基于静态顶空气相离子迁移谱技术的果啤种类判别

龚霄 周伟 李积华 涂京霞 杨涛华 霍羽佳

龚霄,周伟,李积华,等. 基于静态顶空气相离子迁移谱技术的果啤种类判别[J]. 食品工业科技,2021,42(7):296−301. doi:  10.13386/j.issn1002-0306.2020060261
引用本文: 龚霄,周伟,李积华,等. 基于静态顶空气相离子迁移谱技术的果啤种类判别[J]. 食品工业科技,2021,42(7):296−301. doi:  10.13386/j.issn1002-0306.2020060261
GONG Xiao, ZHOU Wei, LI Jihua, et al. Identification of Fruit Beers Based on Static Headspace-Gas Chromatography-Ion Mobility Spectroscopy (SH-GC-IMS) [J]. Science and Technology of Food Industry, 2021, 42(7): 296−301. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020060261
Citation: GONG Xiao, ZHOU Wei, LI Jihua, et al. Identification of Fruit Beers Based on Static Headspace-Gas Chromatography-Ion Mobility Spectroscopy (SH-GC-IMS) [J]. Science and Technology of Food Industry, 2021, 42(7): 296−301. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020060261

基于静态顶空气相离子迁移谱技术的果啤种类判别

doi: 10.13386/j.issn1002-0306.2020060261
基金项目: 广东省优稀水果现代农业产业技术体系创新团队项目(2019KJ116);中国热带农业科学院基本科研业务费专项资金(1630122017013);广州珠江啤酒股份有限公司技术中心研究开发项目(RD20-02)
详细信息
    作者简介:

    龚霄(1984−),男,博士,副研究员,研究方向:食品代谢组学,E-mail:gongxiaocau@126.com

    通讯作者:

    李积华(1979−),男,博士,研究员,研究方向:食品科学,E-mail:foodpaper@126.com

    涂京霞(1973−),女,硕士,教授级高工,研究方向:啤酒酿造学,E-mail:tujingxia@zhujiangbeer.com

  • 中图分类号: TS255.3

Identification of Fruit Beers Based on Static Headspace-Gas Chromatography-Ion Mobility Spectroscopy (SH-GC-IMS)

  • 摘要: 以菠萝、苹果和蔓越莓等三种果啤为研究对象,采用静态顶空气相离子迁移谱(static headspace-gas chromatography-ion mobility spectrometry, SH-GC-IMS)对样品中的挥发性有机物(volatile organic compounds, VOCs)进行分析,采用主成分分析(principal component analysis, PCA)方法对VOCs数据进行判别和分类。结果表明:基于GC-IMS指纹图谱的二维数据可视化方法筛选出乙醇、乙酸异戊酯、己酸乙酯、异戊醇、丁酸乙酯、苯甲醛、辛酸乙酯等35个香气特征离子峰,可以作为表征三种果啤产品风味差异信息的特征变量;三组果啤样品在PCA图中离散性好,均得到不同的归属区域,两个主成分累积贡献率达到98%,可以有效区分三种不同果啤产品的主要香气。这为果啤生产过程的质量控制、产品溯源、品牌鉴定与保护提供了一种新方法。
  • 图  1  不同果啤样品的GC-IMS图谱

    注:a. 菠萝; b. 苹果; c. 蔓越莓。

    Figure  1.  GC-IMS chromatogram of different fruit beer samples

    图  2  不同果啤样品中挥发性化合物的指纹图谱

    注:a. 菠萝; b. 苹果; c. 蔓越莓。

    Figure  2.  Volatile fingerprints of different fruit beer samples

    图  3  不同果啤样品PCA分析的得分图和载荷图

    注:a. 菠萝; b. 苹果; c. 蔓越莓。

    Figure  3.  The score and loading map of PCA analysis of different fruit beer samples

    表  1  GC-IMS鉴别不同果啤样品中的挥发性成分

    Table  1.   Identification of volatile compounds in different fruit beers by GC-IMS

