Extraction of Total Alkaloids from Suaeda salsa and Its Antioxidant Activity in Mice Fed with High-fat Diet
-
摘要: 目的:优化碱蓬草总生物碱的提取工艺,研究碱蓬草总生物碱对高脂饮食小鼠的体内抗氧化性。方法:以碱蓬草总生物碱的提取量作为指标,在单因素实验的基础上,进行正交分析。利用碱蓬草的总生物碱对高脂饮食小鼠进行灌胃,定期监测小鼠的衰老指标。结果:碱蓬草总生物碱的最佳提取工艺:超声时间20 min、超声温度45 ℃、乙醇浓度85%、料液比1:10,在此条件下,总生物碱的提取量为(0.65 ± 0.02)mg/g。抗氧化活性实验表明,碱蓬草总生物碱的低(2 mg/kg)、中(4 mg/kg)、高剂量(8 mg/kg)组均可以显著降低小鼠肝脏中MDA的含量(P<0.05),同时碱蓬草总生物碱的低、中、高剂量组均可以显著增加肝脏中的CAT和GSH-Px(P<0.05)。结论:本实验的优化工艺具有良好的可行性,碱蓬草总生物碱具有抗氧化活性,可作为碱蓬草食品及医药方向的研究基础。Abstract: Objective: To optimize the extraction process of total alkaloids from Suaeda salsa L. and study the antioxidant activity of total alkaloids from Suaeda salsa on high-fat diet in mice. Methods: The yield of total alkaloids from Suaeda salsa was used as the index, and the orthogonal analysis was carried out on the basis of single factor experiment. The total alkaloids of Suaeda salsa were gavaged to high-fat diet mice, and the aging indexes of mice were monitored regularly. Results: The optimum extraction conditions were as follows: Ultrasonic time 20 min, ultrasonic temperature 45 ℃, ethanol concentration 85%, solid-liquid ratio 1:10. Under these conditions, the yield of total alkaloids was (0.65 ± 0.02) mg/g. The antioxidant activity test showed that the low, medium and high dose groups of Suaeda salsa total alkaloids could significantly reduce the content of MDA in the liver of mice (P<0.05), and the low(2 mg/kg), medium(4 mg/kg) and high dose(8 mg/kg) groups of total alkaloids of Suaeda salsa could also significantly increase cat and GSH-Px in liver (P<0.05). Conclusion:The optimized process has good feasibility. Suaeda salsa alkaloids can be used as the basis for the study of the total antioxidant activity of Suaeda salsa.
-
Key words:
- Suaeda salsa /
- total alkaloids /
- orthogonal experiment /
- extraction process optimization /
- MDA /
- CAT /
- GSH-Px /
- antioxidant activity
-
表 1 正交试验因素与水平设计
Table 1. Factors and levels of orthogonal experiment
水平 因素 A:超声时间(min) B:超声温度(℃) C:乙醇浓度(%) D:料液比(g/mL) 1 20 35 65 1:8 2 25 40 75 1:10 3 30 45 85 1:12 表 2 生物碱鉴别反应
Table 2. Alkaloid identification reaction
反应名称 反应结果 沉淀颜色 碘-碘化钾反应 + 褐色 碘化铋钾反应 + 红棕色 硅钨酸反应 + 黄色 碘化汞钾反应 + 白色 注:“+”表示有沉淀产生。 表 3 正交设计试验及结果
Table 3. Orthogonal test design and results
试验号 A B C D 提取量(mg/g) 1 1 1 1 1 0.22 ± 0.04 2 1 2 2 2 0.56 ± 0.03 3 1 3 3 3 0.58 ± 0.04 4 2 1 2 3 0.32 ± 0.02 5 2 2 3 1 0.26 ± 0.03 6 2 3 1 2 0.58 ± 0.05 7 3 1 3 2 0.54 ± 0.04 8 3 2 1 3 0.32 ± 0.02 9 3 3 2 1 0.48 ± 0.02 k1 0.453 0.360 0.387 0.320 k2 0.400 0.380 0.453 0.573 k3 0.447 0.560 0.460 0.407 R 0.053 0.200 0.073 0.253 表 4 正交试验方差分析
Table 4. Analysis of variance of orthogonal test
因素 偏差平方和 自由度 均方 F值 显著性 A 0.005 2 0.0025 0.500 B 0.073 2 0.0365 7.300 * C 0.010 2 0.005 1.000 D 0.099 2 0.0495 9.900 * 误差 0.17 4 注:* P<0.05表示具有显著性。 表 5 喂养高脂饮食小鼠的体重变化(g)
