Poria cocos Polysaccharides Regulate Anxiety and Depression-like Behaviors Induced by Lipopolysaccharide through NF-κB and NLRP3 Signaling Pathways
-
摘要: 目的:探讨茯苓多糖(Poria cocos polysaccharide,PPS)对脂多糖(LPS)引起的焦虑和抑郁样行为的影响,并分析其机制。方法:BV-2细胞分成对照组、LPS组、LPS+氟西汀组、LPS+PPS(PPS分别为4、8、16 μmol/L),处理24 h,二氯二氢荧光素二氢乙酸酯(DCFH-DA)荧光探针检测细胞内活性氧(ROS)水平,Griess法检测培养上清液NO水平,酶联免疫吸附试验(ELISA)检测培养上清液中TNF-α、IL-1β水平,Western blot实验检测CD206、CD16/32、NF-κB p65水平。动物实验将小鼠分为对照组、模型组、LPS+氟西汀组、LPS+PPS低剂量组(20 mg/kg)、LPS+PPS高剂量组(80 mg/kg),每组10只,测试抑郁样行为,检测海马组织TNF-α、IL-1β、IL-18的浓度,分析海马组织CD206、CD16/32、NF-κB p65、NLRP3、ASC、Cleaved caspase-1蛋白水平。结果:与LPS组比较,4、8、16 μmol/L PPS能极显著降低ROS荧光相对强度(P<0.01),下调NO、TNF-α、IL-1β水平,降低CD16/32、NF-κB p65水平,增加CD206水平(P<0.05);与模型组比较,LPS+PPS低剂量组、LPS+PPS高剂量组蔗糖偏爱率极显著增加(P<0.01),旷场穿越次数、修饰次数极显著上调(P<0.01),悬尾不动时间、强迫游泳不动时间极显著降低(P<0.01);与模型组比较,LPS+PPS低剂量组、LPS+PPS高剂量组IL-1β、IL-18、TNF-α水平极显著降低(P<0.01),CD16/32、NF-κB p65水平显著下调(P<0.05),CD206显著上调(P<0.05),NLRP3、ASC、Cleaved caspase-1水平极显著降低(P<0.01)。结论:茯苓多糖能通过抑制NF-κB和NLRP3信号通路减轻LPS诱导的焦虑和抑郁样行为。Abstract: Objective: To explore the effect of Poria cocos polysaccharides (Poria cocos polysaccharide, PPS) on anxiety and depression-like behaviors induced by lipopolysaccharide (LPS) and analyze its mechanism. Methods: BV-2 cells were divided into control group, LPS group, LPS+fluoxetine group and LPS+PPS (PPS of 4, 8, 16 μmol/L, respectively). After 24 h treatment, the level of intracellular reactive oxygen species (ROS) was detected by dichlorodihydrofluorescein dihydroacetate (DCFH-DA) fluorescence probe, the level of NO in culture supernatant was detected by griess method, and the levels of TNF-α and IL-1β in cell supernatant were detected by enzyme linked immunosorbent assay (ELISA). The levels of CD206, CD16/32 and NF-κB p65 were detected by western blot. In animal experiment, mice were divided into control group, model group, LPS+fluoxetine group, LPS+PPS low dose group (20 mg/kg) and LPS+PPS high dose group (80 mg/kg). Depression-like behavior test was performed, and the concentration of TNF-α, IL-1β and IL-18 in hippocampus was detected. The protein levels of CD206, CD16/32, NF-κB p65, NLRP3, ASC and Cleaved caspase-1 in hippocampus were analyzed. Results: Compared with LPS group, 4,8,16 μmol/L PPS significantly decreased the relative fluorescence intensity of ROS (P<0.01), decreased the levels of NO, TNF-α and IL-1β (P<0.01), decreased the levels of CD16/32 and NF-κB p65 (P<0.05), and increased the level of CD206 (P<0.05). Compared with the model group, the preference rate, crossing times and modification times in LPS+PPS low dose group and high dose LPS+PPS group significantly increased (P<0.01), while the tail suspension time and forced swimming immobility time significantly decreased (P<0.01). Compared with the model group, the levels of IL-1β, IL-18 and TNF-α in LPS+PPS low dose group and LPS+PPS high dose group significantly decreased (P<0.01), CD16/32 and NF-κB p65 level were significantly down-regulated, CD206 was significantly up-regulated, and the levels of NLRP3, ASC and Cleaved caspase-1 significantly decreased. Conclusion: Poria cocos polysaccharide can alleviate LPS-induced anxiety and depression-like behavior by inhibiting NF-κB and NLRP3 signal pathways.