    挥发性成分化学式分子量RIaRt(s)bDt [RIPrel]c
    1辛酸甲酯(Methyl octanoate)C9H18O2158.21119.8508.6221.4607Md
    2辛酸甲酯(Methyl octanoae)C9H18O2158.21117.0504.4952.0183De
    3乙酸庚酯(Heptyl acetate)C9H18O2158.21111.0495.5551.937D
    4乙酸庚酯(Heptyl acetate)C9H18O2158.21112.4497.6181.4092M
    5己酸丙酯(Propyl hexanoate)C9H18O2158.21091.1465.9821.3827M
    6己酸丙酯(Propyl hexanoate)C9H18O2158.21090.6465.2941.859D
    7庚酸乙酯(Ethyl heptanoate)C9H18O2158.21063.5425.4051.4092M
    8庚酸乙酯(Ethyl heptanoate)C9H18O2158.21066.4429.5311.9353D
    9己酸乙酯(Ethyl hexanoate)C8H16O2144.21007.5350.441.3428M
    10己酸乙酯(Ethyl hexanoate)C8H16O2144.21007.5350.441.7959D
    11苯甲醛(Benzaldehyde)C7H6O106.1965.1305.7371.1486
    12乙酸异戊酯(Isopentyl acetate)C7H14O2130.2883.5246.591.3046M
    13乙酸异戊酯(Isopentyl acetate)C7H14O2130.2884.7247.2781.7494D
    14丁酸乙酯(Ethyl butanoate)C6H12O2116.2799.6205.3251.2067M
    15丁酸乙酯(Ethyl butanoate)C6H12O2116.2801.2206.0131.5569D
    16异戊醇(3-Methyl-1-butanol)C5H12O88.1740.2180.9191.5109
    17乙酸乙酯(Ethyl acetate)C4H8O288.1616.0146.421.3359
    18乙醇(Ethanol)C2H6O46.1473.2118.5981.1402
    19异丁醇(2-Methylpropanol)C4H10O74.1636.5150.6491.3736
    20辛酸乙酯(Ethyl octanoate)C10H20O2172.31265.1724.5441.4826
    21甲基麦芽酚(Maltol)C6H6O3126.11107.5490.3451.2104
    22反-2-辛烯醛((E)-2-Octenal)C8H14O126.21048.2403.5341.3291M
    23反-2-辛烯醛((E)-2-Octenal)C8H14O126.21049.4405.2921.8171D
    24乙酸甲酯(Methyl hexanoate)C7H14O2130.2932.8278.9331.6752D
    25乙酸甲酯(Methyl hexanoate)C7H14O2130.2932.8278.9331.2882M
    26戊酸乙酯(Ethyl pentanoate)C7H14O2130.2909.0262.2881.275M
    27戊酸乙酯(Ethyl pentanoate)C7H14O2130.2907.3261.1541.6752D
    282-甲基丁酸乙酯(Ethyl 2-methylbutanoate)C7H14O2130.2853.7230.5121.6449
    292-甲基丁酸甲酯(Methyl 2-methylbutanoate)C6H12O2116.2773.8194.3711.53
    30丙酸乙酯(Ethyl propanoate)C5H10O2102.1712.0170.7491.4516
    31丙酸(Propionic acid)C3H6O274.1687.6163.1641.3504
    323-甲基-1-戊醇(3-Methylpentanol)C6H14O102.2851.9229.6121.6008
    332-甲基丙酸乙酯(Ethyl 2-methylpropanoate)C6H12O2116.2752.3185.6181.5575D
    34异戊醛(3-Methylbutanal)C5H10O86.1652.8154.2651.4036D
    35异戊醛(3-Methylbutanal)C5H10O86.1653.9154.5181.1881M
    362-甲基丙酸乙酯(Ethyl 2-methylpropanoate)C6H12O2116.2754.9186.6291.2006M
    37丁醛(Butanal)C4H8O72.1656.1155.0241.2896
    38柠檬烯(Limonene)C10H16136.21022.5369.0531.2134
    39庚醛(Heptanal)C7H14O114.2901.1257.1741.6984
    40乙酸丁酯(Butyl acetate)C6H12O2116.2811.9210.7451.618D
    41乙酸丁酯(Butyl acetate)C6H12O2116.2807.5208.8011.2387M
    42乙酸异丁酯(Isobutyl acetate)C6H12O2116.2763.5190.1251.6108
    43丙酸2-甲基丁酯(2-Methylbutyl propionate)C8H16O2144.2976.0316.0911.3544M
    44丙酸2-甲基丁酯(2-Methylbutyl propionate)C8H16O2144.2976.7316.8121.8392D
    45丁酸异丁酯(Isobutyl butyrate)C8H16O2144.2943.5287.2761.7523D
