鹿茸乙醇提取物对秀丽隐杆线虫抗衰老的作用

刘春红 汤燚聪 高瑜培 李云飞 陈晓光

刘春红,汤燚聪,高瑜培,等. 鹿茸乙醇提取物对秀丽隐杆线虫抗衰老的作用[J]. 食品工业科技,2021,42(7):354−359. doi:  10.13386/j.issn1002-0306.2020060027
引用本文: 刘春红,汤燚聪,高瑜培,等. 鹿茸乙醇提取物对秀丽隐杆线虫抗衰老的作用[J]. 食品工业科技,2021,42(7):354−359. doi:  10.13386/j.issn1002-0306.2020060027
LIU Chunhong, TANG Yicong, GAO Yupei, et al. Anti-aging Effect of Ethanol Extract of Velvet Antler on Caenorhabditis elegans [J]. Science and Technology of Food Industry, 2021, 42(7): 354−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020060027
Citation: LIU Chunhong, TANG Yicong, GAO Yupei, et al. Anti-aging Effect of Ethanol Extract of Velvet Antler on Caenorhabditis elegans [J]. Science and Technology of Food Industry, 2021, 42(7): 354−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020060027

鹿茸乙醇提取物对秀丽隐杆线虫抗衰老的作用

doi: 10.13386/j.issn1002-0306.2020060027
详细信息
    作者简介:

    刘春红(1984−),女,硕士,讲师,研究方向:药物分离及作用研究,E-mail: amethyst_333@sina.cn

    通讯作者:

    陈晓光(1964−),男,博士,教授,研究方向:天然药物与衰老,E-mail: xg_chen@163.com

  • 中图分类号: TS201.4

Anti-aging Effect of Ethanol Extract of Velvet Antler on Caenorhabditis elegans

  • 摘要: 以秀丽隐杆线虫为模式生物,探究鹿茸乙醇提取物对秀丽隐杆线虫抗衰老的作用。通过寿命、紫外应激、热应激、运动、产卵等实验检测鹿茸乙醇提取物对线虫衰老的影响;通过检测鹿茸乙醇提取物对野生型线虫和突变体线虫抗氧化应激能力的实验,初步探究其衰老作用及机理。结果表明,鹿茸乙醇提取物为2.5 mg/mL时能延长线虫寿命,最长寿命为28 d;具有抗紫外和热应激的能力,线虫平均寿命分别为2.81和3.28 d,优于对照组;能提高线虫运动和产卵能力;氧化应激条件下能显著(P<0.05)延长野生型线虫生存时间;加药组与对照组的clk-1突变体线虫在氧化应激条件下生存时间无明显差异,表明其作用机理可能为激活线粒体信号通路,上调抗氧化基因gst-4gst-7skn-1及热抗性基因hsp16.2的转录水平。因此,鹿茸乙醇提取物对线虫具有抗衰老的作用。
  • 图  1  鹿茸乙醇提取物对线虫寿命的影响

    Figure  1.  Effect of ethanol extract of velvet antler on life span of nematode

    图  2  鹿茸乙醇提取物对线虫紫外应激和热应激的影响

    注:A:VAEE对野生型N2线虫的紫外应激实验;B:VAEE对野生型N2线虫的热应激实验。

    Figure  2.  Effects of ethanol extract of velvet antler on ultraviolet and heat stress of nematode

    图  3  鹿茸乙醇提取物对线虫运动能力和生殖能力的影响

    注:A:VAEE对野生型N2线虫的运动实验;B:VAEE对野生型N2线虫的产卵实验;“ns”无显著性差异,“*”表示P<0.05,差异具有统计学意义;“**”表示P<0.01,存在显著性差异;“***”表示P<0.001,存在极显著差异;“****”表示P<0.0001,存在极极显著差异。

    Figure  3.  Effects of ethanol extract of velvet antler on locomotor and reproductive ability of nematode

    图  4  鹿茸乙醇提取物对线虫氧化应激的影响

    注:A:各浓度VAEE对野生型N2线虫的氧化应激实验;B:VAEE对daf-2突变体线虫的氧化应激实验;C:VAEE对eat-2突变体线虫的氧化应激实验;D:VAEE对clk-1突变体线虫的氧化应激实验。

    Figure  4.  Effect of ethanol extract of velvet antler on oxidative stress of nematode

    图  5  鹿茸乙醇提取物对线虫基因转录水平的影响

    注:“*”表示P<0.05,差异具有统计学意义;“**”表示P<0.01,存在显著性差异。

    Figure  5.  Effects of ethanol extract of velvet antler on gene transcription level of nematode

    表  1  鹿茸乙醇提取物对线虫平均寿命的影响

    Table  1.   Effect of ethanol extract of velvet antler on the average life of nematode

    组别平均寿命(d)总死亡数/总数
    N2 Vehicle16.57 ± 0.30150/150
    N2 VAEE 1 mg/mL17.77 ± 0.31**150/150
    N2 VAEE 2.5 mg/mL19.59 ± 0.33****150/150
    N2 VAEE 5 mg/mL18.57 ± 0.31****150/150
    注:与对照组比较:“*”表示P<0.05,差异具有统计学意义;“**”表示P<0.01,存在显著性差异;“***”表示P<0.001,存在极显著差异;“****”表示P<0.0001,存在极极显著差异;“ns”表示无显著性差异;表2表3同。
    下载: 导出CSV