-
抑郁症是一种与智力疾病相关的精神健康障碍,由于多种环境的影响,部分因素会诱发炎症反应,并与疾病的进展密切相关[1]。大脑中炎性细胞因子的过量产生和小胶质细胞激活暗示着抑郁症的发生和脑信号功能障碍[2]。
小胶质细胞是神经炎症的主要参与者,生理条件下,小胶质细胞处于静态监视状态,一旦检测到病原体或内源性危险信号之后,小胶质细胞的形态和功能发生迅速改变,并启动炎症反应。其中小胶质细胞表型包括M1和M2,已知M1发挥促炎作用,而M2参与抗炎/免疫调节过程[3]。核因子κB在所有细胞中都有表达,对M1表型小胶质细胞的激活起重要作用。同样,炎症小体在炎症反应的激活中起关键作用[4],NLRP3的炎性小体包含一个NLRP3传感器、接头蛋白ASC和凋亡相关斑点样蛋白,当 NLRP3的炎症小体激活caspase-1时,它可以将前白介素-1β(pro-IL-1β)转变为成熟IL-1β[5]。研究显示,重度抑郁症患者血清或外周血单个核细胞中含有大量的NLRP3、caspase1和IL-1β[6]。此外,当caspase-1被特异性抑制时,表现出由多种刺激引发的抑郁样行为缓解[7]。
茯苓是一种具有药用价值的食用菌,传统用途包括平心安神,主要用于治疗心脾两虚引起的心神不宁,其化学成分主要包括三萜类、多糖和类固醇[8]。目前已有文献报道茯苓多糖(Poria cocos polysaccharide,PPS)具有一定的抗炎作用,因此茯苓多糖可能通过抗炎作用达到抗焦虑的效果[9],而且已有研究显示,茯苓多糖治疗可改善焦虑和抑郁样行为,但尚未阐明茯苓多糖对内毒素诱导的小胶质细胞激活和抑郁行为的影响。重要的是,小胶质细胞表型的极化和炎症体标志物在茯苓多糖治疗中的作用还没有得到很好地研究[10]。本研究重点不仅是分析茯苓多糖对LPS诱导的焦虑和抑郁样行为的影响,而且还分析其机制,为茯苓多糖的开发提供依据。
1. 材料与方法
1.1 材料与仪器
雄性昆明(KM)小鼠 SPF级,18~22 g,购自中国科学院上海动物实验中心,动物合格证号SCXK(沪)2017-0005。所有大鼠均保持在标准环境(12 h/12 h 光照/黑暗循环,温度(22±5)℃,相对湿度57%±8%中,在研究期间可自由进食和饮水。BV-2小胶质细胞 齐氏生物科技有限公司;茯苓 北京同仁堂;盐酸氟西汀片 常州四药制药有限公司;ROS、TNF-α、IL-1β、IL-18、NO试剂盒 南京建成生物工程研究所;兔抗鼠NF-κB p65、NLRP3、ASC、Cleaved caspase-1、兔抗人、抗鼠CD206、CD16/32、HRP标记的羊抗兔IgG二抗 美国Sigma公司。
DMIL LED倒置荧光显微镜 德国徕卡公司;ELx800全自动酶标仪 美国BioTek公司;BIO-RAD伯乐电泳成像系统 美国BIO-RAD公司。
1.2 实验方法
1.2.1 茯苓多糖的提取
准确称取500 g过40目的粉碎的茯苓,按照料液比1:60加水混匀,75 ℃超声辅助提取2 h,提取2次,过滤,滤液合并,浓缩至原体积的1/4,D101大孔树脂纯化,蒸馏水过柱,合并洗脱液,浓缩至适当体积。加入乙醇至浓度为80%,静置过夜,3500 r/min将样品离心10 min,无水乙醇、丙酮冲洗,得茯苓多糖。以葡萄糖为标准样品,采用苯酚-硫酸法测定。标准曲线方程为y=56.579x−0.0476(r=0.9997)。线性范围0.00287~0.02762 mg/mL,纯度为87.21%。
1.2.2 茯苓多糖对BV-2小胶质细胞ROS、NO、TNF-α和IL-1β水平影响
BV-2小胶质细胞接种在96孔板中,在补充有10% FBS(5% CO2,37 ℃)的DMEM中培养。细胞贴壁后,设置对照组(培养基)、LPS组(1 μg/mL LPS)、给药组(1 μg/mL LPS+4、8、16 μmol/L茯苓多糖),另设置氟西汀组(1 μg/mL LPS+10 μmol/L(预实验确定)氟西汀),24 h后,采用10 μmol/L二氯二氢荧光素二氢乙酸酯(DCFH-DA)处理细胞20 min。PBS冲洗细胞两次,荧光显微镜观察拍照,观察细胞内活性氧(ROS)水平[11];收集培养上清液,将培养上清液与等体积的Griess试剂混合,室温孵育15 min,采用酶标仪在540 nm处检测吸光度,分析NO水平[12];酶联免疫吸附试验(ELISA)检测培养上清液TNF-α、IL-1β水平,检测波长为450 nm[13]。
