Effect of Formulation Composed of Maltodextrin and β-Cyclodextrin on the Quality of Spray-dried Sweet Potato Flour
-
摘要: 为提高喷雾干燥所制备出甘薯全粉的品质,本研究探讨了麦芽糊精及β-环糊精作为助干剂对产品品质的影响。通过比对麦芽糊精及β-环糊精单独及复配使用后,甘薯全粉的出粉率、营养组分及特性(色泽、粒度、流动性、水合特性、抗氧化成分以及抗氧化力)变化,得出甘薯全粉喷雾干燥的最优助干剂配方。结果表明,采用最优复合组合的添加比例为20 g/100 g麦芽糊精+4 g/100 g β-环糊精。所得产品的出粉率最高可达到61.14%,花色苷、类黄酮及总酚的保留率分别可达到69.24%、68.12%以及60.42%。本文借助喷雾干燥助干剂制备甘薯全粉,进一步为产品提升提供了技术参考。Abstract: In order to improve the quality of spray-dried sweet potato flour (SSPF), this study mainly focused on the application of maltodextrin and β-cyclodextrin during the spray-dring process. Through the comparison of flour yield, nutritious components, and characteristics (color, particle size, flowability, water holding capacity, and antioxidant capacity) of SSPF by using maltodextrin and β-cyclodextrin alone or a combination of them, the best drying agent formulation for sweet potato powder spray drying was obtained.The results showed that, the most recommended drying agent was: 20% maltodextrin + 4% β-cyclodextrin, which presented a highest flour yield of 61.14%, and highest anthocyanin, flavonoids and total phenols retention ability of 69.24%, 68.12% and 60.42%. In this paper, the dried sweet potato powder was prepared by spray drying and drying agents, which provides a technical reference for the upgrading of the products.
-
Key words:
- sweet potato flour /
- spray drying /
- maltodextrin /
- β-cyclodextrin /
- quality
-
表 1 喷雾干燥甘薯粉的基本成分含量(%)
Table 1. Proximate composition of spray-dried sweet potato flours(%)
样品 水分含量 淀粉含量 粗蛋白含量 粗脂肪含量 粗纤维含量 灰分含量 对照组 8.68 ± 0.06a 75.21 ± 0.03 a 5.09 ± 0.07a 0.71 ± 0.05a 4.13 ± 0.09a 2.30 ± 0.21a β-环糊精 7.39 ± 0.10c 75.09 ± 0.57a 4.53 ± 0.20b 0.59 ± 0.08a 4.02 ± 0.10ab 2.28 ± 0.25a 麦芽糊精 7.62 ± 0.04b 74.03 ± 0.76a 4.88 ± 0.29ab 0.64 ± 0.13a 3.80 ± 0.07b 2.15 ± 0.22a 麦芽糊精/β-环糊精 7.13 ± 0.04d 74.85 ± 0.42a 4.71 ± 0.16ab 0.68 ± 0.05a 3.91 ± 0.16ab 2.20 ± 0.18a 注:不同小写字母表示同一成分不同处理之间有显著性差异(P < 0.05)。 表 2 喷雾干燥甘薯粉的色泽参数
Table 2. Color parameters of spray-dried sweet potato flours
样品 L* a* b* ΔΕ 对照组 68.61 ± 0.79c 18.20 ± 0.27a −12.00 ± 0.20d 44.37 ± 1.27a β-环糊精 71.83 ± 0.18b 15.55 ± 0.04c −11.02 ± 0.01c 44.67 ± 1.04a 麦芽糊精 73.04 ± 1.05a 16.04 ± 0.17b −9.80 ± 0.06a 46.82 ± 1.64a 麦芽糊精/β-环糊精 72.75 ± 0.78ab 15.29 ± 0.21b −10.73 ± 0.12b 45.46 ± 1.24a 注:标有不同小写字母表示同一参数不同处理之间有显著性差异(P < 0.05);表4同。 表 3 喷雾干燥甘薯粉的粒度大小
Table 3. The particle size of spray-dried purple sweet potato flours
体积粒径 对照组 β-环糊精 麦芽糊精 麦芽糊精/β-环糊精 D0.1(μm) 3.71 3.06 5.60 3.53 D0.5(μm) 13.71 14.61 17.77 13.92 D0.9(μm) 163.58 69.17 393.93 102.33 径距span 11.66 4.52 21.85 7.10 比表面积(m2/g) 0.76 0.87 0.50 0.77 表 4 喷雾干燥甘薯粉的花色苷、类黄酮和总酚含量(干基)及其保留率
