• Scopus
  • CA
  • DOAJ
  • FSTA
  • JST
  • 北大核心期刊
  • 中国科技核心期刊CSTPCD
  • 中国精品科技期刊
  • RCCSE中国核心学术期刊
  • 中国农业核心期刊
  • 中国生物医学文献服务系统SinoMed收录期刊
中国精品科技期刊2020

微生物发酵技术对粉葛化学成分的影响

杨金梅 李冠文 王辉敏 张娜郡 陈超 孙杰 秦楠

杨金梅,李冠文,王辉敏,等. 微生物发酵技术对粉葛化学成分的影响[J]. 食品工业科技,2022,43(23):153−160. doi:  10.13386/j.issn1002-0306.2020030096
引用本文: 杨金梅,李冠文,王辉敏,等. 微生物发酵技术对粉葛化学成分的影响[J]. 食品工业科技,2022,43(23):153−160. doi:  10.13386/j.issn1002-0306.2020030096
YANG Jinmei, LI Guanwen, WANG Huimin, et al. Effect of Microbial Fermentation Technology on Chemical Constituents of Pueraria thomsonii[J]. Science and Technology of Food Industry, 2022, 43(23): 153−160. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020030096
Citation: YANG Jinmei, LI Guanwen, WANG Huimin, et al. Effect of Microbial Fermentation Technology on Chemical Constituents of Pueraria thomsonii[J]. Science and Technology of Food Industry, 2022, 43(23): 153−160. (in Chinese with English abstract). doi:  10.13386/j.issn1002-0306.2020030096

微生物发酵技术对粉葛化学成分的影响

doi: 10.13386/j.issn1002-0306.2020030096
基金项目: 山西教育厅创新项目(2019L0729);药食同源学科。
详细信息
    作者简介:

    杨金梅(1997−),女,硕士研究生,研究方向:药食两用功能产品,E-mail:yangjinmei0829@163.com

    通讯作者:

    秦楠(1981−),男,博士,副教授,研究方向:食品微生物发酵及功能食品,E-mail:bszy6688@163.com

  • 中图分类号: R283.1

Effect of Microbial Fermentation Technology on Chemical Constituents of Pueraria thomsonii

  • 摘要: 目的:利用微生物发酵技术提高粉葛中活性成分的含量,以扩大其功能性产品的研究。方法:首先以粉葛饮片为原料,嗜酸乳杆菌为发酵菌种,葛根素含量为指标,接种量、料液比、发酵时间、发酵温度为影响因素,通过单因素结合响应面设计法优化粉葛的发酵工艺。其次,通过高效液相色谱法、紫外分光光度法、双波长法测定发酵前、后粉葛中葛根素、大豆苷、大豆苷元、总异黄酮、可溶性多糖及总淀粉的含量。结果:粉葛最优发酵条件为:接种量5%,料液比1:3 g/mL,发酵时间36 h,发酵温度29 ℃,葛根素实际含量为8.1854 mg/g与预测值8.2092 mg/g相比,相对误差仅为0.29%。发酵后粉葛中葛根素、大豆苷、大豆苷元、总异黄酮、可溶性多糖、支链淀粉含量均增加,直链淀粉和总淀粉含量减少,与发酵前相比差异均具有显著性(P<0.05)。结论:结果表明微生物发酵技术能够提升粉葛中活性成分的含量。
  • 图  1  接种量对葛根素含量的影响

    Figure  1.  Effect of inoculation amount on puerarin content

    注:相同字母表示差异不具有显著性,不同字母表示差异具有显著性(P<0.05),图2~图4同。

    图  2  料液比对葛根素含量的影响

    Figure  2.  Effect of solid-liquid ratio on puerarin content

    图  3  发酵温度对葛根素含量的影响

    Figure  3.  Effect of fermentation temperature on puerarin content

    图  4  发酵时间对葛根素含量的影响

    Figure  4.  Effect of fermentation time on puerarin content

    图  5  接种量、料液比、发酵时间对葛根素含量的响应曲面图及等高线图

    Figure  5.  Response surface and contour plots of inoculation amount, solid-liquid ratio and fermentation time on puerarin content

    图  6  发酵前、后粉葛粉末

    Figure  6.  Puerariae thomsonii powder before and after fermentation

    图  7  发酵前、后粉葛中异黄酮类成分HPLC图

    Figure  7.  HPLC diagrams of isoflavones in Puerariae thomsonii before and after fermentation