1.2.3 Western blot实验
将细胞接种在24孔板中,细胞贴壁后,参照“1.2.2”分组方案进行处理,24 h后,采用RIPA裂解缓冲液裂解,BCA蛋白质测定试剂盒测定蛋白质浓度。采用10%聚丙烯酰胺凝胶对等量的裂解物蛋白进行SDS-PAGE,然后转移到硝酸纤维素膜上[14]。在室温下用5%脱脂牛奶(封闭溶液)封闭1 h[15],然后在4 ℃下进行一抗孵育12 h,包括CD206(1:1000)、CD16/32(1:1000)、NF-κB p65(1:1000)TBST冲洗膜3次,每次5 min。将膜与羊抗兔二抗(1:1000)一起孵育,并使用ECL试剂来观察印迹。
1.2.4 动物实验
1.2.4.1 分组和处理
小鼠实验严格遵守河北中医学院动物伦理委员会提供的指导方案执行。将小鼠分为5组:对照组、模型组、LPS+PPS低剂量组(20 mg/kg)、LPS+PPS高剂量组(80 mg/kg)、LPS+氟西汀组(5.2 mg/kg,依据人与小鼠等效剂量换算,小鼠的剂量=9.1x mg/kg,x为成人每天使用剂量)每组10只。LPS+PPS低剂量组、LPS+PPS高剂量组每日分别灌胃20、80 mg/kg,LPS+氟西汀组每日灌胃氟西汀5.2 mg/kg,对照组、模型组给予等量的生理盐水。7 d后,模型组、LPS+PPS低剂量组、LPS+PPS高剂量组、LPS+氟西汀组单次腹腔注射LPS 1 mg/kg[16],对照组给予等量的生理盐水,24 h后进行抑郁样行为测试。随后处死大鼠,取出脑海马组织,−80 ℃冻存。
1.2.4.2 抑郁样行为测试
参照“1.2.4.1”处理小鼠,后续进行抑郁样行为测试,包括:a.蔗糖偏好测试:小鼠单独饲养并放置一瓶纯净水和一瓶1%蔗糖溶液进行测试。蔗糖摄入量与液体摄入总量的比值被计算为蔗糖偏好测试。该测试在参照“1.2.4.1”处理小鼠后进行测试,持续时间1 h[17]。b.旷场测试:将小鼠单独放置在旷场(50×50×30 cm)中央。地板上标有一个网格,将竞技场划分为16个大小相等的正方形。Anaze Y软件记录10 min小鼠修饰次数和穿越中心格的次数。修饰次数包括单位时间前肢抬举、抓痒、洗脸、舔足等[18]。c.强迫游泳测试:将小鼠置于垂直玻璃圆筒(高20 cm,直径14 cm)中,在25 ℃下将自来水加至10 cm深度。每个测试阶段,将小鼠置于圆筒中6 min,并在适应2 min后的最后4 min内对不动持续时间进行评分。将小鼠漂浮在水中而没有挣扎或仅做出使头部保持在水面上所必需的动作的时间被记录为不动时间[19]。d.尾部悬吊测试:通过放置粘贴在距尾尖1 cm处的胶带,将小鼠单独悬吊在地板上方50 cm处。每只小鼠共悬吊6 min,并记录最后4 min的不动持续时间。当小鼠被被动悬浮并保持完全静止时,它们被认为不动[20]。
1.2.4.3 ELISA法检测炎症细胞因子表达水平
精确称取脑海马组织在PBS缓冲液中均质化并离心(2500 r/min,5 min)。根据试剂盒的方案测定100 μL样品中TNF-α、IL-1β、IL-18的浓度。
1.2.4.4 Western blot检测NF-κB和NLRP3信号通路相关因子水平
RIPA裂解液裂解来自海马的细胞,并根据试剂盒的说明用BCA蛋白质测定蛋白质浓度。参照“1.2.3”分别检测CD206、CD16/32、NF-κB p65、NLRP3、ASC、Cleaved caspase-1水平。
1.3 数据处理
SPSS21.0软件进行统计学分析,采用单因素方差分析,组间比较采用LSD-t法,P<0.05为有统计学差异,P<0.01为有极显著差异,采用GraphPad Prism 8软件绘图。
