基于主成分分析和聚类分析综合评价蒸谷米的品质特性

雷月 宫彦龙 邓茹月 张大双 朱速松 唐会会 陈重远 张志斌

雷月,宫彦龙,邓茹月,等. 基于主成分分析和聚类分析综合评价蒸谷米的品质特性[J]. 食品工业科技,2021,42(7):258−267. doi:  10.13386/j.issn1002-0306.2020050209
引用本文: 雷月,宫彦龙,邓茹月,等. 基于主成分分析和聚类分析综合评价蒸谷米的品质特性[J]. 食品工业科技,2021,42(7):258−267. doi:  10.13386/j.issn1002-0306.2020050209
LEI Yue, GONG Yanlong, DENG Ruyue, et al. Comprehensive Evaluation of Quality Characteristics of Parboiled Rice Based on Principal Component Analysis and Cluster Analysis[J]. Science and Technology of Food Industry, 2021, 42(7): 258−267. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020050209
Citation: LEI Yue, GONG Yanlong, DENG Ruyue, et al. Comprehensive Evaluation of Quality Characteristics of Parboiled Rice Based on Principal Component Analysis and Cluster Analysis[J]. Science and Technology of Food Industry, 2021, 42(7): 258−267. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020050209

基于主成分分析和聚类分析综合评价蒸谷米的品质特性

doi: 10.13386/j.issn1002-0306.2020050209
基金项目: 贵州省农业科学院青年基金项目资助(黔农科院青年基金[2018]17号);贵州省优质特色水稻研发与转化及园区技术服务能力建设项目资助(黔 科合平台人才[2017]5719);贵州省科技计划项目资助(黔科合平台人才[2018]5263);贵州省水稻现代农业产业技术体系建设项目资助(GZCYTX2018-0602);贵州省科技计划项目资助(黔科合平台人才[2018]5620);贵州省科技计划项目资助(黔科合支撑[2019]2301号);特色稻种资源收集、保存与创制利用(黔农科院种质资源[2020]11号)
详细信息
    作者简介:

    雷月(1988−),女,助理研究员,研究方向:稻米深加工及功能性成分研究,E-mail:leiyue0917@163.com

    通讯作者:

    宫彦龙(1987−),男,博士研究生,助理研究员,研究方向:水稻遗传育种及稻米加工研发应用,E-mail:gongyanlong1208@163.com

    朱速松(1966−),男,博士,研究员,研究方向:水稻遗传育种及稻米加工研发应用,E-mail:susongzhu@139.com

  • 中图分类号: TS213.3

Comprehensive Evaluation of Quality Characteristics of Parboiled Rice Based on Principal Component Analysis and Cluster Analysis

  • 摘要: 为探讨蒸谷米的品质并建立其评价体系,本试验选取12个不同品种的稻谷原料制备蒸谷米,并对其碾磨品质、外观品质、营养品质、食味品质和糊化特性的品质指标进行测定分析,考察不同品种稻谷制得的蒸谷米各项品质指标之间的差异性。同时,采用主成分分析法和聚类分析法对蒸谷米的品质进行综合性评价并建立蒸谷米品质评价模型。结果表明,不同品种稻谷制得的蒸谷米各项品质指标之间均存在差异性(P<0.05),且品质指标间变异系数各不相同,说明蒸谷米在不同品质性状之间呈现不同程度的变化。由主成分分析发现23个反映不同品种稻谷制得的蒸谷米品质的指标可以用6个主成分表示,其累积方差贡献率为91.083%;根据聚类分析结果可知,爆腰率、黄米粒、外观、蛋白质、崩解值、峰值黏度、最终黏度和回生值8个品质指标可以用来综合评价蒸谷米品质的优劣。12个不同品种稻谷制得的蒸谷米中,“玉针香”的品质最佳,“大粒香”的品质最差,其次为“粤丰B”。主成分分析结合聚类分析综合评价方法可为不同品种稻谷制备蒸谷米的品质评价提供参考,并为蒸谷米专用稻的选育及蒸谷米资源的开发应用奠定理论依据。
  • 图  1  主成分分析碎石图

    Figure  1.  Screen plot of PCA

    图  2  蒸谷米品质指标的R型聚类

    Figure  2.  R-type cluster analysis of quality indexes of parboiled rice

    图  3  蒸谷米品质指标的Q型聚类

    Figure  3.  Q-type cluster analysis of quality indexes of parboiled rice

    表  1  不同品种蒸谷米品质指标描述性分析

    Table  1.   Descriptive statistics of quality indexes of parboiled rice by different rice cultivars