    注:A.混合标准品;B.发酵前粉葛样品;C.发酵后粉葛样品;1.葛根素;2.大豆苷;3.大豆苷元。

    图  8  直链、支链淀粉紫外吸收光谱图

    Figure  8.  UV absorption spectra of amylose and amylopectin

    表  1  响应面因素和水平设计

    Table  1.   Response surface factor and level design

    水平因素
    A接种量(%)B料液比(g/mL)C发酵时间(h)
    −141:224
    061:336
    181:448
    下载: 导出CSV

    表  2  响应面设计及结果

    Table  2.   Response surface design and result

    试验号A接种量B料液比C发酵时间含量(mg/g)
    10116.21
    21105.85
    31015.64
    41−106.41
    50−117.00
    60008.04
    70007.78
    810−16.57
    9−1017.59
    1001−16.04
    110−1−16.10
    12−1−105.90
    130008.40
    14−1107.44
    150008.26
    16−10−17.91
    170007.71
    下载: 导出CSV

    表  3  回归模型方差分析表

    Table  3.   Regression model variance analysis table

    方差来源平方和自由度均方FP显著性
    模型12.7191.414.830.0250显著
    A2.6912.699.190.0191显著
    B0.02010.0200.0680.8013
    C4.050×10−314.050×10−30.0140.9097
    AB0.8410.842.860.1346
    AC0.09310.0930.320.5905
    BC0.1310.130.460.5216
    A21.3111.314.470.0722
    B25.5515.5518.950.0033显著
    C21.2911.294.390.0743
    残差2.0570.29
    失拟项1.6930.566.370.0528不显著
    纯误差0.3540.089
    总离差14.7616
    注:P<0.05表示具有显著性,0.05表示不具有显著性。
    下载: 导出CSV

    表  4  发酵前、后粉葛中水分、灰分测定结果(n=3)

    Table  4.   Determination results of moisture and ash in Pueraria thomsonii before and after fermentation (n=3)

    测定项水分(%)灰分(%)
    发酵前粉葛9.69±0.013.89±0.05
    发酵后粉葛8.19±0.084.19±0.03
    下载: 导出CSV

    表  5  发酵前、后粉葛中异黄酮类成分含量测定结果(n=3)

    Table  5.   Determination results of isoflavone content in Puerariae thomsonii before and after fermentation (n=3)

    测定项测定成分(mg/g)
    大豆苷元大豆苷葛根素总异黄酮
    发酵前粉葛0.22±0.020.84±0.024.85±0.0625.68±0.15
    发酵后粉葛0.38±0.02*1.45±0.03**8.17±0.02**33.26±0.34**
    注:*表示P<0.05,**表示P<0.01;表6同。
    下载: 导出CSV

    表  6  粉葛发酵前、后可溶性多糖及淀粉含量测定结果(n=3)

    Table  6.   Determination results of soluble polysaccharides and starch contents in Puerariae thomsonii before and after fermentation (n=3)

    测定项可溶性多糖(%)淀粉(%)
    直链淀粉支链淀粉总淀粉
    发酵前粉葛2.47±0.058.28±0.078.28±0.07
    发酵后粉葛12.6±0.06**6.44±0.11**0.98±0.047.42±0.07**
    注:−表示未检出。
    下载: 导出CSV
  • [1] 国家药典委员会. 中华人民共和国药典. 一部[S]. 北京: 中国医药科技出版社, 2020.

    National Pharmacopoeia Commission. Chinese Pharmacopoeia. Part I [S]. Beijing: China Pharmaceutical Science and Technology Press, 2020.
    [2] AHMAD B, KHAN S, LIU Y, et al. Molecular mechanisms of anticancer activities of puerarin[J]. Cancer Manag Res,2020,12:79. doi:  10.2147/CMAR.S233567
    [3] 钟凌云, 邓小燕, 黄艺, 等. 葛(葛根、粉葛)不同炮制品的药效与肠道菌群研究[J]. 中国中药志,2021,46(17):4403−4409. [ZHONG L Y, DENG X Y, HUANG Y, et al. Study on the efficacy and intestinal flora of different processing products of Radix Puera-riae and Radix Puerariae[J]. Chinese Materia Medica,2021,46(17):4403−4409.
    [4] JEON Y D, LEE J H, LEE Y M, et al. Puerarin inhibits inflammation and oxidative stress in dextran sulfate sodium-induced colitis mice model[J]. Biomed Pharmacother,2020,124:109847. doi:  10.1016/j.biopha.2020.109847
    [5] CHEN Y G, SONG Y L, WANG Y, et al. Metabolic differentiations of Pueraria lobata and Pueraria thomsonii using ¹H NMR spectroscopy and multivariate statistical analysis[J]. J Pharm Biomed Anal,2014,93:51−58. doi:  10.1016/j.jpba.2013.05.017
    [6] 于钦辉, 杜以晴, 孙启慧, 等. 基于功效和物质基础的野葛、粉葛在解热和抗病毒作用研究进展[J]. 中华中医药学刊,2021,39(9):89−94. [YU Q H, DU Y Q, SUN Q H, et al. Research progress on antipyretic and antiviral effects of Pueraria lobata and Puerariae thomsonii based on efficacy and material basis[J]. Chinese Journal of Traditional Chinese Medicine,2021,39(9):89−94.
    [7] 中国科学院中国植物志编制委员会. 中国植物志(第四十一卷)[M]. 北京: 中国科学出版社, 1995: 219.

