    (5)青钱柳苷B(cyclocarioside B)
    乙醇提取物 体外 [21]
    阿江榄仁酸(arjunolic acid) 乙醇提取物或氯仿提取物 体外 [21,23]
    (1)3β,23-二羟基-1,12-二氧代-齐墩果-28-齐墩果酸(3β, 23-dihydroxy-1,12-dioxo-olean-28-oic acid);
    (2)常春藤皂苷元(hederagenin);
    (3)3β,23-二羟基-12-烯-28-熊果酸(3b,23-dihydroxy-12-ene-28-ursolic acid);
    (4)2a,3b,23-三羟基-12-烯-28-熊果酸(2a,3b,23-trihydroxy-12-ene-28-ursolic acid);
    (5)2a,3a,23-三羟基-12-烯-28-齐墩果酸(2a,3a,23-trihydroxyurs-12-en-28-oic acid);
    (6)青钱柳苷N(cyclocarioside N);
    (7)青钱柳苷J(cyclocarioside J);
    (8)pterocaryoside A;
    (9)pterocaryoside B
    氯仿提取物 体外 [23]
    青钱柳酸B(cyclocaric acid B) 氯仿提取物 体外 [22-23]
    (1)1β,2α, 3β, 23-四羟基-12,20(30)-二烯-28-熊果酸(1β,2α, 3β, 23-tetrahydroxyurs-12,20(30)-dien-28-ursolic acid);
    (2)2α,3α,23-三羟基-12,20(30)-二烯-28-乌苏酸-28-O-β-D-吡喃葡萄糖苷(2α, 3α, 23-trihydroxy-12, 20(30)-dien-28-ursolic acid-28-O-β-D-glucopyranoside);
    (3)1-氧代-3β,23-二羟基-12-烯-28-乌苏酸-28-O-β-D-吡喃吡喃糖苷(1-oxo-3β, 23-dihydroxyolean-12-en-28-oic acid 28-O-β-D-xylopyranoside);
    (4)2α,3α,23-三羟基-乌苏-12-烯-28-乌苏酸-28-O-β-D-吡喃葡萄糖苷(2α,3α,23-trihydroxy-urs-12-en-28-oic acid-28-O-β-D-glucopyranoside);
    (5)2α-羟基熊果酸(2α-hydroxyursolic acid)
    氯仿提取物 体外 [24]
    青钱柳苷H(cyclocarioside H) 氯仿提取物 体外 [22]
    2α,3α,23-三羟基-12,20(30) -二烯-28-齐墩果酸(2α,3α,23-trihydroxy-12,20(30) -dien-28-oic acid) 氯仿提取物 体外 [25]
    总三萜 乙醇提取物或氯仿提取物 体内、体外 [26-30,42]
    下载: 导出CSV
  • [1] Organization W H. Obesity and overweight [EB/OL]. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight.
    [2] Ballestri S, Zona S, Targher G, et al. Nonalcoholic fatty liver disease is associated with an almost twofold increased risk of incident type 2 diabetes and metabolic syndrome. Evidence from a systematic review and meta-analysis[J]. Hepatology,2016,31(5):936−944.
    [3] Zheng Y, Ley S H, Hu F B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nature Reviews Endocrinology,2018,14(2):88−98. doi:  10.1038/nrendo.2017.151
    [4] Federation I D. IDF Diabetes Atlas-9th Edition [EB/OL]. https://www.diabetesatlas.org/en/.
    [5] Bluher M. Obesity: global epidemiology and pathogenesis[J]. Nature Reviews Endocrinology,2019,15(5):288−298. doi:  10.1038/s41574-019-0176-8
    [6] Stinkens R, Goossens G H, Jocken J W, et al. Targeting fatty acid metabolism to improve glucose metabolism[J]. Obesity Reviews,2015,16(9):715−757. doi:  10.1111/obr.12298
    [7] Deng L, Lei J, He J, et al. Evaluation on genotoxicity and teratogenicity of aqueous extract from Cyclocarya paliurus leaves[J]. The Scientific World Journal,2014,2014:498134.
