食品中农兽药残留生物传感检测技术的研究进展

李芳 康怀彬 张瑞华 马红燕

李芳, 康怀彬, 张瑞华, 马红燕. 食品中农兽药残留生物传感检测技术的研究进展[J]. 食品工业科技, 2017, (04): 396-400. doi: 10.13386/j.issn1002-0306.2017.04.066
引用本文: 李芳, 康怀彬, 张瑞华, 马红燕. 食品中农兽药残留生物传感检测技术的研究进展[J]. 食品工业科技, 2017, (04): 396-400. doi: 10.13386/j.issn1002-0306.2017.04.066
LI Fang, KANG Huai- bin, ZHANG Rui-hua, MA Hong-yan. Development of biosensors for the detection of pesticide and veterinary drug residues in foods[J]. Science and Technology of Food Industry, 2017, (04): 396-400. doi: 10.13386/j.issn1002-0306.2017.04.066
Citation: LI Fang, KANG Huai- bin, ZHANG Rui-hua, MA Hong-yan. Development of biosensors for the detection of pesticide and veterinary drug residues in foods[J]. Science and Technology of Food Industry, 2017, (04): 396-400. doi: 10.13386/j.issn1002-0306.2017.04.066

食品中农兽药残留生物传感检测技术的研究进展

doi: 10.13386/j.issn1002-0306.2017.04.066
基金项目: 

国家自然科学基金青年科学基金项目(31501563); 河南科技大学青年科学基金项目(2015QN030);

详细信息
    作者简介:

    李芳(1984-),女,博士,讲师,研究方向:食品安全与检测,E-mail:lifang182006@126.com。;

    康怀彬(1963-),男,硕士,教授,研究方向:畜产品加工与质量控制,E-mail:khbin001@163.com。;

  • 中图分类号: TS207.53

Development of biosensors for the detection of pesticide and veterinary drug residues in foods

