Screening of Protective Agent and Bioactivity Analysis of Bread Yeast Freeze-dried Powder
-
摘要: 目的:优化真空冷冻干燥过程中保护剂配方,得到发酵性能较好的面包酵母3G-28冻干粉。方法:在对脱脂奶粉、蔗糖、吐温−80、阿拉伯胶、β-环状糊精、甘油单因素实验基础上,采用响应面实验对复合冻干保护剂的配方进行了优化,并对酵母冻干粉的发酵力、海藻糖含量、蔗糖酶活力以及发酵液中的风味物质进行了研究。结果:各因素对面包酵母冻干粉活菌数量影响顺序为:甘油浓度 > 蔗糖浓度 > 脱脂奶粉浓度 > β-环状糊精浓度;最佳复合冻干保护剂的配方为:甘油4.7%,脱脂奶粉20%,β-环状糊精15%,蔗糖5%;面包酵母冻干粉活菌数量为36.89×109 个/mL。面包酵母3G-28冻干粉的发酵能力为214 mg/h/g干酵母,海藻糖含量为44.22 mg/g干酵母,蔗糖酶活力20.27 U/g干酵母,与市售酵母菌冻干粉和初始菌株酵母冻干粉相比表现出较高的生物活性。在风味物质方面,面包酵母3G-28冻干粉与其它两者相比醇类的含量最高,表现出了良好的实用性。结论:本文探讨了面包酵母3G-28冻干粉的最佳冻干保护剂配方,得到了生物活性较优的面包酵母冻干粉,在改善面包产品品质及微生物工业化应用中具有很好的前景。Abstract: Objective:The formulation of protective agent added in vacuum freeze-drying process was optimized to obtain bread yeast 3G-28 freeze-drying powder with good fermentation performance.Methods:On the basis of single factor experiments of skim milk powder, sucrose, Tween-80, Arabic gum, cyclodextrin and glycerin, the formula of compound freeze-drying protectant was optimized by response surface experiment, and the ferment power, trehalose content, sucrase activity and flavor in fermentation liquid of yeast freeze-drying powder were studied.Results:The order of influence of each factor on the number of viable bacteria in bread yeast freeze-dried powder was as follows: The concentration of glycerol > the concentration of sucrose > the concentration of skim milk powder > the concentration of β-cyclodextrin. The formula of the best compound freeze-drying protective agent was as follows: Glycerin 4.7%, skimmed milk powder 20%, β-cyclodextrin 15%, sucrose 5%. The viable quantity of bread yeast freeze-dried powder was 36.89×109 PCS / mL. The fermentation capacity of baker's yeast 3G-28 freeze-dried powder was 214 mg/h/g, the content of trehalose was 44.22 mg/g, and the activity of sucrase was 20.27 U/g. Compared with the freeze-dried powder of commercially available yeast and the freeze-dried powder of the initial strain of yeast, the yeast showed higher biological activity. In terms of flavor, the content of alcohol in bread yeast 3G-28 freeze-dried powder was the highest compared with the other two, showing good practicability.ConclusionThe optimum formulation of the baker's yeast 3G-28 freeze-drying powder was studied, and the baker's yeast freeze-drying powder with better biological activity was obtained, which had a good prospect in improving the quality of bread products and in the application of microbial industrialization.