    Chinese Flora Compilation Committee, Chinese Academy of Sciences. Flora of China (Volume 41)[M]. Beijing: Science Press, 1995: 219.
    [8] 吴文杰, 刘良红, 黄莺, 等. LC-MS/MS法同时测定葛根药材中14种异黄酮类成分的含量[J]. 中国药房,2018,29(10):1320−1324. [WU W J, LIU L H, HUANG Y, et al. LC-MS/MS method was used to simultaneously determine the contents of 14 isoflavones in Radix Puerariae[J]. Chinese Pharmacy,2018,29(10):1320−1324. doi:  10.6039/j.issn.1001-0408.2018.10.06
    [9] 赵婧文, 张建逵, 魏巍, 等. 粉葛中淀粉含量与葛根素含量的相关性研究[J]. 中国中医药现代远程教育,2018,16(15):95−97. [ZHAO W J, ZHANG J K, WEI W, et al. Study on the correlation between starch content and puerarin content in Puerariae thomsonii[J]. Modern Distance Education of Chinese Traditional Medicine,2018,16(15):95−97. doi:  10.3969/j.issn.1672-2779.2018.15.040
    [10] 董凡, 李浩然, 王少平, 等. 中药发酵的现代研究进展与展望[J]. 中华中医药杂志,2021,36(2):628−633. [DONG F, LI H R, WANG S P, et al. Modern research progress and prospect of traditional Chinese medicine fermentation[J]. Chinese Journal of Traditional Chinese Medicine,2021,36(2):628−633.
    [11] LI L, WANG L, FAN W, et al. The application of fermentation technology in traditional Chinese medicine: A review[J]. Am J Chin Med,2020,48(4):899−921. doi:  10.1142/S0192415X20500433
    [12] CAO G, MA F, XU J, et al. Microbial community succession and toxic alkaloids change during fermentation of Huafeng Dan Yaomu[J]. Lett Appl Microbiol,2020,70(4):318−325. doi:  10.1111/lam.13276
    [13] 张红艳, 冉淦侨, 韩姗姗, 等. 微生物多级发酵对中药方剂功能活性及有效组分的影响[J]. 食品与生物技术学报,2021,40(11):90−96. [ZHANG H Y, RAN J Q, HAN S S, et al. Effect of microbial multi-stage fermentation on functional activity and effective components of Chinese medicinal formulae[J]. Journal of Food and Biotechnology,2021,40(11):90−96.
    [14] WANG T, WANG Z, YANG Z, et al. Effect of the fermentation broth of the mixture of Pueraria lobata, Lonicera japonica, and Crataegus pinnatifida by Lactobacillus rhamnosus 217-1 on liver health and intestinal flora in mice with alcoholic liver disease induced by liquor[J]. Front Microbiol,2021,12:722171−722171. doi:  10.3389/fmicb.2021.722171
    [15] 陈艳艳. 葛根发酵工艺优化及解酒活性评价研究[D]. 长春: 长春中医药大学, 2021.