  • 摘要: 由农兽药残留所引发的食品安全问题已受到社会各界的广泛关注。生物传感器具有特异性好、检测快速,成本低等优势,在农兽药残留检测领域具有重要的应用价值。本文介绍了免疫传感器、适配传感器、酶传感器在食品中农兽药残留检测方面的应用,并对其未来的发展方向进行了展望。 
  • [1] Liu L H,Zhou X H,Xu W Q,et al.Highly sensitive detection of sulfadimidine in water and dairy products by means of an evanescent wave optical biosensor[J].RSC Advances,2014,4(104):60227-60233.
    [2] Ho T Y J,Chan C C,Chan K,et al.Development of a novel bead-based 96-well filtration plate competitive immunoassay for the detection of Gentamycin[J].Biosensors and Bioelectronics,2013,49:126-132.
    [3] Song E,Yu M,Wang Y,et al.Multi-color quantum dot-based fluorescence immunoassay array for simultaneous visual detection of multiple antibiotic residues in milk[J].Biosensors and Bioelectronics,2015,72:320-325.
    [4] 武会娟,魏玲,刘清珺,等.纳米生物传感器在氯霉素检测中的应用[J].食品科学,2010,31(8):167-170.
    [5] Sun X,Zhu Y,Wang X.Amperometric immunosensor based on deposited gold nanocrystals/4,4'-thiobisbenzenethiol for determination of carbofuran[J].Food Control,2012,28(1):184-191.
    [6] Zang S,Liu Y,Lin M,et al.A dual amplified electrochemical immunosensor for ofloxacin:Polypyrrole film-Au nanocluster as the matrix and multi-enzyme-antibody functionalized gold nanorod as the label[J].Electrochimica Acta,2013,90:246-253.
    [7] 李建龙,潘道东,朱浩嘉,等.基于纳米金电化学免疫传感器测定牛奶中的青霉素G[J].食品科学,2014(8):111-114.
    [8] Garcia-Febrero R,Valera E,Muriano A,et al.An electrochemical magneto immunosensor(EMIS)for the determination of paraquat residues in potato samples[J].Analytical and Bioanalytical Chemistry,2013,405:7841-7849.
    [9] Valera E,Muriano A,Pividori I,et al.Development of a Coulombimetric immunosensor based on specific antibodies labeled with Cd S nanoparticles for sulfonamide antibiotic residues analysis and its application to honey samples[J].Biosensors and Bioelectronics,2013,43:211-217.
    [10] Zeng G M,Zhang Y,Tang L,et al.Sensitive and renewable picloram immunosensor based on paramagnetic immobilisation[J].International Journal of Environmental Analytical Chemistry,2012,92(6):729-741.
    [11] Gunawardhana N,Ogumori Y,Yoshio M,et al.A Senesitive and Selective Amperometric Immunosensor for Chloramphenicol Detection Based on Magnetic Nanocomposites Modify ScreenPriented Carbon Electrode as a Disposable Platform[J].International Journal of Electrochemical Science,2014,9(12):6962-6974.
    [12] Conzuelo F,Gamella M,Campuzano S,et al.Disposable amperometric magneto-immunosensor for direct detection of tetracyclines antibiotics residues in milk[J].Analytica Chimica Acta,2012,737:29-36.
    [13] Pinacho D,Nchez-Baeza F S,Pividori M I,et al.Electrochemical detection of fluoroquinolone antibiotics in milk using a magneto immunosensor[J].Sensors,2014,14(9):15965.
    [14] Muriano A,Pinacho D G,Chabottaux V,et al.A portable electrochemical magnetoimmunosensor for detection of sulfonamide antimicrobials in honey[J].Analytical and Bioanalytical Chemistry,2013,405(24):7885-7895.
    [15] Valera E,Garc A-Febrero R,Pividori I,et al.Coulombimetric immunosensor for paraquat based on electrochemical nanoprobes[J].Sensors and Actuators B:Chemical,2014,194:353-360.
    [16] Mishra G K,Sharma A,Bhand S.Ultrasensitive detection of streptomycin using flow injection analysis-electrochemical quartz crystal nanobalance(FIA-EQCN)biosensor[J].Biosensors and Bioelectronics,2015,67:532-539.
    [17] Conzuelo F,Grtzke S,Stratmann L,et al.Interrogation of immunoassay platforms by SERS and SECM after enzymecatalyzed deposition of silver nanoparticles[J].Microchimica Acta,2015,183(1):281-287.
    [18] 张增福,徐可欣,刘瑾,等.利用基于表面等离子体共振的生物光学传感器检测牛奶中氨苄青霉素残留的方法[J].食品科学,2008,29(6):353-356.
    [19] 宋洋,王静,陈晓明.表面等离子共振传感器检测3种果汁中亚胺硫磷残留[J].食品科学,2015,36(18):172-176.
    [20] 段诺,吴世嘉,王周平.基于KGd F4:Td3+纳米材料检测四环素的生物传感新方法[J].食品与生物技术学报,2014,33(11):1160-1167.
    [21] Alibolandoi M,Hadizadeh F,Vajhedin F,et al.Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of Cd Te quantum dots to graphene oxide sheet[J].Materials Science and Engineering:C,2015,48:611-619.
    [22] Song K M,Jeong E,Jeon W,et al.Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods[J].Analytical and Bioanalytical Chemistry,2012,402(6):2153-2161.
    [23] Ramezani M,Danesh N M,Lavaee P,et al.A selective and sensitive fluorescent aptasensor for detection of kanamycin based on catalytic recycling activity of exonuclease III and gold nanoparticles[J].Sensors and Actuators B:Chemical,2016,222:1-7.