-
Key words:
- bread yeast /
- freeze-dried powder /
- protectant /
- fermentability /
- bioactivity /
- GC-MS /
- flavor
-
表 1 响应面试验因素水平表
Table 1. Factors and levels table of response surface experiment
因素 水平 −1 0 1 A甘油浓度(%) 4 5 6 B脱脂奶粉浓度(%) 15 20 25 C β-环状糊精浓度(%) 13 15 17 D蔗糖浓度(%) 4 5 6 表 2 响应面试验设计及结果
Table 2. Design and results of response surface experiment
试验号 A甘油浓度(%) B脱脂奶粉浓度(%) C蔗糖浓度(%) D β-环状糊精浓度(%) Y活菌数量
(N × 109个/mL)1 0 0 −1 −1 32.16 2 0 0 −1 1 34.26 3 −1 0 1 0 36.19 4 1 0 1 0 32.85 5 0 1 1 0 31.24 6 1 0 0 −1 33.65 7 0 −1 0 1 32.65 8 −1 −1 0 0 30.45 9 1 1 0 0 31.85 10 0 0 1 1 33.67 11 −1 0 0 −1 35.37 12 1 −1 0 0 30.65 13 0 −1 1 0 30.12 14 0 0 0 0 36.97 15 −1 0 0 1 35.44 16 0 0 0 0 36.53 17 −1 0 −1 0 34.78 18 0 1 0 −1 32.14 19 1 0 0 1 34.62 20 0 0 1 −1 32.64 21 1 0 −1 0 34.12 22 0 −1 0 −1 30.12 23 −1 1 0 0 31.47 24 0 0 0 0 36.89 25 0 1 0 1 31.02 26 0 −1 −1 0 30.45 27 0 1 −1 0 31.62 表 3 响应面试验方差分析
Table 3. Variance analysis of regression model
方差来源 平方和 自由度 均方 F P 模型 116.41 14 8.32 13.67 < 0.0001** A 2.96 1 2.96 4.87 0.0476* B 2.00 1 2.00 3.29 0.0948 C 0.039 1 0.039 0.063 0.8055 D 2.59 1 2.59 4.27 0.0612 AB 0.0081 1 0.0081 0.013 0.9100 AC 1.80 1 1.80 2.95 0.1115 AD 0.20 1 0.20 0.33 0.5746 BC 0.000652 1 0.000625 0.001027 0.9750 BD 3.33 1 3.33 5.47 0.0374* CD 0.29 1 0.29 0.47 0.5058 A2 3.99 1 3.99 6.57 0.0249* B2 99.67 1 99.67 163.83 < 0.0001** C2 16.95 1 16.95 27.87 0.0002** D2 9.40 1 9.40 15.46 0.0020** 残差 7.30 12 0.61 失拟项 7.19 10 0.72 13.09 0.0730 纯误差 0.11 2 0.055 总差 123.71 26 注:C.V. %=2.36;R2=0.9410;R2Adj=0.8721;**表示差异极显著(P < 0.01);*表示差异显著(P < 0.05)。 表 4 发酵液风味物质成分
Table 4. The flavor composition of before and after fermentation
风味物质 保留时间(min) 相对含量(%) 空白 市售Ⅲ BY-3 3G-28 空白 市售Ⅲ BY-3 3G-28 异戊醛 5.07 5.61 乙醇 6.00 5.98 6.03 41.21 31.21 45.75 乙酸乙烯酯 6.97 2.34 三氯甲烷 7.99 8.01 8.04 4.80 5.46 3.31 甲苯 8.57 8.55 8.53 8.56 1.03 6.40 4.07 5.37 乙酸丁酯 9.42 9.43 3.18 2.23 3-甲基-1-丁醇乙酸酯 10.67 11.68 乙酸异戊酯 10.69 7.49 乙酸-3-甲基丁酯 10.71 9.97 3-甲基-1-丁醇 13.36 12.65 2-甲基-1-丁醇 13.54 10.28 异戊醇 13.54 13.750 正己酸乙酯 13.93 13.76 13.78 0.71 0.39 0.36 苯乙烯 14.60 14.46 14.48 0.96 0.75 0.99 丁酸戊酯 14.81 14.65 14.67 0.62 0.26 0.84 正辛醛 15.97 61.80 壬醛 18.22 18.29 18.21 0.60 0.30 0.51 辛酸乙酯 19.26 二十七烷 19.32 0.56 四甲基十七烷 19.34 0.59 异戊酸香叶酯 19.71 0.36 5-丁基-4壬烯 19.89 0.36 环己二甲醇 20.09 0.370 2-乙基己醇 20.74 20.72 20.72 1.21 0.90 1.14 2-十六烷醇 20.85 0.43 苯甲醛 21.631 21.614 0.980 0.800 7-十六烯醛 21.948 0.180 小茴香醇 23.054 0.340 2-十六烷醇 23.319 23.313 0.260 0.750 2,6,10-三甲基十四烷 23.334 0.920 9-十四烯醛 23.471 0.650 3-羟基十四烷酸甲酯 23.593 0.750 2-甲基十六醇 25.600 0.790 异戊酸香叶酯 25.642 0.490 月桂酸甲酯 27.876 27.841 27.843 5.470 11.400 4.460 2-甲基丙酸 29.424 3.380 抗氧剂BHT 30.103 30.103 6.000 0.750 苯乙醇 30.178 30.178 30.177 1.870 1.250 1.390 2-十五烷酮 32.270 32.262 0.580 0.530 2,4-二叔丁基苯酚 37.168 37.164 37.163 37.163 31.510 3.000 5.310 3.720 邻苯二甲酸二丁酯 40.405 40.404 40.405 3.630 2.570 3.450 -