Table 5. Body weight changes of mice fed high-fat diet (g)
组别 4周 8周 12周 16周 正常组 21.7 ± 1.1 23.1 ± 0.9 24.2 ± 0.8 25.1 ± 0.5 高脂饮食组 23.4 ± 1.2* 25.4 ± 1.0* 27.6 ± 1.2* 30.1 ± 0.7+ 注:与正常组比较,*表示P<0.05;与正常组比较,+表示P<0.01。 表 6 碱蓬草总生物碱对高脂饮食小鼠肝脏MDA含量的影响(U/mg Prot)
Table 6. Effects of total alkaloids of Suaeda salsa on MDA content in liver of mice fed with high-fat diet(U/ Mg prot)
组别 4周 8周 12周 16周 正常组 10.25 ± 0.10# 10.66 ± 0.04# 10.80 ± 0.13# 10.67 ± 0.04# 高脂对照组 10.62 ± 0.08* 11.02 ± 0.07* 11.17 ± 0.13* 10.99 ± 0.22* 碱蓬草总生物碱低剂量组 10.10 ± 0.06*# 9.89 ± 0.10*# 9.83 ± 0.12*# 9.77 ± 0.16*# 碱蓬草总生物碱中剂量组 9.98 ± 0.08*# 9.71 ± 0.04*# 9.66 ± 0.09*# 9.58 ± 0.09*# 碱蓬草总生物碱高剂量组 9.62 ± 0.07*# 9.47 ± 0.11*# 9.44 ± 0.07*# 9.38 ± 0.12*# 注:与正常对照组比较,*表示P<0.05;与高脂对照组比较,#表示P<0.05。 表 7 碱蓬草总生物碱对高脂饮食小鼠肝脏CAT含量的影响
Table 7. Effects of total alkaloids of Suaeda salsa on cat content in liver of mice fed with high-fat diet
组别 4周 8周 12周 16周 正常组 12.44 ± 0.73+ 16.09 ± 0.38+ 16.13 ± 0.08+ 16.68 ± 0.57+ 高脂对照组 10.90 ± 0.92* 12.05 ± 0.41* 13.31 ± 0.44* 13.94 ± 0.45* 碱蓬草总生物碱低剂量组 15.03 ± 0.60*+ 17.50 ± 0.41*+ 17.51 ± 0.23*+ 18.40 ± 0.59*+ 碱蓬草总生物碱中剂量组 16.28 ± 0.80*+ 17.53 ± 0.51*+ 19.54 ± 0.54*+ 20.05 ± 0.55*+ 碱蓬草总生物碱高剂量组 16.54 ± 0.75*+ 20.57 ± 0.83+ 20.75 ± 0.48*+ 21.20 ± 0.90*+ 注:与正常对照组比较,*表示P<0.05;与高脂对照组比较,+表示P<0.05;表8同。 表 8 碱蓬草总生物碱对高脂饮食小鼠肝脏GSH-Px含量的影响
Table 8. Effects of total alkaloids of Suaeda salsa on GSH-Px content in liver of mice fed with high-fat diet
组别 4周 8周 12周 16周 正常组 669.74 ± 4.40* 673.86 ± 2.96* 680.31 ± 3.09* 774.19 ± 2.41* 高脂对照组 602.31 ± 1.68* 618.22 ± 2.97* 621.92 ± 2.40* 743.27 ± 2.17* 碱蓬草总生物碱低剂量组 733.95 ± 3.33*+ 860.77 ± 3.76*+ 980.38 ± 5.91*+ 982.94 ± 2.53+ 碱蓬草总生物碱中剂量组 818.57 ± 2.43*+ 894.53 ± 3.12*+ 980.08 ± 3.03*+ 1004.07 ± 2.05* 碱蓬草总生物碱高剂量组 852.56 ± 2.87*+ 1012.56 ± 3.09*+ 1025.49 ± 3.11*+ 1078.09 ± 3.02*+ -
[1] 李雪. 碱蓬草在盘锦红海滩公园建设工程中的应用[J]. 中国园艺文摘,2017,33(1):113−114. doi: 10.3969/j.issn.1672-0873.2017.01.044 [2] 薛菲, 刘顺刚, 张祥胜, 等. 盐地碱蓬叶中可溶性膳食纤维的提取与抗氧化活性[J]. 江苏农业科学,2017,45(1):175−178. [3] 崔洋洋, 郭庆梅, 赵金凤, 等. 中药碱蓬的文献考证与研究进展[J]. 时珍国医国药,2010,21(10):2645−2646. doi: 10.3969/j.issn.1008-0805.2010.10.103 [4] 钟尉方, 王岳鸿, 刘红英. 响应面法优化盐地碱蓬草总黄酮提取工艺研究[J]. 核农学报,2015,29(6):1135−1141. doi: 10.11869/j.issn.100-8551.2015.06.1135 [5] 张泽生, 王丽, 杨建波, 等. 盐地碱蓬的化学成分研究[J]. 天然产物研究与开发,2012,12(24):775−776, 813. [6] 刘欣鑫, 韩冠英, 郭斌, 等. 响应面分析法优化碱蓬多糖的脱色工艺[J]. 食品工业科技,2018,39(4):131−136. [7] Su-Qiu Pang, Guo-Quan Wang, Jun-Sheng Lin, et al. Cytotoxic activity of the alkaloids from Broussonetia papyrifera fruits[J]. Pharmaceutical Biology,2014,52(10):1−5. [8] Zhang J, Chen X, Hu Z, et al. Quantification of noradrenaline and dopamine in Portulaca oleracea L. by capillary electrophoresis with laser-induced fluorescence detection[J]. Analytica Chimica Acta,2002,471(2):203−209. doi: 10.1016/S0003-2670(02)00775-4 [9] 曹明哲, 季宇彬, 辛国松, 等. 