    表  2  紫外应激、热应激下鹿茸乙醇提取物对线虫平均寿命的影响

    Table  2.   Effects of ethanol extract of velvet antler under ultraviolet and heat stress on the average life span of nematode

    实验类型平均寿命 ± SEM(d)总死亡数/总数
    紫外应激实验N2 Vehicle1.84 ± 0.098090/90
    N2 VAEE 1 mg/mL2.08 ± 0.1033ns90/90
    N2 VAEE 2.5 mg/mL2.81 ± 0.1350****90/90
    N2 VAEE 5 mg/mL2.46 ± 0.1249****90/90
    热应激实验N2 Vehicle1.90 ± 0.100790/90
    N2 VAEE1 mg/mL2.41 ± 0.1276***90/90
    N2 VAEE 2.5 mg/mL3.28 ± 0.1406****90/90
    N2 VAs 5 mg/mL2.83 ± 0.1408****90/90
    下载: 导出CSV

    表  3  鹿茸乙醇提取物对线虫在氧化应激下平均寿命的影响

    Table  3.   Effects of ethanol extract of velvet antler on the average life spans of C.elegans under oxidative stress

    类型平均寿命 (h)总死亡数/总数
    N2 Vehicle3.03 ± 0.1590/90
    N2 VAEE 1 mg/mL3.63 ± 0.19*90/90
    N2 VAEE 2.5 mg/mL4.58 ± 0.24****90/90
    N2 VAEE 5 mg/mL4.69 ± 0.25****90/90
    N2 Vehicle3.68 ± 0.1490/90
    eat-2(ad1116) Vehicle6.03 ± 0.24****90/90
    eat-2(ad1116) VAEE7.37 ± 0.28****90/90
    N2 Vehicle3.69 ± 0.1590/90
    daf-2(e1368) Vehicle6.59 ± 0.26****90/90
    daf-2(e1368) VAEE8.13 ± 0.37***90/90
    N2 Vehicle5.01 ± 0.16150/150
    clk-1(mq130) Vehicle4.21 ± 0.10****150/150
    clk-1(mq130) VAEE4.19 ± 0.11ns150/150
    注:野生型N2线虫氧化应激中的P值是与对照组相比,eat-2daf-2clk-1氧化应激中的P值是突变体线虫对照组与野生型对照组比,突变体线虫加药组与突变体线虫对照组比。
    下载: 导出CSV
  • [1] Guo X Y, Li Q Q, Shi J, et al. Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage[J]. Chemosphere,2016,155:115−126. doi:  10.1016/j.chemosphere.2016.04.046
    [2] Yuan Y Y, Hakimi P, Kao C, et al. Reciprocal changes in phosphoenolpyruvate carboxykinase and pyruvate kinase with are a determinant of aging in Caenorhabditis elegans[J]. Journal of Biological Chemistry,2016,291(3):1307−1319. doi:  10.1074/jbc.M115.691766
    [3] Sugawara T, Sakamoto K. Killed bifidobacterium longum enhanced stress tolerance and prolonged lifespan of Caenorhabditis elegans via DAF-16[J]. British Journal of Nutrition,2018,120(8):872−880. doi:  10.1017/S0007114518001563
    [4] Schulenburg H, Felix M A. The natural biotic environment of Caenorhabditis elegans[J]. Genetics,2017,206(1):55−86. doi:  10.1534/genetics.116.195511
    [5] Herndon L A, Wolkow C A, Driscoll M, et al. Effects of ageing on the basic biology and anatomy of C. elegans, In: Ageing: Lessons from C. elegans[M]. Switzerland: Springer, Cham, 2017: 9−39.
    [6] Tissenbaum H A. Using C. elegans for aging research[J]. Invertebrate Reproduction & Development,2015,59(Sup 1):59−63.
    [7] Stroustrup N, Anthony W E, Nash Z M, et al. The temporalscaling of Caenorhabditis elegans ageing[J]. Nature,2016,530(7588):103−107. doi:  10.1038/nature16550
    [8] Lu L L, Zhao X, Zhang J Y, et al. Calycosin promotes lifespan in Caenorhabditis elegans through insulin signaling pathway via daf-16, age-1 and daf-2[J]. Journal of Bioscience and Bioengineering,2017,124(1):1−7. doi:  10.1016/j.jbiosc.2017.02.021
    [9] Yeo R, Brunet A. Deconstructing dietary restriction: A case for systems approaches in aging[J]. Cell Metabolism,2016,23(3):395−396. doi:  10.1016/j.cmet.2016.02.018
    [10] Clark R I, Walker D W. Role of gut microbiota in aging-related health decline: insights from invertebrate models[J]. Cellular and Molecular Life Sciences,2018,75(1):93−101. doi:  10.1007/s00018-017-2671-1