    [8] Yang Z, Wang J, Li J, et al. Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice[J]. Carbohydrate Polymers,2018,183:11−20. doi:  10.1016/j.carbpol.2017.11.033
    [9] Hu W B, Zhao J, Chen H, et al. Polysaccharides from Cyclocarya paliurus: Chemical composition and lipid-lowering effect on rats challenged with high-fat diet[J]. Journal of Functional Foods,2017,36:262−273. doi:  10.1016/j.jff.2017.07.020
    [10] Yang Z W, Ouyang K H, Zhao J, et al. Structural characterization and hypolipidemic effect of Cyclocarya paliurus polysaccharide in rat[J]. International Journal of Biological Macromolecules,2016,91:1073−1080. doi:  10.1016/j.ijbiomac.2016.06.063
    [11] Li J, Luo M, Luo Z, et al. Transcriptome profiling reveals the anti-diabetic molecular mechanism of Cyclocarya paliurus polysaccharides Anti-diabetic molecular mechanism of Cyclocarya paliurus polysaccharides[J]. Journal of Functional Foods,2019,55:1−8. doi:  10.1016/j.jff.2018.12.039
    [12] Xu G, Yoshitomi H, Sun W, et al. Cyclocarya paliurus (Batal.) Ijinskaja Aqueous Extract (CPAE) Ameliorates Obesity by Improving Insulin Signaling in the Hypothalamus of a Metabolic Syndrome Rat Model[J]. Evidence-based Complementary and Alternative Medicine,2017,2017:4602153.
    [13] 叶振南, 李楠, 盛丹丹, 等. 青钱柳多糖对高脂血症大鼠血脂及抗脂质过氧化作用的影响[J]. 现代食品科技,2014,30(4):1−5+20.
    [14] 李楠, 赵静, 吴茹, 等. 青钱柳多糖对高脂血症大鼠脂代谢及对PPARα、FAS、GLUT4基因mRNA表达的影响[J]. 现代食品科技,2015,31(4):29−35.
    [15] Chunxiu L, Yizi L, Tianmeng M, et al. Anti-fat effect and mechanism of polysaccharide-enriched extract from Cyclocarya paliurus (Batal.) Iljinskaja in Caenorhabditis elegans[J]. Food & function,2020,11(6):5320−5332.
    [16] 王胤康, 吕萌, 许琦, 等. 青钱柳活性成分对IR-HepG2细胞葡萄糖消耗量及α-葡萄糖苷酶活性的影响[J]. 食品与生物技术学报,2019,38(2):120−125. doi:  10.3969/j.issn.1673-1689.2019.02.017
    [17] 邹荣灿, 吴少锦, 焦思棋, 等. 不同产地青钱柳多糖的体外抗氧化及α-葡萄糖苷酶抑制活性[J]. 食品工业科技,2018,39(22):25−29.
    [18] 应瑞峰, 黄梅桂, 王耀松, 等. 超声波微波协同提取青钱柳超微粉多糖及活性研究[J]. 食品研究与开发,2017,38(23):32−37. doi:  10.3969/j.issn.1005-6521.2017.23.006
    [19] 张浩, 李东山, 谭开祥, 等. 富硒青钱柳多糖对α-葡萄糖苷酶及HepG2细胞葡萄糖消耗的影响[J]. 食品工业科技,2018,39(2):40−43+50.
    [20] 姚瑶. 青钱柳及其组方抗Ⅱ型糖尿病研究与机制探讨[D]. 南昌: 江西中医药大学, 2019.
    [21] Fang Z J, Shen S N, Wang J M, et al. Triterpenoids from Cyclocarya paliurus that Enhance Glucose Uptake in 3T3-L1 Adipocytes[J]. Molecules,2019,24(1).