天然植物中生物碱类抗肿瘤药物研究进展[J]. 亚太传统医药,2015,11(7):59−61. [10] 薛梦莹, 李璐, 张华峰, 等. 3种小檗科植物类黄酮、生物碱含量与抑菌活性的季节变化规律[J]. 草业科学,2018,35(11):80−87. [11] Tadaaki Satou, Masataka Koga, Rinako Matsuhashi, et al. Assay of nematocidal activity of isoquinoline alkaloids using third-stage larvae of Strongyloides ratti and S. venezuelensis[J]. Veterinary Parasitology,2002,104(2):131−138. doi: 10.1016/S0304-4017(01)00619-7 [12] Neganova M, Afanas S, Klochkov G, et al. Mechanisms of antioxidant effect of natural sesquiterpene lactone and alkaloid derivatives[J]. Bulletin of Experimental Biology and Medicine,2012,152(6):720−722. [13] Korotkov A, Li H, Chapman C W, et al. total syntheses and biological evaluation of both enantiomers of several hydroxylated dimeric nuphar alkaloids[J]. Angewandte Chemie,2015,54(36):10604−10607. doi: 10.1002/anie.201503934 [14] 田文月, 王珊, 时伟朋, 等. 不同产地莲子心及其部分化学成分的抗氧化活性研究[J]. 中华中医药学刊,2018(11):2694−2697. [15] 李璐, 安叶娟, 乔春雷, 等. 淫羊藿生物碱的超声波-微波协同提取及其对Hela细胞的抑制作用[J]. 植物学报,2018,53(3):56−67. [16] Warashina T, Noro T. Steroidal glycosides from the roots of Asclepias curassavica[J]. Chemical & Pharmaceutical Bulletin,2008,56(3):315−322. [17] 杨旭. 桑叶中总生物碱提取工艺优化及降血糖活性研究[D]. 南京: 南京理工大学, 2012. [18] 冯霞, 孙鹏, 易若琨, 等. 巴莲莲子生物碱提取物对CCl4诱导小鼠肝损伤的预防效果[J]. 食品科学,2017(17):216−222. doi: 10.7506/spkx1002-6630-201717035 [19] 王瑞洲. 民族药老瓜头总生物碱的镇痛活性研究[D]. 宁夏: 宁夏医科大学, 2019. [20] 杨雅欣, 冯小翠, 徐仕娟, 等. 紫金龙总生物碱回流提取工艺的优化[J]. 中成药,2018,40(8):1859−1861. [21] 李杰, 李斌, 许彬, 等. 艾草生物碱提取工艺优化研究[J]. 食品研究与开发,2018,39(13):59−64. doi: 10.3969/j.issn.1005-6521.2018.13.011 [22] 杨园园, 史娟, 徐添鑫. 如意草生物碱提取及抑菌活性研究[J]. 食品工业科技,2017,38(2):277−281. [23] Giardino R, Giavaresi G, Fini M, et al. The role of different chemical modifications of superoxide dismutase in preventing a prolonged muscular ischemia/reperfusion injury[J]. Arit Cells Blood Substit Immobil Biotechnol,2002,30(3):189−198. [24] 尚潇潇, 朱琳, 罗孝菁, 等. 喜树叶中生物碱成分提取工艺优化及抗菌抗氧化活性研究[J]. 天然产物研究与开发,2018,30(12):2150−2156. [25] 商小金, 钱俊青, 郭辉. 响应面法优化延胡索生物碱乙醇提取工艺研究[J]. 林产化学与工业,2010,30(2):32−36. [26] 郑永清, 曾凡杰, 单虹宇, 等. 响应面法优化玛咖生物碱提取工艺[J]. 食品与发酵科技,2017,53(3):33−38. doi: 10.3969/j.issn.1674.506X.2017.03.007 [27] 潘方方, 李秀梅, 张海英, 等. 响应面法优化长裂苦苣菜总生物碱提取工艺[J]. 食品工业科技,2018,39(19):200−205. [28] Nordgren M, Fransen M. Peroxisomal metabolism and oxidative stress[J]. Biochimie,2014,98(3):56−62. [29] MeigsJ B, Larson M G, Fox C S, et al. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: The framingham offspring s tudy[J]. Diabetes Care,2007,30(10):2529−2535. doi: 10.2337/dc07-0817 [30] Chung S S, Kim, Youn B S, et al. Glutathione Peroxidase 3mediates the antioxidant effect of Peroxisome Proliferator-activated receptor γ in human skeletal muscle cells[J]. Molecular and Cellular Biology,2009,29(1):20−30. doi: 10.1128/MCB.00544-08 -