    名称
    碾磨品质外观品质营养品质食味品质
    糙米率(%)脱壳率(%)爆腰率(%)碎米总量(%)黄米粒(%)长宽比整精米率(%)水分
    (%)
    蛋白质(%)直链淀粉(%)VB1(mg/
    100 g)
    VB2(mg/
    100 g)
    外观硬度黏度食味值
    大粒香73.9919.5412.6622.320.21.577.712.45.628.61.340.0452.158.181.2339.8
    玉针香75.2922.680.324.79.83.275.313.16.124.81.350.0794.77.555.0357.5
    金麻粘69.2022.821.6229.310.72.370.712.96.226.91.190.0772.158.451.8340.5
    天丰B74.1521.130.6629.510.72.470.513.36.230.81.270.0853.158.303.0046.0
    粤丰B68.1122.082.3868.79.92.835.712.46.028.01.400.0932.258.301.6340.8
    红香米64.6122.110.76165.12.553.112.96.024.81.110.0963.67.933.1348.5
    津原香9875.6619.085.6227.97.3284.213.26.624.41.120.083.857.903.5349.8
    SN16-23675.1921.164.6133.514.32.490.712.87.119.80.970.0493.4758.083.3048.8
    15L-Z15674.8218.813.34310.21.789.812.85.320.41.050.0513.3758.083.1847.8
    贵丰优78573.0820.961.1244.812.32.770.213.45.619.41.350.0473.58.003.3048.5
    两优6869.9020.771.550.242.12.749.812.85.923.11.220.0593.258.152.9546.8
    徽两优189873.3020.870.932.885.22.967.213.16.520.30.910.0692.958.332.6344.5
    最小值64.6118.80.322.37.31.535.712.45.319.40.910.0452.157.551.2339.8
    最大值75.6622.8213.368.785.23.290.713.47.130.81.40.0964.78.455.0357.5
    均值72.28213.7838.9824.822.4369.5812.936.0924.281.190.0693.28.12.946.6
    中位数69.5521.051.5633.1511.52.4570.612.96.0524.61.210.0733.3138.123.0747.3
    标准差3.501.324.5914.7725.630.516.480.320.493.80.160.020.750.2414.9
    变异系数(%)4.846.29121.4337.89103.2620.5823.682.478.0515.6513.4528.9923.442.9634.4810.52
    下载: 导出CSV

    表  2  不同品种蒸谷米糊化特性分析

    Table  2.   Gelatinization properties of different kinds of parboiled rice

    名称峰值黏度(cp)谷值黏度(cp)崩解值(cp)最终黏度(cp)回生值(cp)峰值时间(min)糊化温度(℃)
    大粒香18751631244283512046.2788.75
    玉针香276716621105347318115.8083.95
    金麻粘27431794949355517615.8786.40
    天丰B23831893490327213796.0082.40
    粤丰B17821289493238210936.0788.85
    红香米22951800495328014805.8084.85
    津原香9822941566728302614605.9384.75
    SN16-23625761596980328716915.8784.00
    15L-Z15624331747686341716705.8784.80
    贵丰优785272915811148330917285.6781.55
    两优6823281693635315214595.9387.20
    徽两优189826491691958341117205.7382.30
    最小值1782156624423825.6781.55 81.55
    最大值276718931148355518116.2788.85
    均值2404.51661.9742.63199.915385.984.98
    中位数24081676.57073283.515755.8784.78
    标准差321.9153.47284.77324.48230.590.162.41
    变异系数/%13.399.2338.3510.1414.992.712.84
    下载: 导出CSV