    46丁酸异丁酯(Isobutyl butyrate)C8H16O2144.2942.2286.2261.3093M
    47异丁酸甲酯(Methyl isobutyrate)C5H10O2102.1680.7161.2521.4405
    48丁酸甲酯(Methyl butanoate)C5H10O2102.1720.5173.6771.4292
    49壬醛(Nonanal)C9H18O142.21099.8478.931.9368
    注:a表示保留指数;b表示毛细管气相色谱柱中的保留时间;c表示漂移管中的迁移时间;d 表示dimer,二聚体;e表示monome单体。
    下载: 导出CSV
  • [1] 苗方, 康健, 王德良. 果啤的研究进展[J]. 酿酒,2010,37(3):75−77. doi:  10.3969/j.issn.1002-8110.2010.03.026
    [2] 王松廷. 西瓜精酿啤酒酿造工艺的研究及其风味物质分析[D]. 郑州: 河南大学, 2016.
    [3] 莫芬. 小麦面筋蛋白水解物对酵母增殖代谢及啤酒发酵的影响研究[D]. 广州: 华南理工大学, 2014.
    [4] Prasad M. In-vitro evaluation of antioxidant properties of fermented fruit beer samples[J]. International Journal of Science and Research,2014,3(11):1545−1550.
    [5] Ghasemi-Vamamkhasti M, Mohtasebi S S, Siadat M, et al. Aging fingerprint characterization of beer using electronic nose[J]. Sensors and Actuators B: Chemical,2011,159(1):51−59. doi:  10.1016/j.snb.2011.06.036
    [6] Ceto X, Gutierrez-Capitan M, Calvo D, et al. Beer classification by means of a potentiometric electronic tongue[J]. Food Chemistry,2013,141(3):2533−2540. doi:  10.1016/j.foodchem.2013.05.091
    [7] Augusto D S L, Luiz F D, Gomes T A, et al. Discrimination of Brazilian lager beer by 1H NMR spectroscopy combined with chemometrics[J]. Food Chemistry,2019,272:488−493. doi:  10.1016/j.foodchem.2018.08.077
    [8] Anderson H E, Santos I C, Hildenbrand Z L, et al. A review of the analytical methods used for beer ingredient and finished product analysis and quality control[J]. Analytica Chimica Acta,2019,1085:1−20. doi:  10.1016/j.aca.2019.07.061
    [9] Kishimoto T, Noba S, Yako N, et al. Simulation of Pilsner-type beer aroma using 76 odor-active compounds[J]. Journal of Bioscience and Bioengineering,2018,126(3):330−338. doi:  10.1016/j.jbiosc.2018.03.015
    [10] Krechmer J E, Groessl M, Zhang X, et al. Ion mobility spectrometry-mass spectrometry (IMS-MS) for on-and offline analysis of atmospheric gas and aerosol species[J]. Atmospheric Measurement Techniques,2016,9(7):3245−3262. doi:  10.5194/amt-9-3245-2016
    [11] Sheibani A, Haghpazir N. Application of ion mobility spectrometry for the determination of tramadol in biological samples[J]. Journal of Food and Drug Analysis,2014,22(4):500−504. doi:  10.1016/j.jfda.2014.02.001
    [12] Sobel J D, Karpas Z, Lorber A. Diagnosing vaginal infections through measurement of biogenic amines by ion mobility spectrometry[J]. European Journal of Obstetrics & Gynecology and Reproductive Biology,2012,163(1):81−84.
    [13] Hernandez-Mesa M, Escourrou A, Monteau F, et al. Current applications and perspectives of ion mobility spectrometry to answer chemical food safety issues[J]. Trac Trends in Analytical Chemistry,2017,94:39−53. doi:  10.1016/j.trac.2017.07.006
