Identification of Fruit Beers Based on Static Headspace-Gas Chromatography-Ion Mobility Spectroscopy (SH-GC-IMS)
-
摘要: 以菠萝、苹果和蔓越莓等三种果啤为研究对象,采用静态顶空气相离子迁移谱(static headspace-gas chromatography-ion mobility spectrometry, SH-GC-IMS)对样品中的挥发性有机物(volatile organic compounds, VOCs)进行分析,采用主成分分析(principal component analysis, PCA)方法对VOCs数据进行判别和分类。结果表明:基于GC-IMS指纹图谱的二维数据可视化方法筛选出乙醇、乙酸异戊酯、己酸乙酯、异戊醇、丁酸乙酯、苯甲醛、辛酸乙酯等35个香气特征离子峰,可以作为表征三种果啤产品风味差异信息的特征变量;三组果啤样品在PCA图中离散性好,均得到不同的归属区域,两个主成分累积贡献率达到98%,可以有效区分三种不同果啤产品的主要香气。这为果啤生产过程的质量控制、产品溯源、品牌鉴定与保护提供了一种新方法。
-
关键词:
- 静态顶空气相离子迁移谱 /
- 果啤 /
- 挥发性有机物 /
- 主成分分析 /
- 风味鉴别
Abstract: The volatile organic compounds (VOCs) of three kinds of fruit beer, namely pineapple, apple and cranberry beers were investigated, and the VOCs data was discriminated and classified by using principal component analysis (PCA) method. The results showed that a total of 35 effective characteristic ionic peaks of the VOCs mainly ethanol, isoamyl acetate, ethyl hexanoate, isoamyl alcohol, ethyl butyrate, benzaldehyde, and ethyl octanoate were selected by the two-dimensional mode of data visualization based on the SH-GC-IMS fingerprint, which could be used to characterize the flavor differences among the selected fruit beers. Discrimination and classification of the three kinds of fruit beer was effectively performed by using PCA method with good dispersion, and all groups had corresponding attribution areas in the PCA map and the cumulative contribution rate of the first two PCs was 98%, which could be used to distinguish the aroma characteristics of different fruit beer products. Anyway, the results offer a new method for process control, product traceability, brand identification and protection in fruit beer industry. -
表 1 GC-IMS鉴别不同果啤样品中的挥发性成分
Table 1. Identification of volatile compounds in different fruit beers by GC-IMS
挥发性成分 化学式 分子量 RIa Rt(s)b Dt [RIPrel]c 1 辛酸甲酯(Methyl octanoate) C9H18O2 158.2 1119.8 508.622 1.4607 Md 2 辛酸甲酯(Methyl octanoae) C9H18O2 158.2 1117.0 504.495 2.0183 De 3 乙酸庚酯(Heptyl acetate) C9H18O2 158.2 1111.0 495.555 1.937 D 4 乙酸庚酯(Heptyl acetate) C9H18O2 158.2 1112.4 497.618 1.4092 M 5 己酸丙酯(Propyl hexanoate) C9H18O2 158.2 1091.1 465.982 1.3827 M 6 己酸丙酯(Propyl hexanoate) C9H18O2 158.2 1090.6 465.294 1.859 D 7 庚酸乙酯(Ethyl heptanoate) C9H18O2 158.2 1063.5 425.405 1.4092 M 8 庚酸乙酯(Ethyl heptanoate) C9H18O2 158.2 1066.4 429.531 1.9353 D 9 己酸乙酯(Ethyl hexanoate) C8H16O2 144.2 1007.5 350.44 1.3428 M 10 己酸乙酯(Ethyl hexanoate) C8H16O2 144.2 1007.5 350.44 1.7959 D 11 苯甲醛(Benzaldehyde) C7H6O 106.1 965.1 305.737 1.1486 12 乙酸异戊酯(Isopentyl acetate) C7H14O2 130.2 883.5 246.59 1.3046 M 13 乙酸异戊酯(Isopentyl acetate) C7H14O2 130.2 884.7 247.278 1.7494 D 14 丁酸乙酯(Ethyl butanoate) C6H12O2 116.2 799.6 205.325 1.2067 M 15 丁酸乙酯(Ethyl butanoate) C6H12O2 116.2 801.2 206.013 1.5569 D 16 异戊醇(3-Methyl-1-butanol) C5H12O 88.1 740.2 180.919 1.5109 17 乙酸乙酯(Ethyl acetate) C4H8O2 88.1 616.0 146.42 1.3359 18 乙醇(Ethanol) C2H6O 46.1 473.2 118.598 1.1402 19 异丁醇(2-Methylpropanol) C4H10O 74.1 636.5 150.649 1.3736 20 辛酸乙酯(Ethyl octanoate) C10H20O2 172.3 1265.1 724.544 1.4826 21 甲基麦芽酚(Maltol) C6H6O3 126.1 1107.5 490.345 1.2104 22 反-2-辛烯醛((E)-2-Octenal) C8H14O 126.2 1048.2 403.534 