    [22] Zhu K N, Jiang C H, Tian Y S, et al. Two triterpeniods from Cyclocarya paliurus (Batal) Iljinsk (Juglandaceae) promote glucose uptake in 3T3-L1 adipocytes: The relationship to AMPK activation[J]. Phytomedicine,2015,22(9):837−846. doi:  10.1016/j.phymed.2015.05.058
    [23] Wu Z F, Meng F C, Cao L J, et al. Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells[J]. Phytochemistry,2017,142:76−84. doi:  10.1016/j.phytochem.2017.06.015
    [24] Yang H M, Yin Z Q, Zhao M G, et al. Pentacyclic triterpenoids from Cyclocarya paliurus and their antioxidant activities in FFA-induced HepG2 steatosis cells[J]. Phytochemistry,2018,151:119−127. doi:  10.1016/j.phytochem.2018.03.010
    [25] 赵梦鸽, 杨慧敏, 蒋翠花, 等. 青钱柳三萜化合物对游离脂肪酸诱导的脂肪变性的干预作用[J]. 中国药科大学学报,2018,49(3):333−340. doi:  10.11665/j.issn.1000-5048.20180312
    [26] Jiang C, Wang Y, Jin Q, et al. Cyclocarya paliurus triterpenoids improve diabetes-induced hepatic inflammation via the rho-kinase-dependent pathway[J]. Frontiers in Pharmacology,2019,10:811. doi:  10.3389/fphar.2019.00811
    [27] Lin Z, Wu Z F, Jiang C H, et al. The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats[J]. Phytomedicine,2016,23(12):1475−1483. doi:  10.1016/j.phymed.2016.08.003
    [28] 周琴, 伍学智, 石孟琼, 等. 青钱柳三萜对链脲佐菌素损伤的INS-1细胞自噬和凋亡的影响[J]. 中药药理与临床,2017,33(1):89−94.
    [29] 付晓, 尹忠平, 上官新晨, 等. 青钱柳叶总三萜刺激3T3-L1脂肪细胞的葡萄糖消耗[J]. 现代食品科技,2014,30(8):31−37.
    [30] Zheng X, Zhao M G, Jiang C H, et al. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates insulin resistance and hepatic steatosis via PI3K/Akt/GSK3beta pathway[J]. Phytomedicine,2020,66:153130. doi:  10.1016/j.phymed.2019.153130
    [31] Wu Z, Gao T, Zhong R, et al. Antihyperlipidaemic effect of triterpenic acid-enriched fraction from Cyclocarya paliurus leaves in hyperlipidaemic rats[J]. Pharmaceutical Biology,2017,55(1):712−721. doi:  10.1080/13880209.2016.1267231
    [32] Xiao H T, Wen B, Ning Z W, et al. Cyclocarya paliurus tea leaves enhances pancreatic beta cell preservation through inhibition of apoptosis[J]. Scientific Reports,2017,7(1):9155. doi:  10.1038/s41598-017-09641-z
    [33] Hu W B, Ouyang K H, Wu G Q, et al. Hepatoprotective effect of flavonoid-enriched fraction from Cyclocarya paliurus leaves on LPS/D-GalN-induced acute liver failure[J]. Journal of Functional Foods,2018,48:337−350. doi:  10.1016/j.jff.2018.07.031
    [34] Cheng L, Chen Y, Zhang X, et al. A metagenomic analysis of the modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiome in a high-fat diet-induced obesity mouse model[J]. Journal of the Science of Food & Agriculture,2019,99(8):3967−3975.
    [35] 段玉书, 胡永, 杨万霞, 等. 黔产青钱柳化学成分及α-葡萄糖苷酶抑制活性研究[J]. 天然产物研究与开发,2019,31(6):940−945.
    [36] 刘杰, 向燕茹, 丁嘉瑜, 等. 青钱柳抑制α-葡萄糖苷酶有效成分筛选及其对Ⅱ型糖尿病小鼠血糖的影响[J]. 食品工业科技,2015,36(14):363−365, 369.
    [37] 袁中文, 许婳婳, 钟柳婷, 等. 青钱柳黄酮干预肥胖大鼠胰岛素抵抗的作用研究[J]. 中药药理与临床,2019,35(3):50−55.