    CHEN Y Y. Optimization of fermentation process and evaluation of alcoholysis activity of Pueraria lobata[D]. Changchun: Changchun University of Traditional Chinese Medicine, 2021.
    [16] 朱盼, 谢娟平. 不同产地粉葛不同部位中7种化学成分的含量测定与比较[J]. 化学与生物工程,2019,36(7):59−64. [ZHU P, XIE J P. Determination and comparison of seven chemical components in different parts of Pueraria lobata from different producing areas[J]. Chemistry and Bioengineering,2019,36(7):59−64. doi:  10.3969/j.issn.1672-5425.2019.07.014
    [17] 蒙秋艳, 黄靖洲, 梁艳玲, 等. 广西不同产地粉葛、野葛的多糖和异黄酮含量比较[J]. 食品研究与开发,2020,41(21):43−50. [MENG Q Y, HUANG J Z, LIANG Y L, et al. Comparison of polysaccharide and isoflavone contents of Pueraria lobata from different habitats in Guangxi[J]. Food Research and Development,2020,41(21):43−50.
    [18] 黄再强, 张燕飞, 陈玲, 等. 川产葛根、粉葛总黄酮和多糖含量的对比分析[J]. 中药与临床,2017,8(3):11−14. [HUANG Z Q, ZHANG Y F, CHEN L, et al. Comparative analysis of the content of total flavonoids and polysaccharides in Pueraria lobata and Puerariae thomsonii from Sichuan[J]. Traditional Chinese Medicine and Clinical,2017,8(3):11−14.
    [19] 崔晋, 李建军, 马艳弘, 等. 双波长法测定山药中直链和支链淀粉含量[J]. 食品研究与开发,2017,38(13):150−154. [CUI J, LI J J, MA Y H, et al. Determination of amylose and amylopectin content in yam by dual-wavelength method[J]. Food Research and Development,2017,38(13):150−154. doi:  10.3969/j.issn.1005-6521.2017.13.031
    [20] 赵璇, 李瑞颖, 马彦江, 等. 清炒法炮制粉葛过程中主要化学成分与工艺、物性及颜色变化的相关性分析[J]. 中国医院药学杂志,2020,40(23):2414−2418. [ZHAO X, LI R Y, MA Y J, et al. Correlation analysis of main chemical components and process, physical properties and color changes in the process of stir-frying Puerariae thomsonii[J]. Chinese Journal of Hospital Pharmacy,2020,40(23):2414−2418. doi:  10.13286/j.1001-5213.2020.23.04
    [21] 陈旋, 杨国琴, 高书彦, 等. 响应曲面优化苦荞多肽固态发酵工艺及其抗菌活性研究[J]. 食品与发酵科技,2018,54(1):30−38. [CHEN X, YANG G Q, GAO S Y, et al. Optimization of solid state fermentation process and antibacterial activity of tartary buckwheat peptides by response surface methodology[J]. Food and Fermentation Technology,2018,54(1):30−38.
    [22] 冯颖, 陶亮, 肖学爱, 等. 人参叶中高产皂苷菌种的筛选及培养条件优化[J]. 中国酿造,2021,40(8):117−122. [FENG Y, TAO L, XIAO X, et al. Selection of high-yield saponins strains in ginseng leaves and optimization of culture conditions[J]. Chinese Brewing,2021,40(8):117−122. doi:  10.11882/j.issn.0254-5071.2021.08.021
    [23] ZHANG H, WANG L, WANG H, et al. Effects of initial temperature on microbial community succession rate and volatile flavors during Baijiu fermentation process[J]. Food Res Int,2021,141:109887. doi:  10.1016/j.foodres.2020.109887
    [24] 宋艳秋, 陈有为. 红曲霉转化中药葛根固体发酵条件研究[J]. 安徽农业科学,2010,38(4):1707−1708. [SONG Y Q, CHEN Y W. Study on solid fermentation conditions of Monascus transformed Pueraria lobata[J]. Anhui Agricultural Science,2010,38(4):1707−1708. doi:  10.3969/j.issn.0517-6611.2010.04.020
    [25] 倪以宇, 赵大庆, 倪伟锋, 等. 葛根-枳椇子药对发酵工艺及解酒功效评价研究[J/OL]. 食品与发酵工业: 1−10