Table 4. The content and retention rate of anthocyanins, flavonoids and total phenolics of spray-dried sweet potato flours
样品 花色苷 类黄酮 总酚 含量(mg/100 g) 保留率(%) 含量(g/100 g) 保留率(%) 含量(g/100 g) 保留率(%) 对照组 26.48 ± 0.06b 72.25 ± 0.01b 0.67 ± 0.01b 55.06 ± 0.01c 1.39 ± 0.01b 55.50 ± 0.01c β-环糊精 22.76 ± 0.04d 57.11 ± 0.01d 0.61 ± 0.02c 55.70 ± 0.01c 1.11 ± 0.02c 49.25 ± 0.01d 麦芽糊精 31.99 ± 0.07a 85.43 ± 0.02a 0.76 ± 0.02a 89.22 ± 0.02a 1.45 ± 0.02a 82.72 ± 0.01a 麦芽糊精/β-环糊精 23.30 ± 0.04c 69.24 ± 0.01c 0.63 ± 0.02c 68.12 ± 0.01b 1.15 ± 0.02c 60.42 ± 0.01b -
[1] 王炜, 李鹏霞, 黄开红. 甘薯全粉研究进展[J]. 粮食与油脂,2009,22(1):11−13. doi: 10.3969/j.issn.1008-9578.2009.01.004 [2] 丁媛媛, 毕金峰, 木泰华, 等. 干燥技术在甘薯加工中的应用现状及前景[J]. 食品与机械,2010,26(2):155−158. [3] 徐飞, 钮福祥, 张爱君, 等. 速溶紫薯粉的加工工艺研究[J]. 江苏农业科学,2005,33(1):102−104. doi: 10.3969/j.issn.1002-1302.2005.01.039 [4] 陈芳, 彭珍, 刘嘉, 等. 麦芽糊精对喷雾干燥紫薯全粉理化性质的影响[J]. 食品工业科技,2014,35(11):134−137, 277. [5] 易佳礼. 红薯全粉加工特性及产品开发研究[D]. 长沙: 中南林业科技大学, 2018. [6] De Ramos R M Q, Siacor F D C, Taboada E B. Effect of maltodextrin content and inlet temperature on the powder qualities of spray-dried pineapple (Ananas comosus) waste extract[J]. Waste and Biomass Valorization,2020,11(7):3247−3255. doi: 10.1007/s12649-019-00651-8 [7] AOAC International. Official methods of analysis of AOAC International[M]// Official methods of analysis of AOAC International, 16th edition, 1995. [8] 吴谋成. 食品分析与感官评定[M]. 北京: 中国农业出版社, 2006: 79-80. [9] 中华人民共和国国家质量监督检验检疫总局. GB/T 5795-2002中国标准书号[S]. 北京: 中国标准出版社, 2004. [10] Saari H, Heravifar K, Rayner M, et al. Preparation and characterization of starch particles for use in Pickering emulsions[J]. Cereal Chemistry Journal,2016,93(2):116−124. doi: 10.1094/CCHEM-05-15-0107-R [11] Zhao X Y, Yang Z B, Gai G S, et al. Effect of superfine grinding on properties of ginger powder[J]. Journal of Food Engineering,2009,91(2):217−222. doi: 10.1016/j.jfoodeng.2008.08.024 [12] Ileleji K E, Zhou B. The angle of repose of bulk corn stover particles[J]. Powder Technology,2008,187(2):110−118. doi: 10.1016/j.powtec.2008.01.029 [13] Ahmed M, Akter M S, Lee J C, et al. Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato[J]. LWT - Food Science and Technology,2010,43(9):1307−1312. doi: 10.1016/j.lwt.2010.05.014 [14] Hosseinian F S, Li W, Beta T. Measurement of anthocyanins and other phytochemicals in purple wheat[J]. Food Chemistry,2008,109(4):916−924. doi: 10.1016/j.foodchem.2007.12.083 [15] 万利秀, 肖更生, 徐玉娟, 等. 甲醇提取柑橘皮总黄酮的工艺优化[J]. 