Optimization of Ultrasound-Microwave Assisted Extraction of Melanin from Auricularia auricula-judae by Response Surface Methodology
-
摘要: 以黑木耳(Auricularia auricula-judae)粉末为材料,研究了超声微波联用辅助提取黑木耳黑色素的方法。通过单因素实验考察黑木耳干粉粉碎粒度、超声功率、微波功率和超声微波联用时间对提取效果的影响,并采用响应面法优化工艺条件。通过与传统溶剂提取法及超声辅助提取法进行比较,结合扫描电镜(Scanning electron microscope)观察不同提取方法对于黑木耳干粉组织结构的破坏程度,以此验证超声微波联用辅助提取黑木耳黑色素的优势。结果表明:木耳黑色素的最佳提取工艺条件是:超声功率398 W、微波功率392 W、联合作用时间31 min。此条件下黑木耳黑色素吸光度为0.984,粗黑色素得率达到9.10%,相较传统溶剂法提取法(7.20%)、超声辅助提取法(5.20%)分别提高26.38%、75.00%。经比较不同提取方法后的黑木耳组织的SEM图像,表明黑木耳组织经超声微波联用辅助提取方法后,组织结构破损严重。结果证实:超声微波联用辅助提取黑木耳黑色素的方法相较于传统溶剂法可节约溶剂的使用量,相较于超声辅助提取法所耗费的时间有所减少,并且可提升黑木耳黑色素得率。Abstract: The ultrasound-microwave assisted extraction(UMAE) of melanin from Auricularia auricula-judae powder was studied in this study. The effects of particle size, ultrasonic power, microwave power and ultrasound-microwave combined action time on the extraction of melanin from A. auricula-judae
powder were investigated by single factor experiment, and the process conditions were optimized by response surface methodology.Compared with the traditional solvent extraction method and ultrasound assisted extraction method, combined with scanning electron microscope (SEM), the damage degree of different extraction methods on the structure of A. auricula-judae dry powder was observed, so as to verify the advantages of ultrasound-microwave assisted extraction of A. auricula-judae melanin.The results showed that the optimal extraction conditions were as follows: Ultrasonic power 398 W, microwave power 392 W, combined action time 31 min. Under these conditions, the absorbance of A. auricula-judae melanin was 0.984, and the yield reached 9.10%. Compared with the traditional solvent extraction method (7.20%) and ultrasound-assisted extraction method (5.2%), the extraction yield of Auricularia auricula melanin increased by 26.38% and 75.00%, respectively. Compared the SEM images of the tissue of A. auricula-judae with different extraction methods, it was shown that the tissue structure of A. auricula-judae was seriously damaged after ultrasound-microwave assisted extraction. The results confirmed that the method of ultrasound-microwave assisted extraction of A. auricula-judae melanin could save the amount of solvent compared with the traditional solvent method, reduce the time spent compared with the ultrasound-microwave assisted extraction method, and improve the yield of A. auricula-judae melanin. -
表 1 黑木耳黑色素提取 Box-Behnken 试验因素和水平
Table 1. Factors and levels of Box-Behnken test for A. auricula-judae melanin extraction
水平 X1超声功率(W) X2微波功率 (W) X3联合作用时间( min) 1 350 300 20 2 400 400 30 3 450 500 40 表 2 黑木耳黑色素提取 Box-Behnken 试验方案与结果
Table 2. Scheme and results of Box-Behnken experiment for extraction of A. auricula-judae melanin
试验号 X1 X2 X3 OD207 试验号 X1 X2 X3 OD207 1 −1 −1 0 0.841 10 0 1 −1 0.847 2 1 −1 0 0.853 11 0 −1 1 0.797 3 −1 1 0 0.819 12 0 1 1 0.831 4 1 1 0 0.774 13 0 0 0 0.963 5 −1 0 −1 0.768 14 0 0 0 0.977 6 1 0 −1 0.684 15 0 0 0 1.025 7 −1 0 1 0.826 16 0 0 0 0.986 8 1 0 1 0.817 17 0 0 0 1.007 9 0 −1 −1 0.823 表 3 方差分析
Table 3. Variance analysis
方差来源 自由度 平方和 均方 F值 P值 X1 1 1.985E-003 1.985E-003 1.08 0.3324 X2 1 2.311E-004 2.311E-004 0.13 0.7328 X3 1 2.775E-003 2.775E-003 1.52 0.2579 X1X2 1 8.123E-004 8.123E-004 0.44 0.5266 X1X3 1 1.406E-003 1.406E-003 0.77 0.4098 X2X3 1 2.500E-005 2.500E-005 0.014 0.9102 ${\rm{X}}_1^2 $ 1 0.051 0.051 27.99 0.0011** ${\rm{X}}_2^2 $ 1 0.015 0.015 8.16 0.0245* ${\rm{X}}_3^2 $ 1 0.049 0.049 26.61 0.0013** 模型 9 0.13 0.015 8.16 0.0057** 残差 7 0.013 1.830E-003 失拟项 3 0.010 3.465E-003 5.74 0.0623 纯误差 4 2.415E-003 6.038E-004 总和 16 0.15 注:*表示差异显著(P < 0.05),**表示差异极显著(P < 0.01)。 -