[1] 孙溪, 张翠英, 董建, 等. mal62基因高表达对工业面包酵母发酵力的影响[J]. 微生物学报,2012,52(9):1094−1102. [2] 窦冰然, 郭会明, 骆海燕, 等. 耐高糖面包酵母发酵工艺优化[J]. 食品工业科技,2016,37(18):208−212. [3] 苏从毅, 王辛, 王四维, 等. 提高面包酵母耐冷冻性的研究进展[J]. 粮食与食品工业,2012,19(6):77−79. doi: 10.3969/j.issn.1672-5026.2012.06.030 [4] 张守文, 张智武. 不同酵母、不同发酵工艺对面包质量影响的比较研究[J]. 食品与发酵工业,1997,23(6):24−30, 35. doi: 10.3321/j.issn:0253-990X.1997.06.006 [5] Berny J F, Hennebert G L. Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: Effects of protectants and cooling rates[J]. Mycologia,1991,83(6):805−815. doi: 10.1080/00275514.1991.12026086 [6] Morgan C A, Herman N, White P A, et al. Preservation of microorganisms by drying: A review[J]. Journal of Microbiological Methods,2006,66(2):183−193. doi: 10.1016/j.mimet.2006.02.017 [7] Fonseca F, Passot S, Cunin O, et al. Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media[J]. Biotechnology Progress,2004,20(1):229−238. [8] Miyamoto Shinohara Y, Imaizumi T, Nakahara T, et al. Survival curves for microbial species stored by freeze-drying[J]. Cryobiology,2006,52(1):27−32. doi: 10.1016/j.cryobiol.2005.09.002 [9] Huang L J, Lu Z X, Yuan Y J, et al. Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology[J]. Journal of Industrial Microbiology & Biotechnology,2006,33(1):55−61. [10] Sinha R N, Shukla A K. Rehydration of freeze-dried cultures of lactic streptococci[J]. Journal of Food Science,1982,47(2):668−669. doi: 10.1111/j.1365-2621.1982.tb10148.x [11] Graciela Font de Valdez, Graciela Savoy de Glori, Aida Pesce de Ruiz Holgado, et al. Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying[J]. Cryobiology,1983,20(5):560−566. doi: 10.1016/0011-2240(83)90044-5 [12] 叶鹏, 王学东, 陈聪莉, 等. 抗冻剂对冷冻面团中酵母冷冻保护机理研究[J]. 中国粮油学报,2017,32(7):7−13. doi: 10.3969/j.issn.1003-0174.2017.07.002 [13] Merico A, Ragni E, Galafassi S, et al. Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol[J]. Journal of Industrial Microbiology & Biotechnology,2011,38(8):1037−1344. [14] 叶鹏, 王学东, 宋劲松, 等. 冷冻面团中酵母抗冻保护剂的优选[J]. 中国酿造,2015,34(8):72−76. doi: 10.11882/j.issn.0254-5071.2015.08.015 [15] Siaterlis A, Deepika G, Charalampopoulos D. Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying[J]. Letters in Applied Microbiology,2010,48(3):295−301. [16] 龙艳珍, 吴菲菲, 李化强, 等. 真空冷冻干燥棘孢木霉菌株工艺优化研究[J]. 食品研究与开发,2019,40(2):144−148. doi: 10.3969/j.issn.1005-6521.2019.02.027 [17] 陈胜杰, 高翔, 袁戎宇. 真空冷冻干燥法制备益生菌粉的冻干保护剂配方优化[J/OL]. 