2. 结果与分析
2.1 茯苓多糖抑制LPS诱导的BV-2细胞的ROS水平
氧化应激是抑郁样行为患者病理学的一个已知特征,内毒素可诱导M1表型,而M1极化的小胶质细胞可以产生活性氧(ROS),并进一步导致小胶质细胞损伤[21]。从图1中可以看出,LPS组ROS荧光相对强度明显增加,提示LPS提高了BV-2细胞中氧化应激水平,并进一步导致细胞损伤,而4、8、16 μmol/L PPS能极显著降低ROS荧光相对强度(P<0.01),表明茯苓多糖能缓解LPS诱导的ROS水平,减少小胶质细胞损伤。
图 1 茯苓多糖抑制LPS诱导的BV-2细胞的ROS水平注:与对照组比较,##P<0.01;与LPS组比较,**P<0.01;图2同。Figure 1. Poria cocos polysaccharide inhibited the ROS level in LPS-induced BV-2 cells2.2 茯苓多糖抑制LPS处理的BV-2细胞的炎症反应
炎症是抑郁、焦虑样患者的典型病理特征,并被广泛认为在抑郁、焦虑样中起关键作用。焦虑和抑郁样行为患者通常表现出炎症标志物明显的增加,如NO、TNF-α、IL-1β等[22],因此,NO、TNF-α、IL-1β可以作为LPS处理后小胶质细胞的炎症反应指标。小胶质细胞活化和炎性细胞因子分泌增加相关,本研究与这些发现一致,其结果表明LPS处理的BV-2细胞NO、TNF-α和IL-1β的表达水平较对照组极显著增加(P<0.01),而这些作用可以被茯苓多糖缓解,能阻断LPS的促炎作用,这些结果进一步证实了茯苓多糖具有抗炎活性,可能与抗抑郁药样作用有关,见图2。
2.3 茯苓多糖对 LPS 诱导的BV-2小胶质细胞极化的影响
脂多糖诱导的免疫应答由特征性标志物M1(CD16/32)和M2(CD206)来衡量[23]。为了探讨茯苓多糖在脂多糖刺激下是否能触发炎症性BV-2(M1)向抗炎M2亚型的极化,采用Western blot实验方法检测了M1标记CD16/32和M2标记CD206在BV-2细胞中的表达。
从图3中能看出,内毒素刺激的BV2细胞建立了炎症环境,增加了CD16/32的表达,但对M2标志物CD206的表达没有影响,表明LPS诱导BV-2向炎症性M1亚型极化。而8、16 μmol/L能极显著降低CD16/32、增加CD206水平(P<0.01),表明茯苓多糖能通过调节CD16/32、CD206促进小胶质细胞M1向M2表型转化。
研究显示,活化的小胶质细胞可能导致神经元损伤,产生自由基、促炎细胞因子、蛋白酶和其他因子。而NF-κB在几乎所有细胞中都有表达,并且在M1表型小胶质细胞的激活中起重要作用[24]。本研究结果与其一致,并进一步证实,茯苓多糖可抑制NF-κB并促进小胶质细胞的M1表型向M2表型转化。
2.4 蔗糖偏好测试比较
基于动物对甜食的自然偏好,进行蔗糖偏好测试以调查抑郁样行为,蔗糖偏好率能反映小鼠出现类似现实中抑郁症患者的核心症状之一:快感缺失。本研究结果显示,模型组蔗糖偏爱率较对照组极显著降低(P<0.01),表现出典型的快感缺失行为,蔗糖偏好度降低,说明本实验抑郁造模成功;而一定剂量的茯苓多糖能有效增加偏爱率(P<0.01),说明茯苓多糖能增加抑郁小鼠的快感,改善抑郁样行为,见图4。
2.5 旷场测试比较
开阔场地测试是一项经典的实验测试,用于评估一般运动和焦虑相关行为,而脂多糖可减少小鼠的旷场运动行为,增加抑郁样行为。本研究中,模型组小鼠旷场穿越次数、修饰次数较对照组极显著降低(P<0.01),说明小鼠在LPS的诱导下出现抑郁样行为;而一定剂量的茯苓多糖能极显著增加小鼠旷场穿越次数、修饰次数(P<0.01),说明茯苓多糖能够改善大鼠的抑郁和焦虑样行为,调节不良情绪,产生抗抑郁效果,见图5。
2.6 强迫游泳测试、尾部悬吊测试比较
