• EI
  • Scopus
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
  • DOAJ
  • EBSCO
  • 北大核心期刊
  • 中国核心学术期刊RCCSE
  • JST China
  • FSTA
  • 中国精品科技期刊
  • 中国农业核心期刊
  • CA
  • WJCI
  • 中国科技核心期刊CSTPCD
  • 中国生物医学SinoMed
中国精品科技期刊2020
林伟朝,孙雯,孙晓萱,等. 重组枯草芽孢杆菌全细胞催化生成L-酪氨酸[J]. 食品工业科技,2024,45(22):1−8. doi: 10.13386/j.issn1002-0306.2023120110.
引用本文: 林伟朝,孙雯,孙晓萱,等. 重组枯草芽孢杆菌全细胞催化生成L-酪氨酸[J]. 食品工业科技,2024,45(22):1−8. doi: 10.13386/j.issn1002-0306.2023120110.
LIN Weichao, SUN Wen, SUN Xiaoxuan, et al. Whole-cell Catalyzed Production of L-tyrosine in Recombinant Bacillus subtilis[J]. Science and Technology of Food Industry, 2024, 45(22): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120110.
Citation: LIN Weichao, SUN Wen, SUN Xiaoxuan, et al. Whole-cell Catalyzed Production of L-tyrosine in Recombinant Bacillus subtilis[J]. Science and Technology of Food Industry, 2024, 45(22): 1−8. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120110.

重组枯草芽孢杆菌全细胞催化生成L-酪氨酸

Whole-cell Catalyzed Production of L-tyrosine in Recombinant Bacillus subtilis

  • 摘要: 目的:本研究构建一株重组枯草芽孢杆菌工程菌,实现以苯酚、丙酮酸和氨为底物全细胞生成L-酪氨酸(L-tyrosine,L-Tyr),并优化其细胞培养条件和催化反应条件,以期提高L-Tyr的产量。方法:将来源于Pantoea agglomerans的酪氨酸酚裂解酶(Tyrosine Phenol-Lyase,TPL)经密码子优化后在枯草芽孢杆菌中异源表达,通过单因素实验优化了重组菌诱导表达条件和全细胞转化条件,旨在提高L-Tyr产量。结果:重组枯草芽孢杆菌在20 ℃,2.0 g/L木糖诱导培养36 h时TPL活性最高达到4.65±0.15 U·g−1,在75 mmol/L苯酚、75 mmol/L丙酮酸钠、487 mmol/L氯化铵、2.0 g/L亚硫酸钠、2.0 g/L EDTA、0.08 g/L 磷酸吡哆醛(Pyridoxal Phosphat,PLP)、湿菌体50 g/L、pH=8.0、35 ℃的全细胞转化条件下,L-Tyr达到9.38 g/L,转化率为73.24%。为了进一步改善高浓度苯酚导致TPL酶活力下降问题,在全细胞转化环节采用分批补料方式,20 h后得到15.12 g/L L-Tyr,转化率为75.51%。结论:研究结果表明重组枯草芽孢杆菌可以成功转化苯酚、丙酮酸钠合成L-酪氨酸,为全细胞生物制备食品级L-酪氨酸提供了理论和技术基础,具有良好的应用前景。

     

    Abstract: Objective: This study conducted a recombinant Bacillus subtilis strain capable of producing L-Tyr utilizing phenol, sodium pyruvate, and ammonia. Moreover, the conditions of cell culture and catalytic reaction were optimized to improve L-Tyr production. Methods: The tyrosine phenol-lyase (TPL) gene from Pantoea agglomerans was codon-optimized and successfully over-expressed in B. subtilis. The conditions of induction and whole-cell transformation were optimized using single-factor experiments for L-Tyr production. Results: The highest TPL enzyme activity was achieved 4.65±0.15 U·g−1 in the recombinant B. subtilis at 20 ℃ with 2.0 g/L xylose after 36 hours. Under the whole-cell transformation conditions of 75 mmol/L phenol, 75 mmol/L sodium pyruvate, 487 mmol/L ammonium chloride, 2.0 g/L sodium sulfite, 2.0 g/L EDTA, 0.08 g/L pyridoxal phosphate (PLP), wet cell mass of 50 g/L, pH8, and 35 ℃, the L-Tyr production increased to 9.38 g/L with a conversion rate of 73.24%. Coping with the issue of decreased TPL enzyme activity caused by phenol resistance, a batch feeding strategy was implemented during the whole-cell transformation, resulting in a final L-Tyr production of 15.12 g/L with a conversion rate of 75.51% after 20 hours. Conclusion: These findings demonstrate the successful conversion of phenol and sodium pyruvate into L-Tyr by the recombinant B. subtilis strain. The study provides a theoretical and technical foundation for the production of food-grade L-Tyr using whole-cell biocatalysis, highlighting its potential for practical applications.

     

/

返回文章
返回