    表  3  蒸谷米品质指标间的相关性分析

    Table  3.   Correlation analysis between quality indexes of parboiled rice

    品质
    指标
    糙米率脱壳率爆腰率碎米
    总量
    黄粒米长宽比整精
    米率
    水分蛋白质直链
    淀粉
    VB1VB2外观硬度黏度食味值峰值
    黏度
    谷值
    黏度
    崩解值最终
    黏度
    回生值峰值
    时间
    糊化
    温度
    糙米率1.000
    脱壳率−0.5301.000
    爆腰率0.385−0.768**1.000
    碎米总量−0.745**0.221−0.2241.000
    黄粒米−0.4050.095−0.2920.2271.000
    长宽比−0.2280.717**−0.868**0.2770.2901.000
    整精米率0.795**−0.4970.519−0.749**−0.340−0.5011.000
    水分0.3190.040−0.490−0.3070.0280.3320.2871.000
    蛋白质0.1730.236−0.395−0.2590.1180.2790.1820.1891.000
    直链淀粉−0.2330.241−0.050−0.088−0.270−0.161−0.333−0.269−0.0931.000
    VB1−0.1350.269−0.1050.129−0.5170.128−0.410−0.143−0.4880.5691.000
    VB2−0.5260.532−0.5570.3380.1420.395−0.5430.0850.2240.5330.1381.000
    外观0.348−0.002−0.240−0.138−0.0320.3680.3160.583*0.166−0.399−0.1240.0681.000
    硬度−0.2680.0100.0330.1080.151−0.220−0.256−0.2800.0310.256−0.145−0.020−0.883**1.000
    黏度0.3760.083−0.305−0.180−0.0790.4370.3310.631*0.189−0.397−0.1230.0730.983**−0.821**1.000
    食味值0.3580.065−0.248−0.156−0.0860.4030.3200.5490.157−0.388−0.0780.0520.992**−0.891**0.990**1.000
    峰值黏度0.2760.288−0.406−0.3900.0720.3950.4240.719**0.239−0.527−0.349−0.1650.491−0.2280.600*0.5211.000
    谷值黏度0.0100.020−0.070−0.3820.244−0.1700.3110.423−0.0740.094−0.3190.0150.1550.0660.2000.1370.4661.000
    崩解值0.3070.315−0.421−0.235−0.0510.5380.3120.584*0.310−0.646*−0.222−0.1940.472−0.2930.5700.5150.879**−0.0121.000
    最终黏度0.2140.149−0.198−0.4430.1800.1320.5040.614*0.094−0.414−0.461−0.1740.430−0.1780.5170.4450.907**0.760**0.616*1.000
    回生值0.2940.196−0.233−0.3690.0910.2990.5020.583*0.182−0.644*−0.437−0.2560.502−0.2940.594*0.5360.966**0.4040.875**0.902**1.000
    峰值时间0.029−0.2780.523−0.107−0.319−0.559−0.095−0.694*−0.1570.705*0.395−0.028−0.5540.294−0.609*−0.549−0.824**−0.216−0.815**−0.682*−0.815**1.000
    糊化温度−0.386−0.0080.3770.264−0.165−0.328−0.395−0.892**−0.2410.4650.3630.066−0.5670.242−0.616*−0.540−0.740**−0.405−0.618*−0.656*−0.654*0.756**1.000
    注:*:在0.05水平(双侧)上显著相关,**:在0.01水平(双侧)上显著相关。
    下载: 导出CSV

    表  4  主成分特征值、方差贡献率和累积贡献率

    Table  4.   Eigenvalues, variance contribution rates and cumulative contribution rates of principal components

    成分初始特征值提取平方和载入旋转平方和载入
    合计方差的(%)累积(%)合计方差的(%)累积(%)合计方差的(%)累积(%)
    18.82638.37338.3738.82638.37338.3735.93925.82025.820
    24.51619.63458.0084.51619.63458.0084.41819.20845.028
    32.74711.94369.9512.74711.94369.9514.36618.98364.011
    41.9198.34278.2941.9198.34278.2942.34610.20174.213
    51.5396.69084.9841.5396.69084.9842.0789.03683.249
    61.4036.09991.0831.4036.09991.0831.8027.83491.083
    70.8863.85294.935
    80.5692.47497.409
    90.2491.08298.491
    100.1990.86399.354
    110.1490.646100.000
    下载: 导出CSV

