基于核酸适配体的生物传感技术在食品安全领域中的研究进展

云雯 陈世奇 马丽 朱永红 屠大伟 赵博

云雯, 陈世奇, 马丽, 朱永红, 屠大伟, 赵博. 基于核酸适配体的生物传感技术在食品安全领域中的研究进展[J]. 食品工业科技, 2013, (14): 395-399. doi: 10.13386/j.issn1002-0306.2013.14.087
引用本文: 云雯, 陈世奇, 马丽, 朱永红, 屠大伟, 赵博. 基于核酸适配体的生物传感技术在食品安全领域中的研究进展[J]. 食品工业科技, 2013, (14): 395-399. doi: 10.13386/j.issn1002-0306.2013.14.087
Research progress in aptamer-based biosensing techniques in food safety[J]. Science and Technology of Food Industry, 2013, (14): 395-399. doi: 10.13386/j.issn1002-0306.2013.14.087
Citation: Research progress in aptamer-based biosensing techniques in food safety[J]. Science and Technology of Food Industry, 2013, (14): 395-399. doi: 10.13386/j.issn1002-0306.2013.14.087

基于核酸适配体的生物传感技术在食品安全领域中的研究进展

doi: 10.13386/j.issn1002-0306.2013.14.087
基金项目: 

重庆市科技攻关(应用技术研发类)项目(cstc2012gg-yyjs80028);

