矿物质对食物过敏原结构和稳定性的影响

黄美佳 白浩 陈红兵 李欣

黄美佳, 白浩, 陈红兵, 李欣. 矿物质对食物过敏原结构和稳定性的影响[J]. 食品工业科技, 2017, (05): 366-370. doi: 10.13386/j.issn1002-0306.2017.05.061
引用本文: 黄美佳, 白浩, 陈红兵, 李欣. 矿物质对食物过敏原结构和稳定性的影响[J]. 食品工业科技, 2017, (05): 366-370. doi: 10.13386/j.issn1002-0306.2017.05.061
HUANG Mei-jia, BAI Hao, CHEN Hong-bing, LI Xin. Effect of mineral on structure and stability of food allergens[J]. Science and Technology of Food Industry, 2017, (05): 366-370. doi: 10.13386/j.issn1002-0306.2017.05.061
Citation: HUANG Mei-jia, BAI Hao, CHEN Hong-bing, LI Xin. Effect of mineral on structure and stability of food allergens[J]. Science and Technology of Food Industry, 2017, (05): 366-370. doi: 10.13386/j.issn1002-0306.2017.05.061

矿物质对食物过敏原结构和稳定性的影响

doi: 10.13386/j.issn1002-0306.2017.05.061
基金项目: 

国家“863”计划项目(2013AA102205); 国家国际科技合作专项(2013DFG31380); 国家自然科学基金项目(31301522,31260204); 南昌大学食品科学与技术国家重点实验室项目(SKLF-ZZB-201510,SKLF-ZZA-201612);

详细信息
    作者简介:

    黄美佳 (1990-) , 女, 硕士研究生, 研究方向:食品科学与工程, E-mail:1049850344@qq.com。;

    李欣 (1980-) , 女, 博士, 副教授, 研究方向:食品生物技术, E-mail:zhizilixin@ncu.edu.cn。;