    2022-04-30]. NI Y Y, ZHAO D Q, NI W F, et al. Evaluation of the fermentation process and anti-alcoholism effect of Pueraria lobata-Hovenia dulcis Thunb seed medicine[J/OL]. Food and Fermentation Industry: 1−10[2022-04-30].
    [26] 孙双, 张婷, 方琰, 等. 雨生红球藻高产虾青素的培养条件优化[J]. 现代食品科技,2021,37(6):98−107. [SUN S, ZHANG T, FANG Y, et al. Optimization of culture conditions for high astaxanthin production by Haematococcus pluvialis[J]. Modern Food Technology,2021,37(6):98−107. doi:  10.13982/j.mfst.1673-9078.2021.6.1000
    [27] 罗盟錡, 张惠捷, 王金龙, 等. 响应面法优化混合益生菌发酵甘草的工艺[J]. 饲料研究,2022,45(3):80−84. [LUO M Q, ZHANG H J, WANG J L, et al. Response surface methodology was used to optimize the fermentation process of licorice by mixed probiotics[J]. Feed Research,2022,45(3):80−84. doi:  10.13557/j.cnki.issn1002-2813.2022.03.016
    [28] 杜静, 王琪琪, 王云胜, 等. 冠突散囊菌发酵对葛根的活性物质和抗氧化活性的影响[J]. 食品工业科技,2021,42(1):121−125. [DU J, WANG Q Q, WANG Y S, et al. Effect of fermentation of P. coronarium on active substances and antioxidant activity of Pueraria lobata[J]. Food Industry Technology,2021,42(1):121−125. doi:  10.13386/j.issn1002-0306.2019120314
    [29] 张群. 益生菌发酵富含黄酮农产品关键技术研究[J]. 食品与生物技术学报,2021,40(11):1673−1689. [ZHANG Q. Key technology of flavone-rich agricultural products fermentation by probiotics[J]. Journal of Food and Biotechnology,2021,40(11):1673−1689.
    [30] PERVEZ S, NAWAZ M A, SHAHID F, et al. Characterization of cross-linked amyloglucosidase aggregates from Aspergillus fumigatus KIBGE-IB33 for continuous production of glucose[J]. Int J Biol Macromol,2019,135(C):1252−1260.
    [31] 柴小涛. 金耳-葛根双向液体发酵条件优化及抗氧化的研究[J]. 轻工科技,2020,36(5):23−25. [CHAI X T. Optimization of fermentation conditions and antioxidant activity of Jiner-Gegen bidirectional liquid fermentation[J]. Light Industry Technology,2020,36(5):23−25.
    [32] 任佳楠. Massilia sp. UMI-21 PHA合成途径中相关酶鉴定及其对PHA合成的影响[D]. 长春: 长春理工大学, 2021.

    REN J N. Massilia sp. UMI-21 PHA synthesis pathway related enzyme identification and its effect on PHA synthesis[D]. Changchun: Changchun University of Technology, 2021.
    [33] 黄群, 肖文军, 孙术国, 等. α-淀粉酶和糖化酶协同酶解葛根淀粉动力学研究[J]. 食品科学,2012,33(21):187−191. [HUANG Q, XIAO W J, SUN S G, et al. Kinetics of α-amylase and glucoamylase synergistic enzymatic hydrolysis of Pueraria starch[J]. Food Science,2012,33(21):187−191.
    [34] 刘襄河, 郑丽璇, 郑丽勉, 等. 双波长法测定常用淀粉原料中直链淀粉、支链淀粉及总淀粉含量[J]. 广东农业科学,2013,40(18):97−100. [LIU X H, ZHENG L X, ZHEN L M, et al. Determination of amylose, amylopectin and total starch content in common starch raw materials by dual wavelength method[J]. Guangdong Agricultural Science,2013,40(18):97−100. doi:  10.3969/j.issn.1004-874X.2013.18.034
    [35] 岳世彦, 周荣荣, 南铁贵, 等. 粉葛与葛根中主要化学成分的含量比较[J/OL]. 中国中药杂志: 1−10[2022-03-02].

    YUE S Y, ZHOU R R, NAN T G, et al. Comparison of the contents of main chemical constituents in Radix Puerariae and Radix Puerariae[J/OL]. Chinese Journal of Traditional Chinese Medicine: 1−10[2022-03-02].
    [36] 张应, 李隆云, 舒抒, 等. 不同产地、品种及采收期粉葛可溶性糖和淀粉的含量测定[J]. 中药材,2013,36(11):1751−1754. [ZHANG Y, LI L Y, SHU S, et al. Determination of soluble sugar and starch content in Pueraria lobata from different habitats, varieties and harvest period[J]. Medicinal Materials,2013,36(11):1751−1754. doi:  10.13863/j.issn1001-4454.2013.11.021
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  12
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-10
  • 网络出版日期:  2022-10-21
  • 刊出日期:  2022-11-23

目录

    /

    返回文章
    返回

    重要通知

    1、快速见刊:客座主编专栏征稿-食源性功能物质挖掘及评价
           2、喜讯 :《食品工业科技》被DOAJ数据库收录!
           3喜报:《食品工业科技》世界期刊影响力稳居Q2区
           4、祝贺:《食品工业科技》中国期刊影响力稳居Q1第二名