详细信息
  • 中图分类号: TS207.3

Research progress in aptamer-based biosensing techniques in food safety

  • 摘要: 近年来食品安全事件频发,严重影响了消费者对食品行业的信心。虽然传统的检测技术能对食品中的有害物质进行高选择性和高灵敏度的检测,但是仍需要一种简单、快速、有效、成本低廉的方法用于食品安全领域的快速检测。核酸适配体是一段DNA或者RNA序列,是利用体外筛选技术从核酸分子文库中得到的寡核苷酸片段。具有特异性强、稳定性好和靶分子广等特点,近年来被广泛用于食品安全检测领域。本文综述了近年来核酸适配体在食品安全检测领域的应用,对核酸适配体在食品安全检测领域的问题进行了探讨,并对其在食品安全检测领域的发展前景进行了展望。 
  • [1] Shangguan D, Tang Z, Mallikaratchy P, et al.Optimization and Modifications of Aptamers Selected from Live Cancer Cell Lines[J].Chembiochem, 2007, 8 (6) :603-606.
    [2] Ellington AD, Szostak JW.In vitro selection of RNA molecules that bindspecific ligands[J].Nature, 1990, 346:818-822.
    [3] Tuerk C, Gold L.Systematic evolution of ligands by exponential enrichment:RNA ligands to bacteriophage T4DNA polymerase[J].Science, 1990, 249:505-510.
    [4] Hamula CLA, Zhang HQ, Li F, et al.Selection and analytical applications of aptamers binding microbial pathogens[J].Trends Analyt Chem, 2011, 30 (10) :1587-1597.
    [5] Citartan M, Gopinath SC, Tominag JJ, et al.Assays for aptamer-based platforms[J].Biosensors and Bioelectronics, 2012, 34 (1) :1-11.
    [6] Jing M, Bowser MT.Methods for measuring aptamer-protein equilibria:A review[J].Anal Chim Acta, 2011, 686 (1-2) :9-18.
    [7] Navani NK, Li YF.Nucleic acid aptamers and enzymes as sensors[J].Curr Opin Chem Biol, 2006, 10 (3) :272-281.
    [8] McNamara JO, Andrechek ER, Wang Y, et al.Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras[J].Nat Biotechnol, 2006, 24 (8) :1005-1015.
    [9] Cho EJ, Yang L, Levy M, et al.Using a deoxyribozyme ligase and rolling circle amplification to detect a non-nucleic acid analyte, ATP[J].J Am Chem Soc, 2005, 127 (7) :2022-2023.
    [10] Bayer TS, Smolke CD.Programmable ligand-controlled riboregulators of eukaryotic gene expression[J].Nat Biotechnol, 2005, 23 (3) :337-343.
    [11] Jo M, Ahn JY, Lee J, et al.Development of single-stranded DNA aptamers for specific Bisphenol a detection[J].Oligonucleotides, 2011, 21 (2) :85-91.
    [12] Kim M, Um HJ, Bang S, et al.Arsenic removal from vietnamese groundwater using the arsenic-binding DNA aptamer[J].Environmental Science&Technology, 2009, 43 (24) :9335-9340.
    [13] Wu Y, Zhan S, Wang F, et al.Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic (III) in aqueous solution[J].Chem Commun, 2012, 48 (37) :4459-4461.
    [14] Liu CW, Huang CC, Chang HT.Highly selective DNA-based sensor for lead (II) and mercury (II) ions[J].Anal Chem, 2009, 81 (6) :2383-2387.
    [15] Chung E, Gao R, Ko J, et al.Trace analysis of mercury (ii) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel[J].Lab Chip, 2013, 13 (2) :260-266.
    [16] Huang CC, Chang HT.Aptamer-based fluorescence sensor for rapid detection of potassium ions in urine[J].Chem Commun, 2008, 28 (12) :1461-1463.
    [17] European Food Safety Authority.Processing Aids and Materials in Contact with Food on a request from the Commission to Review the toxicology of a number of dyes illegally present in food in the EU[J].The EFSA Journal, 2005, 263:1-71.
    [18] Holeman LA, Robinson SL, Szostak JW, et al.Isolation and characterization of fluorophore-binding RNA aptamers[J].Folding and Design, 1998, 3 (6) :423-431.
    [19] Wilson C, Szostak JW.Isolation of a fluorophore-specific DNA aptamer with weak redox activity[J].Chemistry and Biology, 1998, 5 (11) :609-617.
    [20] Mei Z, Chu H, Chen W, et al.Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor[J].Biosens Bioelectron, 2013, 39 (1) :26-30.
    [21] Jiang Z, Zhou L, Liang A.Resonance scattering detection of trace melamine using aptamer-modified nanosilver probe as catalyst without separation of its aggregations[J].Chem Commun, 2011, 47 (11) :3162-3164.
    [22] Kawano R, Osaki T, Sasaki H, et al.Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip[J].J Am Chem Soc, 2011, 133 (22) :8474-8477.
    [23] Stojanovic MN, Landry DW.Aptamer-based colorimetric probe for cocaine[J].J Am Chem Soc, 2002, 124 (33) :9678-9679.
    [24] Zhu Y, Chandra P, Song KM, et al.Label-free detection of kanamycin based on the aptamer-functionalized conductingpolymer/gold nanocomposite[J].Biosens Bioelectron, 2012, 36 (1) :29-34.
    [25] Song KM, Cho M, Jo H, et al.Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer[J].Anal Biochem, 2011, 415 (2) :175-181.
    [26] Zhang J, Zhang B, Wu Y, et al.Fast determination of the tetracyclines in milk samples by the aptamerbiosensor[J].Analyst, 2010, 135 (10) :2706-2710.
    [27] Pilehvar S, Mehta J, Dardenne F, et al.Aptasensing of chloramphenicol in the presence of its analogues:reaching the maximum residue limit[J].Anal Chem, 2012, 84 (15) :6753-6758.
    [28] Wallace ST, Schroeder R.In vitro selection and characterization ofstreptomycin-binding RNAs:Recognition discrimination between antibiotics[J].RNA, 1998, 4 (1) :112-123.
    [29] de-los-Santos-Alvarez N, Lobo-Casta觡ón MJ, Miranda-Ordieres AJ, et al.SPR sensing of small molecules with modified RNA aptamers:detection of neomycin B[J].Biosens Bioelectron, 2009, 24 (8) :2547-2553.
    [30] Kim K, Gu MB, Kang DH, et al.High-sensitivity detection of oxytetracycline using light scattering agglutination assay with aptasensor[J].Electrophoresis, 2010, 31 (18) :3115-3120.
    [31] Kuang H, Chen W, Xu D, et al.Fabricated aptamer-based electrochemical“signal-off”sensor of ochratoxin A[J].Biosens Bioelectron, 2010, 26 (2) :710-716.
    [32] Yang C, Wang Y, Marty JL, et al.Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator[J].Biosens Bioelectron, 2011, 26 (5) :2724-2727.
    [33] Wang Z, Duan N, Hun X, et al.Electrochemiluminescentap-tamer biosensor for the determination of ochratoxin A at a gold-nanoparticles-modified gold electrode using N- (aminobutyl) -N-ethylisoluminol as a luminescent label[J].Anal Bioanal Chem, 2010, 398 (5) :2125-2132.
    [34] Yang C, Wang Y, Marty JL, et al.Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator[J].Biosens Bioelectron, 2011, 26 (5) :2724-2727.
    [35] Sheng L, Ren J, Miao Y, et al.PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer[J].Biosens Bioelectron, 2011, 26 (8) :3494-3499.
    [36] Wang L, Chen W, Ma W, et al.Fluorescent strip sensor for rapid determination of toxins[J].Chem Commun, 2011, 47 (5) :1574-1576.
    [37] Grate D, Wilson C.Laser-mediated, site-specific inactivation of RNA transcripts[J].Proc Natl Acad Sci, 1999, 96 (11) :6131-6136.
    [38] Stead SL, Ashwin H, Johnston B, et al.An RNA-aptamer-based assay for the detection and analysis of malachite green and leucomalachite green residues in fish tissue[J].Anal Chem, 2010, 82 (7) :2652-2660.
    [39] Sinha J, Reyes SJ, Gallivan JP.Reprogramming bacteria to seek and destroy an herbicide[J].Nat Chem Biol, 2010 (6) :464-470.
  • 加载中
计量
  • 文章访问数:  37
  • HTML全文浏览量:  9
  • PDF下载量:  1055
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-01-08

目录

    /

    返回文章
    返回

    重要通知

    《食品工业科技》喊你参加论坛啦:第五届食品科技创新论坛期待你的加入。