    表  5  旋转后成分荷载矩阵

    Table  5.   Component loading matrix after rotation

    指标成分
    123456
    崩解值0.9200.2350.119−0.1320.1120.195
    回生值0.9000.236−0.0610.241−0.0590.075
    峰值黏度0.8990.2150.0810.3320.0180.135
    峰值时间−0.812−0.342−0.259−0.0520.3330.050
    最终黏度0.7240.175−0.0680.617−0.1230.016
    直链淀粉−0.706−0.2330.3280.3500.4570.059
    糊化温度−0.629−0.391−0.023−0.3380.152−0.214
    水分0.5390.4310.1470.4260.0310.173
    外观0.2710.9520.0150.081−0.0460.078
    食味值0.3100.9360.0350.0590.0290.068
    硬度−0.064−0.9270.0550.085−0.1240.091
    黏度0.3780.8990.0640.1190.0240.104
    爆腰率−0.303−0.126−0.891−0.0610.047−0.192
    脱壳率0.225−0.0900.8650.0250.1790.036
    长宽比0.3850.2730.780−0.231−0.0350.099
    整精米率0.3250.210−0.7640.2860.1670.330
    VB2−0.3910.1560.7590.184−0.0910.159
    糙米率0.2330.299−0.6550.0380.3640.419
    谷值黏度0.1790.016−0.0510.943−0.171−0.079
    黄米粒0.067−0.1000.2420.122−0.832−0.014
    VB1−0.3030.0400.309−0.1540.751−0.414
    蛋白质0.1180.0460.191−0.076−0.1680.926
    碎米总量−0.208−0.0340.447−0.468−0.408−0.485
    下载: 导出CSV

    表  6  因子得分系数矩阵表

    Table  6.   Rotated factor loading matrix

    指标公因子
    123456
    糙米率0.0160.036−0.130−0.0610.1520.214
    脱壳率0.092−0.0940.2190.0160.1690.020
    爆腰率−0.0370.023−0.215−0.017−0.039−0.112
    碎米总量0.0000.0550.056−0.165−0.200−0.240
    黄米粒−0.0640.0120.0200.068−0.4150.005
    长宽比0.0820.0150.173−0.1400.0410.057
    整精米率0.0200.010−0.1590.0590.0590.132
    水分0.0310.0490.0480.1530.0440.020
    蛋白质−0.077−0.0180.058−0.110−0.0930.607
    直链淀粉−0.178−0.0010.1230.2660.2000.091
    VB10.0390.0130.097−0.0060.391−0.240
    VB2−0.1960.1080.1870.157−0.0660.151
    外观−0.0950.276−0.0100.010−0.066−0.005
    硬度0.100−0.2940.0270.044−0.0050.088
    黏度−0.0530.2350.0080.017−0.012−0.001
    食味值−0.0690.259−0.002−0.005−0.019−0.015
    峰值黏度0.191−0.0800.0290.0630.089−0.032
    谷值黏度−0.064−0.0050.0110.470−0.077−0.135
    崩解值0.250−0.0870.027−0.1810.1420.037
    最终黏度0.109−0.048−0.0050.233−0.007−0.111
    回生值0.197−0.064−0.0140.0160.041−0.067
    峰值时间−0.156−0.003−0.0360.0500.1020.113
    糊化温度−0.052−0.035−0.007−0.0900.048−0.046
    下载: 导出CSV