强迫游泳试验是一种广泛用于研究啮齿动物抑郁样行为的试验。研究显示,强迫游泳、尾部悬吊测试中不动时间可以反映大鼠在行为绝望时的自主反应[16]。本研究中,模型组悬尾不动时间、强迫游泳不动时间明显较对照组极显著增加(P<0.01),说明小鼠经LPS处理后,求生欲望下降,强迫游泳试验、悬尾不动时间增加;而一定剂量的茯苓多糖能极显著降低悬尾不动和强迫游泳不动时间(P<0.01),说明茯苓多糖治疗抑郁小鼠活动能力以及抑郁焦虑均有效果,能有效地改善小鼠的抑郁样行为,增加小鼠的求生欲望,见图6。
2.7 茯苓多糖对海马小胶质细胞炎症水平的影响
内毒素可诱导M1表型,并增加促炎症细胞因子的产生。M1极化的小胶质细胞可产生各种促炎因子。炎症系统在包括焦虑症在内的慢性精神疾病的病理生理学中具有明确的作用。Xu等发现焦虑症患者包括TNF-α、IL-1β和IL-6在内的促炎细胞因子水平升高[25]。本研究根据上述证据评估海马组织中的炎症因子,结果显示伴有焦虑和抑郁样行为小鼠海马组织TNF-α、IL-1β和IL-18水平极显著升高(P<0.01),提示海马组织存在炎症反应,而茯苓多糖可以极显著降低其水平(P<0.01)。这些结果进一步证实了茯苓多糖具有抗炎活性并且可能有助于抗抑郁样作用,见图7。
2.8 茯苓多糖对海马小胶质细胞极化的影响
M1小胶质细胞表型可由LPS诱导,促炎细胞因子的产生增加。M1和M2小胶质细胞亚型通常分别由特征性标志物CD16/32和M2(CD206)来衡量[26]。本研究中,模型组海马组织CD16/32水平极显著增加(P<0.01),但对M2标志物CD206的表达没有影响,说明LPS激发了海马小胶质细胞M1亚型的极化。而经过茯苓多糖处理后,CD16/32水平显著降低,CD206显著增加(P<0.05),表明茯苓多糖能通过调节CD16/32、CD206促进海马小胶质细胞M1向M2表型转化,从而达到抗抑郁作用。
研究表明,M1小胶质细胞表型发挥促炎作用,而M2参与大脑中的抗炎过程[27]。本研究进一步证实茯苓多糖能抑制海马组织NF-κB p65的表达,有效抑制BV-2小胶质细胞活化,见图8。
2.9 茯苓多糖逆转LPS诱导的小鼠海马炎症小体活化
NLRP3炎性体是一种多蛋白复合物,其特点是能够激活pro-caspase-1,进而激活IL-1β和IL-18的切割和分泌。NF-κB诱导NLRP3的mRNA表达,这是形成炎性体复合物所必需的。已经表明,NLRP3 炎症小体激活与神经炎症、神经退行性疾病有关[28]。最近的证据表明,抑郁症的病原体可能与NLRP3相关[29]。此外,最近的一项研究还提出,NLRP3水平降低可消除LPS诱导的小鼠抑郁样行为[30]。本研究结果表明,茯苓多糖能极显著降低海马组织NLRP3、ASC、Cleaved caspase-1水平(P<0.01),抑制NLRP3炎性体信号传导,降低炎症水平,缓解LPS诱导的焦虑和抑郁样行为,见图9。
3. 结论
茯苓多糖能抑制小胶质细胞M1亚型极化,显著降低BV-2细胞中炎症因子ROS、NO、TNF-α、IL-1β水平,并通过调节CD16/32、CD206促进小胶质细胞M1向M2表型转化。通过动物实验表明,茯苓多糖能有效地改善LPS诱导的小鼠的抑郁样行为,增加抑郁小鼠的快感,调节不良情绪,改善小鼠活动能力。其机制可能与炎症信号转导有关,通过抑制NF-κB和NLRP3信号通路,减轻LPS诱导的焦虑和抑郁样行为。研究结果初步表明,茯苓多糖可用于焦虑、抑郁疾病的治疗,可为天然抗焦虑、抑郁药物的研发和临床应用提供借鉴,同时为茯苓多糖的开发开拓了新的方向。
-
图 1 茯苓多糖抑制LPS诱导的BV-2细胞的ROS水平
注:与对照组比较,##P<0.01;与LPS组比较,**P<0.01;图2同。
Figure 1. Poria cocos polysaccharide inhibited the ROS level in LPS-induced BV-2 cells
-