    [14] Hernandez-Mesa M, Ropartz D, Garcia-Campana A M, et al. Ion mobility spectrometry in food analysis: Principles, current applications and future trends[J]. Molecules,2019,24:2706. doi:  10.3390/molecules24152706
    [15] Wang S Q, Chen H T, Sun B G. Recent progress in food flavor analysis using gas chromatography-ion mobility spectrometry (GC-IMS)[J]. Food Chemistry,2020,315:126158. doi:  10.1016/j.foodchem.2019.126158
    [16] 葛含光, 温华蔚, 宋旭, 等. 离子迁移谱法检测蒸馏酒中4种风味成分[J]. 食品安全质量检测学报,2016,7(2):834−838.
    [17] 黄星奕, 吴梦紫, 马梅, 等. 采用气相色谱-离子迁移谱技术检测黄酒风味物质[J]. 现代食品科技,2019,35(9):271−276, 226.
    [18] Tang Z S, Zeng X A, Margaret A, et al. Characterization of aroma profile and characteristic aromas during lychee wine fermentation[J]. Journal of Food Processing and Preservation,2019,43(8):e14003.
    [19] Garrido-Delgado R, Arce L, Guaman A V, et al. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools[J]. Talanta,2011,84(2):471−479. doi:  10.1016/j.talanta.2011.01.044
    [20] Vautz W, Baumbach J I, Jung J. Beer fermentation control using ion mobility spectrometry-results of a pilot study[J]. Journal of the Institute of Brewing, 2006, 112(2): 157−164.
    [21] 张俊杰, 尚益民, 彭姗姗, 等. 产香酵母的筛选及其苹果酒发酵特性[J]. 中国酿造,2019,38(8):31−35. doi:  10.11882/j.issn.0254-5071.2019.08.007
    [22] 潘咏梅. 菠萝汁及加工、发酵过程中风味变化的研究[D]. 北京: 北京化工大学, 2007.
    [23] Siebert T E, Smyth H E, Capone D L, et al. Stable isotope dilution analysis of wine fermentation products by HS-SPME-GC-MS[J]. Analytical & Bioanalytical Chemistry,2005,381(4):937−947.
    [24] Yan X, Fan W, Qian M C. Characterization of aroma compounds in apple cider using solvent-assisted flavor evaporation and headspace solid-phase microextraction[J]. Journal of Agricultural & Food Chemistry,2007,55(8):3051−3057.
    [25] Pino J A, Queris O. Analysis of volatile compounds of pineapple wine using solid-phase microextraction techniques[J]. Food Chemistry,2010,122(4):1241−1246. doi:  10.1016/j.foodchem.2010.03.033
    [26] Takeoka G, Rg B, Flath R, et al. Volatile constituents of pineapple (Ananas Comosus [L. ] Merr.)[J]. ACS Symposium Series,1989,388(1):223−237.
    [27] Sancho M F, Rao M A, Downing D L. Infinite dilution activity coefficients of apple juice aroma compounds[J]. Journal of Food Engineering,1997,34(2):145−158. doi:  10.1016/S0260-8774(97)89919-0
    [28] Zhang J, Kilmartin P A, Peng Y, et al. Identification of key aroma compounds in cranberry juices as influenced by vinification[J]. Journal of Agricultural and Food Chemistry,2020,68(1):279−291. doi:  10.1021/acs.jafc.9b07165
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-22
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要通知

    4月19-23日刊社在上海举办第四届食品科技创新论坛,届时编辑部电话无人接听,敬请谅解。