Optimization of Extraction Technology of Anthocyanidins from Daucus carota L. by Aqueous Two-phase System Based on Response Surface Methodology
-
摘要: 采用聚乙二醇(PEG)/硫酸铵双水相体系萃取纯化黑胡萝中的花青素。通过单因素实验考察了硫酸铵、PEG6000、粗提液的质量分数对花青素选择性系数和萃取率的影响,并以花青素的萃取率为响应值,结合响应面试验优化萃取工艺。结果表明,各因素对萃取率的影响程度由大到小依次为硫酸铵质量分数>粗提液质量分数>PEG6000质量分数。以双水相体系的总质量为基准,实验最佳萃取条件为:硫酸铵质量分数为20.0%、粗提液质量分数为12.0%、PEG6000质量分数为14.0%,黑胡萝卜红色素的平均萃取率为94.17%。此萃取方法得到的黑胡萝卜红色素具有一定的抗氧化活性,对DPPH自由基清除能力的IC50值为30.51 mg/L。Abstract: In this study, the anthocyanins in Daucus carota L. were extracted and purified by PEG/ammonium sulfate aqueous two-phase system. The mass content of ammonium sulfate, the mass content of PEG6000, and the mass content of crude extract were optimized by single factor experiment according to the selectivity coefficient and extraction ratio of anthocyanins. Based on the response surface experiment, with the extraction ratio of anthocyanins as the response value, the extraction process was optimized. The results showed that the influence order of various factors on anthocyanins extraction effect was as follows: the ammonium sulfate content>the crude extract content>the PEG6000 content. Based on the total mass of the aqueous two-phase system, the optimal extraction condition was as follows: the mass content of ammonium sulfate, crude extract and PEG6000 was 20.0%, 12.0% and 14.0%, respectively, and the average extraction ratio of black carrot red color was 94.17%. The black carrot red color extracted by this method had certain antioxidant activity, and the IC50 value of the DPPH free radical scavenging ability was 30.51 mg/L.
-
表 1 响应面试验设计
Table 1. Design of response surface experiment
水平 因素 A:(NH4)2SO4
质量分数(%)B:PEG6000
质量分数(%)C:粗提液质量
分数(%)−1 18 12 10 0 20 14 12 1 22 16 14 表 2 响应面试验结果
Table 2. Results of response surface experiment
试验号 因素 萃取率Y(%) A B C 1 1 0 −1 88.21 2 −1 −1 0 86.89 3 −1 1 0 87.79 4 1 0 1 88.27 5 1 −1 0 88.83 6 0 −1 −1 91.17 7 0 1 −1 90.07 8 0 0 0 92.23 9 −1 0 1 85.37 10 0 0 0 95.47 11 0 −1 1 89.51 12 0 0 0 93.73 13 1 1 0 88.62 14 0 0 0 95.28 15 −1 0 −1 86.73 16 0 0 0 94.82 17 0 1 1 89.24 表 3 响应面试验方差分析结果
Table 3. Results of analysis of variance of response surface experiment
方差来源 均方和 自由度 均方 F值 P值 显著性 模型 149.17 9 16.57 14.66 0.0009 ** A 7.13 1 7.13 6.30 0.0404 * B 0.15 1 0.15 0.13 0.7301 C 1.8 1 1.80 1.59 0.2480 AB 0.57 1 0.57 0.5 0.5006 AC 0.5 1 0.50 0.45 0.5257 BC 0.17 1 0.17 0.15 0.7079 A2 85.76 1 85.76 75.85 <0.0001 ** B2 11.61 1 11.61 10.27 0.0150 * C2 29.52 1 29.52 26.11 0.0014 ** 残差 7.91 7 1.13 失拟项 0.7 3 0.23 0.13 0.9371 纯误差 7.21 4 1.8 总离差 157.08 16 注:*表示显著(P<0.05);**表示极显著(P<0.01)。 -
[1] Kammerer D, Carle R, Schieber A. Detection of peonidin and pelargonidin glycosides in black carrots (Daucus carota ssp. sativus var. atrorubens Alef.) by high-performance liquid chromatography/electrospray ionization mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2003,17(21):2407−2412. doi: 10.1002/rcm.1212 [2] Ruiz A, Sanhueza M, Gómez F, et al. Changes in the content of anthocyanins, flavonols, and antioxidant activity in Fragaria ananassa var. Camarosa fruits under traditional and organic fertilization[J]. Journal of the Science of Food and Agriculture,2018:jsfa.9447. doi: 10.1002/jsfa.9447 [3] Belkacemi A, Ramassamy C. Anthocyanins protect SK-N-SH cells against acrolein-induced toxicity by preserving the cellular redox state[J]. Journal of Alzheimer's Disease,2016,50(4):981−998. doi: 10.3233/JAD-150770 [4] Kamiloglu S, Pasli A A, Ozcelik B, et al. Colour retention, anthocyanin stability and antioxidant capacity in black carrot (Daucus carota) Jams and marmalades: Effect of processing, storage conditions and in vitro gastrointestinal digestion[J]. Journal of Functional