    [11] Dancy B M, Sedensky M M, Morgan P G. Mitochondrial bioenergetics and disease in Caenorhabditis elegans[J]. Frontiers in Bioscience(Landmark Ed),2015,20(2):198−228. doi:  10.2741/4305
    [12] Schaar C E, Dues D J, Spielbauer K K, et al. Mitochondrial and cytoplasmic ROS have opposing effects on lifespan[J]. PLoS Genetics,2015,11(2):e1004972. doi:  10.1371/journal.pgen.1004972
    [13] 王红, 张晓寒, 程静, 等. 紫薯提取物对秀丽隐杆线虫抗氧化作用的影响[J]. 食品科学,2017,38(23):165−170. doi:  10.7506/spkx1002-6630-201723026
    [14] Wang X, Zhang J, Lu L, et al. The longevity effect of echinacoside in Caenorhabditis elegans mediated through daf-16[J]. Bioscience Biotechnology and Biochemistry,2015,79(10):1676−1683. doi:  10.1080/09168451.2015.1046364
    [15] 吕振宇, 孟姣, 孙传鑫, 等. 枸杞对秀丽隐杆线虫寿命和产卵的影响及其抗氧化租用[J]. 食品科学,2019,40(5):183−188. doi:  10.7506/spkx1002-6630-20171016-119
    [16] 国家药典委员会. 中华人民共和国药典. 一部[M]. 北京: 中国医药科技出版社, 2015: 323−324.
    [17] 胡太超, 刘玉敏, 陶荣珊, 等. 鹿茸多肽的抗疲劳作用机制研究[J]. 吉林农业大学学报,2015,37(4):469−475.
    [18] 韩丛成, 陈晓光. 复方鹿茸口服液抗衰老作用的实验研究[J]. 中国老年学杂志,2009,29(19):2502−2503. doi:  10.3969/j.issn.1005-9202.2009.19.035
    [19] 齐艳萍. 鹿茸对小鼠肿瘤及免疫功能的影响[J]. 黑龙江八一农垦大学学报,2012,24(1):55−57. doi:  10.3969/j.issn.1002-2090.2012.01.017
    [20] 杨吉利, 景年财, 郭环宇, 等. 鹿茸多肽对大鼠乳腺癌骨转移模型肿瘤生长及破骨细胞的影响[J]. 中国老年学杂志,2014(13):3684−3685. doi:  10.3969/j.issn.1005-9202.2014.13.081
    [21] 赵磊, 籍保平, 王成涛. 鹿茸对盐酸-乙醇诱导胃粘膜损伤保护作用的初探[J]. 食品科技,2012,37(7):71−74.
    [22] Ly K, Reid S J, Snell R G. Rapid RNA analysis of individual Caenorhabditis elegans[J]. MethodsX,2015,2:59−63. doi:  10.1016/j.mex.2015.02.002
    [23] Neher D A, Sturzenbaum S R. Extra-long PCR, an identifier of DNA adducts in single nematodes(Caenorhabditis elegans)[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,2006,144(3):279−285.
    [24] Moan J, Grigalavicius M, Baturaite Z, et al. The relationship between UV exposure and incidence of skin cancer[J]. Photodermatology Photoimmunology & Photomedicine,2015,31(1):26−35.
    [25] 李贞景, 薛意斌, 王昵霏, 等. 花生四烯酸对秀丽隐杆线虫紫外辐射损伤的修复作用[J]. 食品工业科技,2018,39(22):283−286.
    [26] Hanschmann E M, Godoy J R, Berndt C, et al. Thioredoxins, glutaredoxins, and peroxiredoxins molecular mechanisms and health significance: From cofactors to antioxidants to redox signaling[J]. Antioxidants & Redox Signaling,2013,19(13):1539−1605.
    [27] Marengo B, Nitti M, Furfaro A L, et al. Redox homeostasis and cellular antioxidant system: Crucial players in cancer growth and therapy[J]. Oxidative Medicine and Cellular Longevity,2016,2016:6245641.
    [28] 赵玉红, 金秀明, 韩睿. 鹿茸多糖分离纯化及抗氧化活性研究[J]. 食品工业科技,2012,33(12):155−158.
    [29] 陈晓光, 金淑莉, 邸琳, 等. 鹿茸多胺的抗脂质过氧化作用(英文)[J]. 中草药,2004,35(8):65−68.
    [30] Ding Y, Ko S C, Moon S H, et al. Protective effects of novel antioxidant peptide purified from alcalase hydrolysate of velvet antler against oxidative stress in chang liver cells in vitro and in a zebrafish model in vivo[J]. International Journal of Molecular Science,2019,20(20):5187. doi:  10.3390/ijms20205187
    [31] De Castro E, DE Castro S H, Johnson T E. Isolation of longlived mutants in Caenorhabditis elegans using selection for resistance to juglone[J]. Free Radical Biology and Medicine,2004,37(2):139−145. doi:  10.1016/j.freeradbiomed.2004.04.021
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  23
  • HTML全文浏览量:  9
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-03
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要通知

    4月19-23日刊社在上海举办第四届食品科技创新论坛,届时编辑部电话无人接听,敬请谅解。