1.3291 M 23 反-2-辛烯醛((E)-2-Octenal) C8H14O 126.2 1049.4 405.292 1.8171 D 24 乙酸甲酯(Methyl hexanoate) C7H14O2 130.2 932.8 278.933 1.6752 D 25 乙酸甲酯(Methyl hexanoate) C7H14O2 130.2 932.8 278.933 1.2882 M 26 戊酸乙酯(Ethyl pentanoate) C7H14O2 130.2 909.0 262.288 1.275 M 27 戊酸乙酯(Ethyl pentanoate) C7H14O2 130.2 907.3 261.154 1.6752 D 28 2-甲基丁酸乙酯(Ethyl 2-methylbutanoate) C7H14O2 130.2 853.7 230.512 1.6449 29 2-甲基丁酸甲酯(Methyl 2-methylbutanoate) C6H12O2 116.2 773.8 194.371 1.53 30 丙酸乙酯(Ethyl propanoate) C5H10O2 102.1 712.0 170.749 1.4516 31 丙酸(Propionic acid) C3H6O2 74.1 687.6 163.164 1.3504 32 3-甲基-1-戊醇(3-Methylpentanol) C6H14O 102.2 851.9 229.612 1.6008 33 2-甲基丙酸乙酯(Ethyl 2-methylpropanoate) C6H12O2 116.2 752.3 185.618 1.5575 D 34 异戊醛(3-Methylbutanal) C5H10O 86.1 652.8 154.265 1.4036 D 35 异戊醛(3-Methylbutanal) C5H10O 86.1 653.9 154.518 1.1881 M 36 2-甲基丙酸乙酯(Ethyl 2-methylpropanoate) C6H12O2 116.2 754.9 186.629 1.2006 M 37 丁醛(Butanal) C4H8O 72.1 656.1 155.024 1.2896 38 柠檬烯(Limonene) C10H16 136.2 1022.5 369.053 1.2134 39 庚醛(Heptanal) C7H14O 114.2 901.1 257.174 1.6984 40 乙酸丁酯(Butyl acetate) C6H12O2 116.2 811.9 210.745 1.618 D 41 乙酸丁酯(Butyl acetate) C6H12O2 116.2 807.5 208.801 1.2387 M 42 乙酸异丁酯(Isobutyl acetate) C6H12O2 116.2 763.5 190.125 1.6108 43 丙酸2-甲基丁酯(2-Methylbutyl propionate) C8H16O2 144.2 976.0 316.091 1.3544 M 44 丙酸2-甲基丁酯(2-Methylbutyl propionate) C8H16O2 144.2 976.7 316.812 1.8392 D 45 丁酸异丁酯(Isobutyl butyrate) C8H16O2 144.2 943.5 287.276 1.7523 D 46 丁酸异丁酯(Isobutyl butyrate) C8H16O2 144.2 942.2 286.226 1.3093 M 47 异丁酸甲酯(Methyl isobutyrate) C5H10O2 102.1 680.7 161.252 1.4405 48 丁酸甲酯(Methyl butanoate) C5H10O2 102.1 720.5 173.677 1.4292 49 壬醛(Nonanal) C9H18O 142.2 1099.8 478.93 1.9368 注:a表示保留指数;b表示毛细管气相色谱柱中的保留时间;c表示漂移管中的迁移时间;d 表示dimer,二聚体;e表示monome单体。 -
[1] 苗方, 康健, 王德良. 果啤的研究进展[J]. 酿酒,2010,37(3):75−77. doi: 10.3969/j.issn.1002-8110.2010.03.026 [2] 王松廷. 西瓜精酿啤酒酿造工艺的研究及其风味物质分析[D]. 郑州: 河南大学, 2016. [3] 莫芬. 小麦面筋蛋白水解物对酵母增殖代谢及啤酒发酵的影响研究[D]. 广州: 华南理工大学, 2014. [4] Prasad M. In-vitro evaluation of antioxidant properties of fermented fruit beer samples[J]. International Journal of Science and Research,2014,3(11):1545−1550. [5] Ghasemi-Vamamkhasti M, Mohtasebi S S, Siadat M, et al. Aging fingerprint characterization of beer using electronic nose[J]. Sensors and Actuators B: Chemical,2011,159(1):51−59. doi: 10.1016/j.snb.2011.06.036 [6] Ceto X, Gutierrez-Capitan M, Calvo D, et al. Beer classification by means of a potentiometric electronic tongue[J]. Food Chemistry,2013,141(3):2533−2540. doi: 10.1016/j.foodchem.2013.05.091 [7] Augusto D S L, Luiz F D, Gomes T A, et al. Discrimination of Brazilian lager beer by 1H NMR spectroscopy combined with chemometrics[J]. Food Chemistry,2019,272:488−493. doi: 10.1016/j.foodchem.2018.08.077 [8] Anderson H E, Santos I C, Hildenbrand Z L, et al. A review of the analytical methods used for beer ingredient and finished product analysis and quality control[J]. Analytica Chimica Acta,2019,1085:1−20. doi: 10.1016/j.aca.2019.07.061 [9] Kishimoto T, Noba S, Yako N, et al. Simulation of Pilsner-type beer aroma using 76 odor-active compounds[J]. Journal of Bioscience and Bioengineering,2018,126(3):330−338. doi: 10.1016/j.jbiosc.2018.03.015 [10] Krechmer J E, Groessl M, Zhang X, et al. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on-and offline analysis of atmospheric gas and aerosol species[J]. Atmospheric Measurement Techniques,2016,9(7):3245−3262. doi: 10.5194/amt-9-3245-2016 [11] Sheibani A, Haghpazir N. Application of ion mobility spectrometry for the determination of tramadol in biological samples[J]. Journal of Food and Drug Analysis,2014,22(4):500−504. doi: 10.1016/j.jfda.2014.02.001 [12] Sobel J D, Karpas Z, Lorber A. Diagnosing vaginal infections through measurement of biogenic amines by ion mobility spectrometry[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology,2012,163(1):81−84. [13] Hernandez-Mesa M, Escourrou A, Monteau F, et al. Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues[J]. Trac Trends in Analytical Chemistry,2017,94:39−53. doi: 10.1016/j.trac.2017.07.006 [14] Hernandez-Mesa M, Ropartz D, Garcia-Campana A M, et al. Ion mobility spectrometry in food analysis: Principles, current applications and future trends[J]. Molecules,2019,24:2706. doi: 10.3390/molecules24152706 [15] Wang S Q, Chen H T, Sun B G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry,2020,315:126158. doi: 10.1016/j.foodchem.2019.126158 [16] 葛含光, 温华蔚, 宋旭, 等. 离子迁移谱法检测蒸馏酒中4种风味成分[J]. 食品安全质量检测学报,2016,7(2):834−838. [17] 黄星奕, 吴梦紫, 马梅, 等. 采用气相色谱-离子迁移谱技术检测黄酒风味物质[J]. 现代食品科技,2019,35(9):271−276, 226. [18] Tang Z S, Zeng X A, Margaret A, et al. Characterization of aroma profile and characteristic aromas during lychee wine fermentation[J]. Journal of Food Processing and Preservation,2019,43(8):e14003. [19] Garrido-Delgado R, Arce L, Guaman A V, et al. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools[J]. Talanta,2011,84(2):471−479. doi: 10.1016/j.talanta.2011.01.044 [20] Vautz W, Baumbach J I, Jung J. Beer fermentation control using ion mobility spectrometry-results of a pilot study[J]. Journal of the Institute of Brewing, 2006, 112(2): 157−164. [21] 张俊杰, 尚益民, 彭姗姗, 等. 产香酵母的筛选及其苹果酒发酵特性[J]. 中国酿造,2019,38(8):31−35. doi: 10.11882/j.issn.0254-5071.2019.08.007 [22] 潘咏梅. 菠萝汁及加工、发酵过程中风味变化的研究[D]. 北京: 北京化工大学, 2007. [23] Siebert T E, Smyth H E, Capone D L, et al. Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS[J]. Analytical & Bioanalytical Chemistry,2005,381(4):937−947. [24] Yan X, Fan W, Qian M C. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction[J]. Journal of Agricultural & Food Chemistry,2007,55(8):3051−3057. [25] Pino J A, Queris O. Analysis of volatile compounds of pineapple wine using solid-phase microextraction techniques[J]. Food Chemistry,2010,122(4):1241−1246. doi: 10.1016/j.foodchem.2010.03.033 [26] Takeoka G, Rg B, Flath R, et al. Volatile constituents of pineapple (Ananas Comosus [L. ] Merr.)[J]. ACS Symposium Series,1989,388(1):223−237. [27] Sancho M F, Rao M A, Downing D L. Infinite dilution activity coefficients of apple juice aroma compounds[J]. Journal of Food Engineering,1997,34(2):145−158. doi: 10.1016/S0260-8774(97)89919-0 [28] Zhang J, Kilmartin P A, Peng Y, et al. Identification of key aroma compounds in cranberry juices as influenced by vinification[J]. Journal of Agricultural and Food Chemistry,2020,68(1):279−291. doi: 10.1021/acs.jafc.9b07165 -