[1] 朱丽云, 张拥军, 李佳, 等. 粉碎工艺对黑木耳多糖溶出效果的影响研究[J]. 中国食品学报,2010,10(6):150−154. doi: 10.3969/j.issn.1009-7848.2010.06.025 [2] 朱磊, 王振宇, 周芳. 响应面法优化微波辅助提取黑木耳多糖工艺研究[J]. 中国食品学报,2009,9(2):53−59. doi: 10.3969/j.issn.1009-7848.2009.02.010 [3] Tan M, Gan D, Wei L, et al. Isolation and characterization of pigment from Cinnamomum burmannii peel[J]. Food Research International,2011,44(6):2289−2294. [4] Chen S R, Jiang B, Zheng J X, et al. Isolation and characterization of natural melanin derived from silky fowl (Gallusgallus domesticus Brisson)[J]. Food Chemistry,2008,111(3):745−749. doi: 10.1016/j.foodchem.2008.04.053 [5] 张敏, 陈燕璐, 程菲菲, 等. 木耳黑色素的发酵制备及其清除自由基活性研究[J]. 核农学报,2015,29(2):304−312. doi: 10.11869/j.issn.100-8551.2015.02.0304 [6] 刘雅静, 袁延强, 刘秀河, 等. 黑木耳营养保健研究进展[J]. 中国食物与营养,2010,6(10):66−69. doi: 10.3969/j.issn.1006-9577.2010.10.018 [7] 侯若琳, 袁源, 项凯凯, 等. 纤维素酶-超声波协同提取黑木耳黑色素工艺及其抗氧化活性分析[J]. 菌物学报,2019,38(3):414−427. [8] 潘磊, 辛卓霖, 刘波, 等. 响应面法优化超声辅助提取木耳黑色素[J]. 中国食品学报,2015,15(7):110−116. [9] Harki E, Talou T, Dargent R. Purifification, characterisation and analysis of melanin extracted fromTuber melanosporumVitt[J]. Food Chemistry,1997,58(1-2):69−73. doi: 10.1016/S0308-8146(96)00215-4 [10] 李琦, 侯丽华, 刘鑫, 等. 黑木耳黑色素鉴定及提取工艺优化[J]. 食品科学,2010(16):87−92. [11] 张莲姬. 黑木耳黑色素抗氧化作用的研究[J]. 食品研究与开发,2013,5(34):111−114. [12] Lu X, Zheng Z, Li H, et al. Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus (Nelumbo nucifera Gaertn.) seeds[J]. Industrial Crops and Products,2017,107:546−557. doi: 10.1016/j.indcrop.2017.05.060 [13] 吴晨霞, 陈萍, 金晖, 等. 木耳黑色素的提取及其抗氧化研究[J]. 食用菌,2013,35(4):72−75. doi: 10.3969/j.issn.1000-8357.2013.04.042 [14] 张吉祥, 赵文静, 白晓杰, 等. 正交试验法优化黑米黑色素的超声辅助提取工艺[J]. 食品科学,2010,31(4):39−41. [15] 万鹏. 黑木耳黑色素对贫血小鼠肠道微生态的调节[D]. 哈尔滨: 黑龙江大学, 2015. [16] Bell A A, Wheeler M H. Biosyythesis and functions of melanins[J]. Ann Hev Phytopathol,1986,24(1):411−451. doi: 10.1146/annurev.py.24.090186.002211 [17] Liew S Q, Ngoh, G C, et al. Sequential ultrasound-microwave assisted acid extraction (UMAE) of pectin from pomelo peels[J]. International Journal of Biological Macromolecules,2016,93:426−435. doi: 10.1016/j.ijbiomac.2016.08.065 [18] Afshari K, Samvati V, Shahidi S A. Ultrasonic-assisted extraction and in vitro antioxidant activity of polysaccharide from Hibiscus leaf[J]. International Journal of Biological Macromolecules,2015,74:558−567. doi: 10.1016/j.ijbiomac.2014.07.023 [19] 张小林, 陈博文, 孙晓瑞, 等. 响应面法优化超声波辅助灵芝黑色素提取工艺[J]. 核农学报,2018,32(3):532−538. doi: 10.11869/j.issn.100-8551.2018.03.0532 [20] Muralidhar R V, ChirumamilA R R. A response surface approach for the comparison of lipase production byCanida cylindracea using two different carbon sources[J]. Biochemistry Engineering Journal,2001,9(1):17−23. doi: 10.1016/S1369-703X(01)00117-6 [21] 张玉香, 屈慧鸽, 杨润亚, 等. 响应面法优化蓝莓叶黄酮的微波提取工艺[J]. 食品科学,2010,31(16):33−37. [22] Yang B, Prasad K N, Xie H, et al. Structural characteristics of oligosaccharides from soy sauce lees and their potential prebiotic effffect on lactic acid bacteria[J]. Food Chemistry,2011,126(2):590−594. doi: 10.1016/j.foodchem.2010.11.048 [23] Zhang B, Yang R Y, Liu C Z. Microwave-assisted extraction of chlorogenic acid from flflower buds of Lonicera japonica Thunb.[J]. Separation and Purifification Technology,2008,62(2):480−483. doi: 10.1016/j.seppur.2008.02.013 [24] Yang L, Cao Y, Jiang J, et al. Response surface optimization of ultrasound-assisted flavonoids extraction from the flower of Citrus aurantium L. var. amara Engl[J]. Journal of Separation Science,2010,33(9):1349−1355. doi: 10.1002/jssc.200900776 [25] Both S, Chemat F, Strube J. Extraction of polyphenols from black tea-conventional and ultrasound assisted extraction[J]. Ultrasonics Sonochemistry,2014,21(3):1030−1034. doi: 10.1016/j.ultsonch.2013.11.005 -