  • 中图分类号: TS201.2

Effect of mineral on structure and stability of food allergens

  • 摘要: 蛋白质是引发食物过敏的一类重要物质,食物过敏原与矿物质的结合会影响其结构和功能的改变。本文阐述了食物中矿物质与过敏原结合的影响因素和矿物质对过敏原结构与稳定性的影响,以及不同条件下金属离子对几种过敏原的影响。通过分析其结构和致敏性的关联变化,为一种既能丰富营养素又能降低过敏原致敏性的方法提供理论基础,以用于指导低致敏食物的研发。 
  • [1] Wang J, Jones S M, Pongracic J A, et al.Safety, clinical, and immunologic efficacy of a Chinese herbal medicine (Food Allergy Herbal Formula-2) for food allergy[J].Journal of Allergy and Clinical Immunology, 2015, 136 (4) :962-970.
    [2] Sicherer S H, Sampson H A.Food allergy:epidemiology, pathogenesis, diagnosis, and treatment[J].Journal of Allergy and Clinical Immunology, 2014, 133 (2) :291-307.
    [3] 何圣发, 陈红兵, 武涌, 等.食物过敏原构象性表位预测技术研究进展[J].食品科学, 2013, 34 (13) :314-318.
    [4] Arnold F H.Metal-affinity separations:a new dimension in protein processing[J].Bio/technology (Nature Publishing Company) , 1991, 9 (2) :151-156.
    [5] Swart C.Metrology for metalloproteins—where are we now, where are we heading?[J].Analytical and bioanalytical chemistry, 2013, 405 (17) :5697-5723.
    [6] Andreini C, Cavallaro G, Lorenzini S, et al.Metal PDB:a database of metal sites in biological macromolecular structures[J].Nucleic Acids Res, 2013, 41 (D1) :D312-D319.
    [7] Bowman S E, Bridwell-Rabb J, Drennan C L.Metalloprotein Crystallography:More than a Structure[J].Accounts of chemical research, 2016, 49 (4) :695-702.
    [8] Dudev T.Modeling metal binding sites in proteins by quantum chemical calculations[J].Computational Chemistry, 2014, 2 (02) :19-21.
    [9] Lu Y, Yeung N, Sieracki N, et al.Design of functional metalloproteins[J].Nature, 2009, 460 (7257) :855-862.
    [10] Dudev T, Lim C.Competition among metal ions for protein binding sites:determinants of metal ion selectivity in proteins[J].Chemical reviews, 2013, 114 (1) :538-556.
    [11] Harding M M, Nowicki M W, Walkinshaw M D.Metals in protein structures:a review of their principal features[J].Crystallography Reviews, 2010, 16 (4) :247-302.
    [12] Rohrback S E, Wheatly M G, Gillen C M.Calcium binding to Procambarus clarkii sarcoplasmic calcium binding protein splice variants[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 2015, 179:57-63.
    [13] Wnuk W, Cox J A, Kohler L G, et al.Calcium and magnesium binding properties of a high affinity calcium-binding protein from crayfish sarcoplasm[J].J Biol Chem, 1979, 254 (12) :5284-5289.
    [14] Griko Y V, Remeta D P.Energetics of solvent and ligandinduced conformational changes in[alpha]-lactalbumin[J].Protein science, 1999, 8 (03) :554-561.
    [15] Permyakov E A, Berliner L J.α-Lactalbumin:structure and function[J].FEBS letters, 2000, 473 (3) :269-274.
    [16] Haiech J, Derancourt J, Pechere J F, et al.Magnesium and calcium binding to parvalbumins:evidence for differences between parvalbumins and an explanation of their relaxing function[J].Biochemistry, 1979, 18 (13) :2752-2758.
    [17] Schoenman E R, Chiaro J A, Jones A, et al.A comparative analysis of parvalbumin expression in pinfish (Lagodon rhomboides) and toadfish (Opsanus sp.) [J].Comparative Biochemistry and Physiology Part A:Molecular&Integrative Physiology, 2010, 155 (1) :91-99.
    [18] Valasatava Y, Andreini C, Rosato A.Hidden relationships between metalloproteins unveiled by structural comparison of their metal sites[J].Scientific reports, 2015, 5:1-9.
    [19] Zheng H, Chruszcz M, Lasota P, et al.Data mining of metal ion environments present in protein structures[J].Journal of inorganic biochemistry, 2008, 102 (9) :1765-1776.
    [20] 刘凤茹.麦胚蛋白聚集行为及其钙离子螯合肽的制备与评价[D].江南:江南大学, 2014.
    [21] Ueda E, Gout P, Morganti L.Current and prospective applications of metal ion-protein binding[J].Journal of Chromatography A, 2003, 988 (1) :1-23.
    [22] 吴海强, 王晓娟, 邬玉兰, 等.Ca2+离子对榛子过敏原Cor h1二级结构和抗原活性影响研究[J].中国免疫学杂志, 2012, 28 (1) 24-27.
    [23] 张芳, 林东海.用核磁共振方法研究金属离子与蛋白质的相互作用[J].波谱学杂志, 2009, 26 (1) :137-149.
    [24] 杨欢.金属离子对TBt构象及其免疫活性的影响[D].山西:山西大学, 2014.
    [25] Navarra G, Leone M, Militello V.Thermal aggregation ofβ-lactoglobulin in presence of metal ions[J].Biophysical chemistry, 2007, 131 (1) :52-61.
    [26] Suzuki K, Miura T, Takeuchi H.Inhibitory effect of copper (II) on zinc (II) -induced aggregation of amyloidβ-peptide[J].Biochemical and biophysical research communications, 2001, 285 (4) :991-996.
    [27] Navarra G, Tinti A, Leone M, et al.Influence of metal ions on thermal aggregation of bovine serum albumin:aggregation kinetics and structural changes[J].Journal of inorganic biochemistry, 2009, 103 (12) :1729-1738.
    [28] Miura T, Suzuki K, Kohata N, et al.Metal binding modes of Alzheimer’s amyloidβ-peptide in insoluble aggregates and soluble complexes[J].Biochemistry, 2000, 39 (23) :7024-7031.
    [29] Brown A M, Tummolo D M, Rhodes K J, et al.Selective Aggregation of Endogenousβ-Amyloid Peptide and Soluble Amyloid Precursor Protein in Cerebrospinal Fluid by Zinc[J].Journal of neurochemistry, 1997, 69 (3) :1204-1212.
    [30] Stirpe A, Rizzuti B, Pantusa M, et al.Thermally induced denaturation and aggregation of BLG-A:effect of the Cu2+and Zn2+metal ions[J].European Biophysics Journal, 2008, 37 (8) :1351-1360.