[1] BECK A, HAMEL C, THUKU M, et al. Screening for depression among the general adult population and in women during pregnancy or the first-year postpartum: Two systematic reviews to inform a guideline of the Canadian task force on preventive health care[J]. Systematic Reviews,2022,11(1):176. doi: 10.1186/s13643-022-02022-2
[2] DESAI D, SHENDE P. Dual-action of colloidal ISCOMs: An optimized approach using Box-Behnken design for the management of breast cancer[J]. Biomedical Microdevices,2022,24(3):28. doi: 10.1007/s10544-022-00625-z
[3] YAO X, YANG C, WANG C, et al. High-fat diet consumption in adolescence induces emotional behavior alterations and hippocampal neurogenesis deficits accompanied by excessive microglial activation[J]. International Journal of Molecular Sciences,2022,23(15):8316. doi: 10.3390/ijms23158316
[4] LI Y, SONG W, TONG Y, et al. Isoliquiritin ameliorates depression by suppressing NLRP3-mediated pyroptosis via miRNA-27a/SYK/NF-κB axis[J]. Journal of Neuroinflammation,2021,18(1):1. doi: 10.1186/s12974-020-02040-8
[5] MUHAMMAD R N, AHMED L A, ABDUL SALAM R M, et al. Crosstalk among NLRP3 inflammasome, ETBR signaling, and miRNAs in stress-induced depression-like behavior: A modulatory role for SGLT2 inhibitors[J]. Neurotherapeutics,2021,18(4):2664−2681. doi: 10.1007/s13311-021-01140-4
[6] LI S, SUN Y, SONG M, et al. NLRP3/caspase-1/GSDMD-mediated pyroptosis exerts a crucial role in astrocyte pathological injury in mouse model of depression[J]. JCI Insight,2021,6(23):e146852. doi: 10.1172/jci.insight.146852
[7] AGHAIE F, MORADIFAR F, HOSSEINI A. Rapamycin attenuates depression and anxiety-like behaviors through modulation of the NLRP3 pathway in pentylenetetrazole-kindled male Wistar rats[J]. Fundamental & Clinical Pharmacology,2021,35(6):1045−1054.