    表  7  因子得分与综合得分

    Table  7.   Factor scores and comprehensive scores

    名称F1F2F3F4F5F6F排名
    大粒香−1.4222−0.9754−1.49420.11500.7810−0.3847−0.877212
    玉针香0.55271.95990.71860.11011.35110.07540.78681
    金麻粘0.9738−1.84480.67800.99160.84840.09360.23764
    天丰B−0.7523−0.01610.53251.87500.73260.65330.37573
    粤丰B−1.2742−0.71741.2677−2.09340.4181−0.1853−0.636311
    红香米−0.78050.69011.11790.7777−1.7606−0.9047−0.13869
    津原香98−0.76491.0981−0.7441−0.15640.01741.3349−0.09727
    SN16−2360.71630.0063−0.7161−0.9152−0.30311.69100.19716
    15L−Z1560.26240.2858−1.85900.2480−0.4961−1.353−0.160210
    贵丰优7851.67900.21470.0142−0.67660.6865−1.21050.60372
    两优68−0.1479−0.00870.3170−0.3239−0.5739−0.8001−0.13488
    徽两优18980.9577−0.69230.16750.0482−1.70140.99020.20225
    下载: 导出CSV
  • [1] 侯利南, 丁玉琴, 林亲录, 等. 超声波辅助浸泡对稻谷含水量和蒸谷米品质的影响[J]. 粮食与油脂,2018,31(13):37−40.
    [2] 刘永乐. 稻谷及其制品加工技术[M]. 北京: 中国轻工业出版社, 2010: 62-65.
    [3] 高雅文, 张大力, 方丽, 等. 蒸谷米超高压浸泡工艺条件优化[J/OL]. 中国粮油学报, 2020. http://kns.cnki.net/kcms/detail/11.2864.ts.20200120.0908.014.html.
    [4] Sujatha S J, Ahmad R, Bhat P R. Physicochemical properties and cooking qualities of two varicties of raw and parboiled rice cultivated in the coastal region of Dakshina Kannada, India[J]. Food Chemistry,2004,86(2):211−216. doi:  10.1016/j.foodchem.2003.08.018
    [5] Oli P, Ward R, Adhikari B, et al. Synchrotron X-ray fluorescence microscopy study of the diffusion of iron, manganese, potassium and zinc in parboiled rice kernels[J]. LWT-Food Science and Technology,2016,71:401−408.
    [6] Kaddus M M A, Haque A, Douglass M M P, et al. Parboiling of rice part I: Effect of hot soaking time on quality of milled rice[J]. Journal of Food Science and Technology,2002,37:527−537. doi:  10.1046/j.1365-2621.2002.00610.x
    [7] 李逸鹤, 马栎. 蒸谷米生产中干燥工序工艺参数的研究[J]. 粮食与油脂,2017,30(12):69−72. doi:  10.3969/j.issn.1008-9578.2017.12.019
    [8] Thakur A K, Gupta A K. Water absorption charcateristics of paddy, brown rice and husk during soaking[J]. Journal of Food Enginnering,2006,75(2):252−257. doi:  10.1016/j.jfoodeng.2005.04.014
    [9] 谢健, 秦正平, 黄文雄, 等. 一种蒸谷米生产分级浸泡方法: 中国, CN 105725057 A [P]. 2016-07-06.
    [10] Som chart Soponronnarit, Som kiat Prachayaw arakorn, Wathanyoo Rordprapat, et al. A superheated-steam fluidized-bed dryer for parboiled rice: Testing of a pilot scale and mathem atical model development somchart[J]. Drying Technology,2006,9(90):1457−1467.
    [11] Ipsita Das, S K Das, Satish Bal. Specific energy and quality aspects of infrared (IR) dried parboiled rice[J]. Journal of Food Enginnering,2004,24(15):9−14.
    [12] Elizabeth Devi Wahengbam, Arup jyoti Dasa, Brian Desmond Green, et al. Effect of iron and folic acid fortification on in vitro bioavailability and starch hydrolysis in ready-to-eat parboiled rice[J]. Food Chemistry,2019,292:39−46. doi:  10.1016/j.foodchem.2019.04.044
    [13] 付桂明, 陈建芳, 万茵, 等. 蒸谷晚籼米的制备及其无机元素和农药残留分析[J]. 食品工业科技,2012,33(5):177−180.
    [14] 周显青, 张鹏举, 张玉荣, 等. 柠檬酸浸泡对蒸谷糙米碾米过程中蒸谷米镉含量和品质的影响[J/OL]. 食品科学, http://kns.cnki.net/kcms/detail/11.2206.TS.20190118.1022.024.html.