    [38] Yoshitomi H, Tsuru R, Li L, et al. Cyclocarya paliurus extract activates insulin signaling via Sirtuin1 in C2C12 myotubes and decreases blood glucose level in mice with impaired insulin secretion[J]. PLoS One,2017,12(8):e0183988. doi:  10.1371/journal.pone.0183988
    [39] Zhang J, Shen Q, Lu J C, et al. Phenolic compounds from the leaves of Cyclocarya paliurus (Batal.) Ijinskaja and their inhibitory activity against PTP1B[J]. Food Chemistry,2010,119(4):1491−1496. doi:  10.1016/j.foodchem.2009.09.031
    [40] Li J, Luo M, Hu M, et al. Investigating the Molecular Mechanism of Aqueous Extract of Cyclocarya paliurus on Ameliorating Diabetes by Transcriptome Profiling[J]. Frontiers in Pharmacology,2018,9:912. doi:  10.3389/fphar.2018.00912
    [41] Thirone A C, Huang C, Klip A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport[J]. TRENDS in Endocrinology and Metabolism,2006,17(2):72−78. doi:  10.1016/j.tem.2006.01.005
    [42] 扶丽君, 胡明华, 尹西拳, 等. 青钱柳叶对糖尿病大鼠的治疗作用[J]. 中成药,2017,39(6):1134−1138. doi:  10.3969/j.issn.1001-1528.2017.06.005
    [43] Jiang C, Yao N, Wang Q, et al. Cyclocarya paliurus extract modulates adipokine expression and improves insulin sensitivity by inhibition of inflammation in mice[J]. Journal of Ethnopharmacology,2014,153(2):344−351. doi:  10.1016/j.jep.2014.02.003
    [44] 王依婷, 赵梦鸽, 盛雪萍, 等. 青钱柳三萜酸对高糖所致的胰岛α细胞胰岛素抵抗的影响[J]. 中国药科大学学报,2018,49(2):215−221. doi:  10.11665/j.issn.1000-5048.20180212
    [45] Tokarz V L, MacDonald P E, Klip A. The cell biology of systemic insulin function[J]. Journal of Cell Biology,2018,217(7):2273−2289. doi:  10.1083/jcb.201802095
    [46] Lontchi-Yimagou E, Sobngwi E, Matsha T E, et al. Diabetes mellitus and inflammation[J]. Current Diabetes Reports,2013,13(3):435−444. doi:  10.1007/s11892-013-0375-y
    [47] Massart J, Sjogren R J O, Lundell L S, et al. Altered miR-29 Expression in Type 2 Diabetes Influences Glucose and Lipid Metabolism in Skeletal Muscle[J]. Diabetes,2017,66(7):1807−1818. doi:  10.2337/db17-0141
    [48] de Candia P, Prattichizzo F, Garavelli S, et al. Type 2 diabetes: How much of an autoimmune disease?[J]. Frontiers in Endocrinology,2019,10:451. doi:  10.3389/fendo.2019.00451
    [49] 张浩, 陈伟鸿, 马方励, 等. 富硒青钱柳多糖对糖尿病模型小鼠血糖、血脂和免疫力的影响[J]. 食品科学,2017,38(17):228−232. doi:  10.7506/spkx1002-6630-201717037
    [50] 姚骏凯, 高学敏, 付璐, 等. 青钱柳叶对2型糖尿病大鼠糖脂代谢影响[J]. 中华中医药杂志,2018,33(07):3138−3142.
    [51] Horton J D, Goldstein J L, Brown M S. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver[J]. The Journal of Clinical Investigation,2002,109(9):1125−1131. doi:  10.1172/JCI0215593
    [52] 许光远, 孙文, 郭璇, 等. 青钱柳总皂苷对游离脂肪酸诱导的H4-ⅡE细胞脂肪代谢的影响及作用机制[J]. 中国实验方剂学杂志,2017,23(15):124−129.
    [53] Rosen E D. C/EBPalpha induces adipogenesis through PPARgamma: A unified pathway[J]. Genes & Development,2002,16(1):22−26.