食品工业科技: 1-15[2020-10-13]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200615.1458.032.html. [18] 张雅硕, 侯一超, 张紫薇, 等. 高活性副干酪乳杆菌冻干菌粉的制备及工艺优化[J]. 食品工业科技,2019,40(16):90−96. [19] 于红, 彭珍, 黄涛, 等. 高活性益生菌发酵枸杞粉的真空冷冻干燥工艺优化[J]. 食品科学,2019,40(20):255−260. doi: 10.7506/spkx1002-6630-20181022-243 [20] 时桂芹, 任菲, 谢冰宗, 等. 高糖胁迫对酿酒酵母抗氧化活性及代谢的影响[J]. 食品工业科技,2019,40(20):94−100. [21] 韩芸娇, 张媛媛, 张彬, 等. 空气等离子体技术对面包酵母的诱变选育研究[J]. 食品工业科技,2019,40(24):94−98. [22] 张媛媛, 张彬. 苯酚-硫酸法与蒽酮-硫酸法测定绿茶茶多糖的比较研究[J]. 食品科学,2016,37(4):158−163. doi: 10.7506/spkx1002-6630-201604028 [23] 张惟杰. 糖复合物生化研究技术[M]. 杭州: 浙江大学出版社 1999. [24] 崔震昆, 毕继才, 朱琳, 等. 不同酵母对无糖面包品质及风味成分的影响[J]. 食品工业科技,2017,38(21):90−99. [25] 王旭增. 鲜食葡萄酿酒酵母的筛选及其活性干酵母制备工艺的研究[D]. 上海: 上海应用技术大学, 2018. [26] 陈伟康, 罗雪梅, 王进, 等. 利用酿酒酵母ZM1-5制备活性干酵母的工艺条件优化试验[J]. 广西农学报,2017,32(5):4−10, 25. doi: 10.3969/j.issn.1003-4374.2017.05.002 [27] 高恩燕. 乳源马克思克鲁维酵母菌的筛选、增殖培养及其冻干菌粉制备的优化研究[D]. 镇江: 江苏大学, 2019. [28] 徐丽萍. 嗜酸乳杆菌冻干菌粉保护剂选择的研究[J]. 食品工业科技,2007(5):119−122. doi: 10.3969/j.issn.1002-0306.2007.05.031 [29] Saez A, Guzmán M, Molpeceres J, et al. Freeze-drying of polycaprolactone and poly (D, L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs[J]. European Journal of Pharmaceutics and Biopharmaceutics,2000,50(3):379−387. doi: 10.1016/S0939-6411(00)00125-9 [30] Li H P, Lu M J, Guo H, et al. Protective effect of sucrose on the membrane properties of Lactobacillus casei Zhang subjected to freeze-drying[J]. Journal of Food Protection,2010,73(4):715−719. doi: 10.4315/0362-028X-73.4.715 [31] Arakawa T, Prestrelski S J, Kenney W C, et al. Factors affecting short-term and long-term stabilities of proteins[J]. Advanced Drug Delivery Reviews,1993,10(1):1−28. doi: 10.1016/0169-409X(93)90003-M [32] 牛春华, 苗欣宇, 牛红红, 等. 复合真空冷冻干燥益生菌发酵保护剂的研制[J]. 轻工科技,2019,35(12):20−23, 63. [33] 邹小波, 杨志坤, 石吉勇, 等. 阿拉伯胶/白色玫瑰茄提取物复合涂膜对低温贮藏蓝莓保鲜效果的影响[J]. 食品科学,2019,40(7):204−211. doi: 10.7506/spkx1002-6630-20180305-032 [34] 张涛, 闫有利. 草鱼肠道拮抗性芽孢杆菌的冻干保护剂优化研究[J]. 水产科学,2018,37(2):244−248. [35] 邓霞, 喻随, 陈思颖, 等. 响应面法优化超声波辅助提取英山云雾茶多糖的研究[J]. 中国食品添加剂,2020,31(8):102−107. [36] 曹颖堃, 刘祖望, 仇凤梅, 等. 野木瓜总皂苷提取工艺优化及其美白活性组分筛选[J/OL]. 食品工业科技: 1-18[2020-10-13]. http://kns.cnki.net/kcms/detail/11.1759.ts.20200825.1356.016.html. [37] 张爱爱, 黄文, 王益, 等. 超声辅助酶法提取香菇柄滋味物质工艺优化[J]. 食品工业科技,2020,41(12):133−138, 149. [38] 谭海刚, 梅英杰, 关凤梅. 蒽酮-硫酸法测定酵母中海藻糖的含量[J]. 现代食品科技,2006,22(1):125−128. [39] Jagdale G B, Grewal P S, Salminen S O. Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode[J]. Journal of Parasitology,2005,91(5):988−994. doi: 10.1645/GE-504R.1 [40] 刘湄, 肖冬光, 代丽昕. 耐高糖面包酵母的研究[J]. 食品与发酵工业,2001(5):12−16. doi: 10.3321/j.issn:0253-990X.2001.05.004 -