Foods,2015,13:1−10. doi: 10.1016/j.jff.2014.12.021 [5] Chang H, Yu B, Yu X P, et al. Anticancer activities of an anthocyanin-rich extract from black rice against breast cancer cells in vitro and in vivo[J]. Nutrition and Cancer,2010,62(8):1128−1136. doi: 10.1080/01635581.2010.494821 [6] Sadilova E, Stintzing F C, Kammerer D R, et al. Matrix dependent impact of sugar and ascorbic acid addition on color and anthocyanin stability of black carrot, elderberry and strawberry single strength and from concentrate juices upon thermal treatment[J]. Food Research International,2009,42(8):1023−1033. doi: 10.1016/j.foodres.2009.04.008 [7] 熊玥, 孟余燕, 张伦, 等. 萝卜红色素的研究进展及未来展望[J]. 现代食品,2018(19):130−133, 136. [8] 吕晓玲, 刘楠. 黑胡萝卜色素精制工艺及其体外抗氧化性的研究[J]. 食品研究与开发,2008,29(12):74−78. doi: 10.3969/j.issn.1005-6521.2008.12.022 [9] 高攀峰, 侯金丽, 傅海燕, 等. 紫甘蓝花青素三种提取工艺对比研究[J]. 食品研究与开发,2015,36(12):36−40. doi: 10.3969/j.issn.1005-6521.2015.12.009 [10] Maran J P, Priya B, Manikandan S. Modeling and optimization of supercritical fluid extraction of anthocyanin and phenolic compounds from Syzygium cumini fruit pulp[J]. Journal of Food Science and Technology,2014,51(9):1938−1946. doi: 10.1007/s13197-013-1237-y [11] 崔丽霞, 张志军, 李晓君, 等. 花青素提取、分离纯化技术研究进展[J]. 食品研究与开发,2017,38(20):195−199. doi: 10.3969/j.issn.1005-6521.2017.20.041 [12] Zhao Z L, Wu M, Zhan Y L, et al. Characterization and purification of anthocyanins from black peanut (Arachis hypogaea L.) skin by combined column chromatography[J]. Journal of Chromatography A,2017,1519:74−82. doi: 10.1016/j.chroma.2017.08.078 [13] 吴丁丁, 穆小静, 易小琦, 等. 双水相萃取技术的新发展[J]. 食品工业科技,2017,38(8):395−400. [14] Patil G, Raghavarao K S M S. Aqueous two phase extraction for purification of C-phycocyanin[J]. Biochemical Engineering Journal,2007,34(2):156−164. doi: 10.1016/j.bej.2006.11.026 [15] 胡佳钦, 向福, 吴伟, 等. 双水相萃取在天然产物提取中的应用[J]. 黑龙江畜牧兽医,2017(1):86−89. [16] Jampani C, Raghavarao K S M S. Process integration for purification and concentration of red cabbage (Brassica oleracea L.) anthocyanins[J]. Separation and Purification Technology,2015,141:10−16. doi: 10.1016/j.seppur.2014.11.024 [17] 翟硕, 张海悦, 于润美, 等. 响应面优化双水相提取黑豆皮花色苷工艺的研究[J]. 食品研究与开发,2017,38(24):24−31. doi: 10.3969/j.issn.1005-6521.2017.24.006 [18] Liu X L, Mu T H, Sun H N, et al. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology[J]. Food Chemistry,2013,141(3):3034−3041. doi: 10.1016/j.foodchem.2013.05.119 [19] 李治城, 李靖靖, 潘晓静, 等. 双水相体系萃取纯化紫甘蓝色素[J]. 中国食品添加剂,2019(9):77−81. [20] Wu Y C, Wang Y, Zhang W L, et al. Extraction and preliminary purification of anthocyanins from grape juice in aqueous two-phase system[J]. Separation and Purification Technology,2014,124:170−178. doi: 10.1016/j.seppur.2014.01.025 [21] Shimada K, Fujikawa K, Yahara K, et al. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion[J]. Journal of Agricultural and Food Chemistry,1992,40(6):945−948. doi: 10.1021/jf00018a005 [22] 王晗, 朱华平, 李文钊, 等. 桑葚提取物中花青素分析及其体外抗氧化活性研究[J]. 食品与发酵工业,2019,45(15):170−175. [23] Lee J, Durst R W, Wrolstad R E, et al. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study[J]. Journal of AOAC International,2005,88(5):1269−1278. doi: 10.1093/jaoac/88.5.1269 [24] DuBois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017 [25] 刘廷丹, 杨秀娟, 邓君明, 等. 苯酚-硫酸法测定蛤蚧酒中多糖含量[J]. 食品工业,2018,39(8):298−301. [26] 袁雷, 钟政昌, 刘瑜, 等. 响应面法优化血满草多糖双水相萃取工艺[J]. 安徽农业科学,2020,48(13):179−182, 234. doi: 10.3969/j.issn.0517-6611.2020.13.049 [27] 邵圣娟, 卫静莉. 聚乙二醇-硫酸铵双水相体系萃取松花粉中总黄酮的工艺研究[J]. 食品工业科技,2017,38(11):266−269, 275. [28] 杨利民, 吕金萍, 冯妍. 蒲公英总黄酮在聚乙二醇-硫酸铵双水相体系中的分配与提取[J]. 化工进展,2014,33(8):1992−1996, 2011. [29] 欧阳文, 王家坚, 熊利芝. 聚乙二醇-硫酸铵双水相体系分离纯化黄花蒿黄酮的研究[J]. 食品工业科技,2014,35(15):196−199. [30] 黄莉娟, 胡蝶, 张萍, 等. 柑橘的抗氧化活性研究[J]. 现代食品科技,2012,28(4):399−401. -