安徽农业科学,2010,38(27):15087−15089. doi: 10.3969/j.issn.0517-6611.2010.27.102 [16] Andarwulan N, Batari R, Sandrasari D A, et al. Flavonoid content and antioxidant activity of vegetables from Indonesia[J]. Food Chemistry,2010,121(4):1231−1235. doi: 10.1016/j.foodchem.2010.01.033 [17] 于亚莉, 高峰, 刘静波, 等. 超声波法提取花生壳众多酚类物质的研究[J]. 食品科学,2007,28(11):257−261. doi: 10.3321/j.issn:1002-6630.2007.11.057 [18] Huang Y C, Chang Y H, Shao Y Y. Effects of genotype and treatment on the antioxidant activity of sweet potato in Taiwan[J]. Food Chemistry,2006,98(3):529−538. doi: 10.1016/j.foodchem.2005.05.083 [19] Quek S Y, Chok N K, Swedlund P. The physicochemical properties of spray-dried watermelon powders[J]. Chemical Engineering and Processing: Process Intensification,2007,46(5):386−392. doi: 10.1016/j.cep.2006.06.020 [20] Ahmed M, Akter M S, Eun J B. Impact of α-amylase and maltodextrin on physicochemical, functional and antioxidant capacity of spray-dried purple sweet potato flour[J]. Journal of the Science of Food and Agriculture,2010,90(3):494−502. doi: 10.1002/jsfa.3845 [21] Saénz C, Tapia S, Chávez J, et al. Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica)[J]. Food Chemistry,2009,114:616−622. doi: 10.1016/j.foodchem.2008.09.095 [22] Cano-Chauca M, Stringheta P C, Ramos A M, et al. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization[J]. Innovative Food Science & Emerging Technologies,2005,6(4):420−428. [23] Valle E M M D. Cyclodextrins and their uses: A review[J]. Process Biochemistry,2004,39(9):1033−1046. doi: 10.1016/S0032-9592(03)00258-9 [24] Garcia-Viguera C, Bridle P. Influence of structure on colour stability of anthocyanins and flavylium salts with ascorbic acid[J]. Food Chemistry,1999,64(1):21−26. doi: 10.1016/S0308-8146(98)00107-1 [25] Fang Z, Bhandari B. Effect of spray drying and storage on the stability of bayberry polyphenols[J]. Food Chemistry,2011,129(3):1139−1147. doi: 10.1016/j.foodchem.2011.05.093 [26] Chan E W C, Lim Y Y, Wong S K, et al. Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species[J]. Food Chemistry,2009,113(1):166−172. doi: 10.1016/j.foodchem.2008.07.090 [27] Oki T, Masuda M, Furuta S, et al. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars[J]. Journal of Food Science,2010,67(5):1752−1756. [28] Tan Y, Zhao Y, Hu H, et al. Drying kinetics and particle formation of potato powder during spray drying probed by microrheology and single droplet drying[J]. Food Research International,2019,116:483−491. doi: 10.1016/j.foodres.2018.08.064 [29] Vergara C, Pino M T, Zamora O, et al. Microencapsulation of anthocyanin extracted from purple flesh cultivated potatoes by spray drying and its effects on in vitro gastrointestinal digestion[J]. Molecules,2020,25(3):722. -