    [24] Miao Y,Gan N,Li T,et al.An ultrasensitive fluorescence aptasensor for chloramphenicol based on FRET between quantum dots as donor and the magnetic Si O2@Au NPs probe as acceptor with exonuclease-assisted target recycling[J].Sensors and Actuators B:Chemical,2016,222:1066-1072.
    [25] Yan L,Luo C,Cheng W,et al.A simple and sensitive electrochemical aptasensor for determination of Chloramphenicol in honey based on target-induced strand release[J].Journal of Electroanalytical Chemistry,2012,687:89-94.
    [26] Yan Z,Gan N,Wang D,et al.A“signal-on”aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers[J].Biosensors and Bioelectronics,2015,74:718-724.
    [27] Xu W,Wang Y,Liu S,et al.A novel sandwich-type electrochemical aptasensor for sensitive detection of kanamycin based on GR-PANI and PAMAM-Au nanocomposites[J].New Journal of Chemistry,2014,38(10):4931-4937.
    [28] Hao L,Duan N,Wu S,et al.Chemiluminescent aptasensor for chloramphenicol based on N-(4-aminobutyl)-N-ethylisoluminol-functionalized flower-like gold nanostructures and magnetic nanoparticles[J].Analytical and Bioanalytical Chemistry,2015,407(26):7907-7915.
    [29] Chen D,Yao D,Xie C,et al.Development of an aptasensor for electrochemical detection of tetracycline[J].Food Control,2014,42:109-115.
    [30] Qin X,Yin Y,Yu H,et al.A novel signal amplification strategy of an electrochemical aptasensor for kanamycin,based on thionine functionalized graphene and hierarchical nanoporous Pt Cu[J].Biosensors and Bioelectronics,2016,77:752-758.
    [31] Qin X,Guo W,Yu H,et al.A novel electrochemical aptasensor based on MWCNTs-BMIMPF6 and amino functionalized graphene nanocomposite films for determination of kanamycin[J].Analytical Methods,2015,7(13):5419-5427.
    [32] Guo W,Sun N,Qin X,et al.A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs-HMIMPF6 and nanoporous Pt Ti alloy[J].Biosensors and Bioelectronics,2015,74:691-697.
    [33] Fei A,Liu Q,Huan J,et al.Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites[J].Biosensors and Bioelectronics,2015,70:122-129.
    [34] Yang F,Wang P,Wang R,et al.Label free electrochemical aptasensor for ultrasensitive detection of ractopamine[J].Biosensors and Bioelectronics,2016,77:347-352.
    [35] Wang H,Wang Y,Liu S,et al.Target-aptamer binding triggered quadratic recycling amplification for highly specific and ultrasensitive detection of antibiotics at the attomole level[J].Chemical Communications,2015,51(39):8377-8384.
    [36] Barahona F,Bardliving C L,Phifer A,et al.An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced raman spectroscopy[J].Industrial Biotechnology,2013,9(1):42-50.
    [37] Guo J,Li H,Xue M,et al.Highly Sensitive Detection of Organophosphorus Pesticides Represented by Methamidophos via Inner Filter Effect of Au Nanoparticles on the Fluorescence of Cd Te Quantum Dots[J].Food Analytical Methods,2014,7(6):1247-1255.
    [38] 关桦楠,迟德富,宇佳.MWNTs/ACh E新型生物传感器的制备及其在氧化乐果快速检测中的应用(英文)[J].食品科学,2013,34(4):6-10.
    [39] 陈志刚,张启甲,邱白晶,等.基于酶传感器的农药浓度便携式实时测量装置[J].农业机械学报,2011,42(11):178-182.
    [40] 陈文飞,丁建英,黄虹程,等.聚硫堇修饰的一次性酶传感器检测辛硫磷农药残留[J].食品安全质量检测学报,2015,6(2):653-658.
    [41] Khaksarinejad R,Mohsenifar A,Rahmani-Cherati T,et al.An Organophosphorus Hydrolase-Based Biosensor for Direct Detection of Paraoxon Using Silica-Coated Magnetic Nanoparticles[J].Applied Biochemistry and Biotechnology,2015,176(2):359-371.
    [42] Zhang Y,Arugula M A,Wales M,et al.A novel layer-bylayer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides[J].Biosensors and Bioelectronics,2015,67:287-295.
    [43] Chen B,Ma M,Su X.An amperometric penicillin biosensor with enhanced sensitivity based on co-immobilization of carbon nanotubes,hematein,andβ-lactamase on glassy carbon electrode[J].Analytica Chimica Acta,2010,674(1):89-95.
    [44] Prado T M D,Foguel M V,Gonalves L M,et al.β-Lactamase-based biosensor for the electrochemical determination of benzylpenicillin in milk[J].Sensors and Actuators B:Chemical,2015,210:254-258.
  • 加载中
计量
  • 文章访问数:  71
  • HTML全文浏览量:  21
  • PDF下载量:  591
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-20

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》喊你参加论坛啦:第五届食品科技创新论坛期待你的加入。