    [54] Tian J, Wen H, Zeng L B, et al. Changes in the activities and mRNA expression levels of lipoprotein lipase (LPL), hormone-sensitive lipase (HSL) and fatty acid synthetase (FAS) of Nile tilapia (Oreochromis niloticus) during fasting and re-feeding[J]. Aquaculture,2013,400:29−35.
    [55] 胡文兵, 赵静, 陈婷婷, 等. 青钱柳多糖对高脂血症小鼠的降血脂作用及机制初探[J]. 现代食品科技,2015,31(11):39−44.
    [56] Li J, Luo J, Wang H, et al. Adipose triglyceride lipase regulates lipid metabolism in dairy goat mammary epithelial cells[J]. Gene,2015,554(1):125−130. doi:  10.1016/j.gene.2014.10.020
    [57] 李楠, 赵静, 吴茹, 等. 青钱柳多糖对高脂血症小鼠脂代谢及PPARγ、ATGL基因mRNA表达的影响[J]. 中国食品学报,2015,15(09):9−14.
    [58] Bocan T M, Mueller S B, Brown E Q, et al. HMG-CoA reductase and ACAT inhibitors act synergistically to lower plasma cholesterol and limit atherosclerotic lesion development in the cholesterol-fed rabbit[J]. Atherosclerosis,1998,139(1):21−30. doi:  10.1016/S0021-9150(98)00046-X
    [59] Jiang C, Wang Q, Wei Y, et al. Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice[J]. Journal of Ethnopharmacology,2015,176:17−26. doi:  10.1016/j.jep.2015.10.006
    [60] Qin B, Dawson H, Anderson R A. Elevation of tumor necrosis factor-alpha induces the overproduction of postprandial intestinal apolipoprotein B48-containing very low-density lipoprotein particles: evidence for related gene expression of inflammatory, insulin and lipoprotein signaling in enterocytes[J]. Experimental Biology and Medicine,2010,235(2):199−205. doi:  10.1258/ebm.2009.009169
    [61] Ma Y, Jiang C, Yao N, et al. Antihyperlipidemic effect of Cyclocarya paliurus (Batal.) Iljinskaja extract and inhibition of apolipoprotein B48 overproduction in hyperlipidemic mice[J]. Journal of Ethnopharmacology,2015,166:286−296. doi:  10.1016/j.jep.2015.03.030
    [62] Yao X, Lin Z, Jiang C, et al. Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague-Dawley rats[J]. Canadian Journal of Physiology & Pharmacology,2015,93(8):677−686.
    [63] Johnson A M, Olefsky J M. The origins and drivers of insulin resistance[J]. Cell,2013,152(4):673−684. doi:  10.1016/j.cell.2013.01.041
    [64] Zhai L, Ning Z W, Huang T, et al. Cyclocarya paliurus leaves tea improves dyslipidemia in diabetic mice: A lipidomics-based network pharmacology study[J]. Frontiers in Pharmacology,2018,9:973. doi:  10.3389/fphar.2018.00973
    [65] Zhao M G, Sheng X P, Huang Y P, et al. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates non-alcoholic fatty liver disease via improving oxidative stress and mitochondrial dysfunction[J]. Biomedicine & Pharmacotherapy,2018,104:229−239.
    [66] Leung T M, Nieto N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease[J]. Journal of Hepatology,2013,58(2):395−398. doi:  10.1016/j.jhep.2012.08.018
    [67] Canfora E E, Meex R C R, Venema K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM[J]. Nature Reviews Endocrinology,2019,15(5):261−273. doi:  10.1038/s41574-019-0156-z
    [68] Yang Z, Zhao J, Wang J, et al. Effects of Cyclocarya paliurus polysaccharide on lipid metabolism-related genes DNA methylation in rats[J]. International Journal of Biological Macromolecules,2019,123:343−349. doi:  10.1016/j.ijbiomac.2018.11.110
  • 加载中
表(1)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  35
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 网络出版日期:  2021-03-23

目录

    /

    返回文章
    返回

    重要通知

    4月19-23日刊社在上海举办第四届食品科技创新论坛,届时编辑部电话无人接听,敬请谅解。