    [15] 高雅文, 刘景圣. 干燥条件对蒸谷米品质影响的研究[J]. 农业机械,2011,32(11):73−76.
    [16] 刘园, 马君敏. 不同工艺条件对蒸谷米品质的影响[J]. 食品研究与开发,2017,38(24):97−102. doi:  10.3969/j.issn.1005-6521.2017.24.020
    [17] Chanakan Promuthai, Shu Fukai, Ian D Godwin, et al. Iron-fortified parboiled rice novel solution to high iron density in rice based diets[J]. Food Chemistry,2008,88(19):391−399.
    [18] Chanakan Promuthai, Raymond P Glahn, Zhiqiang Cheng, et al. The bioavailability of iron fortified in whole grain parboiled rice[J]. Food Chemistry,2009(112):982−987.
    [19] Chanakan Promuthai, Shu Fukai, Ian D Godwin, et al. Effect of processing conditions on quality of parboiled rice[J]. India: Central Food Technological Research Institute, Mysore,2009,3(15):475−476.
    [20] 张梦, 张遥遥, 胡悦, 等. 基于主成分分析和聚类分析的百合花瓣品质综合分析与评价[J]. 食品工业科技,2020,41(3):232−238, 245.
    [21] 王莉, 张新霞, 杨晓娜, 等. 方便米饭原料适应性的因子、聚类分析研究[J]. 食品工业科技,2015,36(3):109−115.
    [22] Qi X G, Zhu L, Wang C, et al. Development of standard fingerprints of naked oats using chromatography combined with principal component analysis and cluster analysis[J]. Journal of Cereal Science,2017,74:224−230. doi:  10.1016/j.jcs.2017.02.009
    [23] 孟庆虹, 张守文, 王丽群, 等. 基于因子分析和聚类分析的粳稻品质指标研究[J]. 中国食品学报,2018,18(4):270−276.
    [24] 扶定, 王青林, 赵万兵, 等. 基于主成分分析的稻米品质评价及聚类分析[J]. 湖北农业科学,2013,52(15):3488−3491. doi:  10.3969/j.issn.0439-8114.2013.15.005
    [25] 中国国家标准化管理委员会. 稻谷: GB 1350-2009[S]. 北京: 中国标准出版社, 2009.
    [26] 中国国家标准化管理委员会. 优质稻谷: GB-17891-1999[S]. 北京: 中国标准出版社, 1999.
    [27] 中国国家标准化管理委员会. 食品安全国家标准 食品中维生素 B1的测定: GB 5009.84-2016[S]. 北京: 中国标准出版社, 2016.
    [28] 中国国家标准化管理委员会. 食品安全国家标准 食品中维生素B2的测定: GB 5009.85-2016[S]. 北京: 中国标准出版社, 2016.
    [29] Mingyu Fan, Xiaojing Wang, Jian Sun, et al. Effect of indica pedigree on eating and cooking quality in rice backcross inbred lines of indica and japonica crosses[J]. Breeding Science,2017,67:450−458. doi:  10.1270/jsbbs.16191
    [30] 中国国家标准化管理委员会. 大米及米粉糊化特性测定 快速粘度仪法: GB 24852-2010[S]. 北京: 中国标准出版社, 2010.
    [31] 李棒棒, 路源, 于吉斌, 等. 浸泡处理对大米淀粉糊化特性及流变特性的影响[J]. 食品工业科技,2019,39(18):50−55.
    [32] 王晓菁. 籼粳稻杂交后代籼型频率与品质性状的相关性[D]. 沈阳: 沈阳农业大学, 2017.
    [33] 陈思奇, 孟满, 杜勃峰, 等. 基于主成分分析与聚类分析综合评价不同菌种发酵刺梨果渣的香气品质[J]. 中国酿造,2019,38(6):152−159. doi:  10.11882/j.issn.0254-5071.2019.06.029
    [34] 公丽艳, 孟宪军, 刘乃侨, 等. 基于主成分与聚类分析的苹果加工品质评价[J]. 农业工程学报,2014,30(13):276−285. doi:  10.3969/j.issn.1002-6819.2014.13.034
    [35] 丁捷, 赵雪梅, 朱金艳, 等. 基于主成分、因子和聚类分析淡水鱼品种对速冻青稞鱼面品质的影响[J]. 食品工业科技,2018,39(1):34−51.
    [36] 董超, 张丽, 谢鹏, 等. 基于主成分与聚类分析的市售儿童牛排质量特征[J]. 食品工业科技,2018,39(12):1−10.
    [37] 朱周俊, 袁德义, 邹锋, 等. 不同锥栗农家种种仁中9种矿质元素含量的因子分析与聚类分析[J]. 食品科学,2019,40(2):165−170. doi:  10.7506/spkx1002-6630-20180602-020
    [38] 刘丙花, 孙锐, 王开芳, 等. 不同蓝莓品种果实品质比较与综合评价[J]. 食品科学,2019,40(1):70−76. doi:  10.7506/spkx1002-6630-20170829-338
    [39] 贾明辉, 华志强. 主成分分析数据处理方法探讨[J]. 内蒙古民族大学学报(自然科学版),2008(4):379−381.
  • 加载中
图(3) / 表(7)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  10
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-20
  • 网络出版日期:  2021-01-28
  • 刊出日期:  2021-04-01

目录

    /

    返回文章
    返回

    重要通知

    4月19-23日刊社在上海举办第四届食品科技创新论坛,届时编辑部电话无人接听,敬请谅解。