    [31] Navarra G, Tinti A, Di Foggia M, et al.Metal ions modulate thermal aggregation of beta-lactoglobulin:A joint chemical and physical characterization[J].Journal of inorganic biochemistry, 2014, 137:64-73.
    [32] Villanueva J, Hoshino M, Katou H, et al.Increase in the conformational flexibility ofβ2-microglobulin upon copper binding:A possible role for copper in dialysis-related amyloidosis[J].Protein science, 2004, 13 (3) :797-809.
    [33] Li R-H, Liu G-B, Wang H, et al.Effects of Fe3+and Zn2+on the structural and thermodynamic properties of a soybean ASR protein[J].Bioscience, biotechnology, and biochemistry, 2013, 77 (3) :475-481.
    [34] Gifford J L, Walsh M P, Vogel H J.Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EFhand motifs[J].Biochemical Journal, 2007, 405 (2) :199-221.
    [35] Kgedal L.Immobilized metal ion affinity chromatography[M].New York:Wiley-VCH, 1998:311-665.
    [36] Wong J W, Albright R L, Wang N-H L.Immobilized metal ion affinity chromatography (IMAC) chemistry and bioseparation applications[J].Separation and Purification Methods, 1991, 20 (1) :49-106.
    [37] El Rassi Z, Horváth C.Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support[J].Journal of Chromatography A, 1986, 359:241-253.
    [38] Hansen P, Andersson L, Lindeberg G.Purification of cysteine-containing synthetic peptides via selective binding of theα-amino group to immobilised Cu2+and Ni2+ions[J].Journal of Chromatography A, 1996, 723 (1) :51-59.
    [39] Giles N M, Watts A B, Giles G I, et al.Metal and redox modulation of cysteine protein function[J].Chemistry&biology, 2003, 10 (8) :677-693.
    [40] Flick T G, Merenbloom S I, Williams E R.Effects of metal ion adduction on the gas-phase conformations of protein ions[J].Journal of The American Society for Mass Spectrometry, 2013, 24 (11) :1654-1662.
    [41] Bushmarina N A, Blanchet C E, Vernier G, et al.Cofactor effects on the protein folding reaction:Acceleration ofα-lactalbumin refolding by metal ions[J].Protein science, 2006, 15 (4) :659-671.
    [42] Vanhooren A, Vanhee K, Noyelle K, et al.Structural basis fordifference in heat capacity increments for Ca2+binding to twoα-lactalbumins[J].Biophysical journal, 2002, 82 (1) :407-417.
    [43] Chrysina E D, Brew K, Acharya K R.Crystal structures of apo-and holo-bovineα-lactalbumin at 2.2-resolution reveal an effect of calcium on inter-lobe interactions[J].Journal of Biological Chemistry, 2000, 275 (47) :37021-37029.
    [44] Permyakov E A, Shnyrov V L, Kalinichenko L P, et al.Binding of Zn (II) ions toα-lactalbumin[J].Journal of protein chemistry, 1991, 10 (6) :577-584.
    [45] Hirai Y, Permyakov E A, Berliner L J.Proteolytic digestion ofα-lactalbumin:physiological implications[J].Journal of protein chemistry, 1992, 11 (1) :51-57.
    [46] Morgan C I, Ledford J R, Zhou P, et al.Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen[J].Journal of Inflammation, 2011, 8 (1) :1-10.
    [47] Redweik S, Xu Y, Wtzig H.Precise, fast, and flexible determination of protein interactions by affinity capillary electrophoresis:Part 1:Performance[J].Electrophoresis, 2012, 33 (22) :3316-3322.
    [48] Redweik S, Cianciulli C, Hara M, et al.Precise, fast and flexible determination of protein interactions by affinity capillary electrophoresis.Part 2:cations[J].Electrophoresis, 2013, 34 (12) :1812-1819.
    [49] Lombardi J, Spelzini D, Corrêa A P F, et al.Milk protein suspensions enriched with three essential minerals:Physicochemical characterization and aggregation induced by a novel enzymatic pool[J].Colloids and Surfaces B:Biointerfaces, 2016, 140:452-459.
    [50] Pomastowski P, Sprynskyy M, Buszewski B.The study of zinc ions binding to casein[J].Colloids and Surfaces B:Biointerfaces, 2014, 120:21-27.
    [51] Aymard P, Durand D, Nicolai T.The effect of temperature and ionic strength on the dimerisation ofβ-lactoglobulin[J].International Journal of Biological Macromolecules, 1996, 19 (3) :213-221.
    [52] Mudgal P, Daubert C R, Foegeding E A.Effects of protein concentration and Ca Cl 2 on cold-set thickening mechanism ofβ-lactoglobulin at low p H[J].International dairy journal, 2011, 21 (5) :319-326.
    [53] 周健文.牛乳β-乳球蛋白低聚体的结构表征及致敏性的体外评估[D].南昌:南昌大学, 2013.
    [54] 简姗.铁离子 (Ⅲ) 螯合对鸡蛋卵转铁蛋白构象, 消化性和过敏原性的影响[D].南昌:南昌大学, 2012.
    [55] 聂瑞艳.鱼鳞肽—钙复合物稳定性及食物成分对其吸收利用的影响研究[D].山东:中国海洋大学, 2014.
    [56] 刘西海.金属离子对蛋清蛋白质结构的影响研究[J].中国家禽, 2012, 34 (1) :27-31.
    [57] Le Bon C, Nicolai T, Durand D.Kinetics of aggregation and gelation of globular proteins after heat-induced denaturation[J].Macromolecules, 1999, 32 (19) :6120-6127.
    [58] Aymard P, Nicolai T, Durand D, et al.Static and dynamic scattering ofβ-lactoglobulin aggregates formed after heat-induced denaturation at p H2[J].Macromolecules, 1999, 32 (8) :2542-2552.
    [59] Baussay K, Le Bon C, Nicolai T, et al.Influence of the ionic strength on the heat-induced aggregation of the globular proteinβ-lactoglobulin at p H7[J].International Journal of Biological Macromolecules, 2004, 34 (1) :21-28.
  • 加载中
计量
  • 文章访问数:  66
  • HTML全文浏览量:  10
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-06

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》喊你参加论坛啦:第五届食品科技创新论坛期待你的加入。