[8] LI X, HE Y, ZENG P, et al. Molecular basis for Poria cocos mushroom polysaccharide used as an antitumour drug in China[J]. Journal of Cellular and Molecular Medicine,2019,23(1):4−20. doi: 10.1111/jcmm.13564
[9] 刘晓英, 马诗经, 韩萍, 等. 不同分子量茯苓多糖抑制酪氨酸酶活性及抗炎功效的研究[J]. 中国食用菌,2021,40(9):47−53. [LIU X Y, MA S J, HAN P, et al. Inhibitory tyrosinase activity and anti-inflammatory effect of Poria cocos polysaccharides with different molecular weights[J]. Chinese Journal of Edible Fungi,2021,40(9):47−53. doi: 10.13629/j.cnki.53-1054.2021.09.010 LIU X Y, MA S J, HAN P, et al. Inhibitory tyrosinase activity and anti-inflammatory effect of Poria cocos polysaccharides with different molecular weights[J]. Chinese Journal of Edible Fungi, 2021, 40(9): 47-53. doi: 10.13629/j.cnki.53-1054.2021.09.010
[10] ZHANG D D, LI H J, ZHANG H R, et al. Poria cocos water-soluble polysaccharide modulates anxiety-like behavior induced by sleep deprivation by regulating the gut dysbiosis, metabolic disorders and TNF-α/NF-κB signaling pathway[J]. Food & Function,2022,13(12):6648−6664.
[11] 包玲, 胡晓华, 王宗琴, 等. 运动联合抗抑郁药物对大鼠海马细胞和BDNF/pERK信号通路的影响[J]. 中国现代医学杂志,2018,28(20):14−19. [BAO L, HU X H, WANG Z Q, et al. Effect of exercise combined with antidepressants on hippocampal cells and BDNF/pERK signaling pathway in rats[J]. China Journal of Modern Medicine,2018,28(20):14−19. doi: 10.3969/j.issn.1005-8982.2018.20.003 BAO L, HU X H, WANG Z Q, et al. Effect of exercise combined with antidepressants on hippocampal cells and BDNF/pERK signaling pathway in rats [J]. China Journal of Modern Medicine , 2018, 28(20): 14-19. doi: 10.3969/j.issn.1005-8982.2018.20.003
[12] 宗菊, 鄢宗仁, 秦枫. 血浆皮质醇、脑源性神经营养因子、亚硝酸根水平与急性缺血性脑卒中后抑郁状态相关性研究[J]. 创伤与急危重病医学,2021,9(5):331−336. [ZHENG Z J, YAN Z R, QIN F. Correlation between plasma cortisol, brain-derived neurotrophic factor, NO-2 and post-stroke depression in patients with acute ischemic stroke[J]. Trauma and Critical Care Medicine,2021,9(5):331−336. doi: 10.16048/j.issn.2095-5561.2021.05.02 ZHENG Z J, YAN Z R, QIN F. Correlation between plasma cortisol, brain-derived neurotrophic factor, NO-2 and post-stroke depression in patients with acute ischemic stroke [J]. Trauma and Critical Care Medicine, 2021, 9(5): 331-336. doi: 10.16048/j.issn.2095-5561.2021.05.02
[13] 肖竹青, 刘金林, 杜宗攀, 等. 培元通脑胶囊联合针刺对缺血性脑卒中后抑郁患者的临床疗效[J]. 中成药,2022,44(4):1364−1366. [XIAO Z Q, LIU J L, DU Z P, et al. Clinical effect of peiyuan tongnao capsule combined with acupuncture on patients with depression after ischemic stroke[J]. Chinese Traditional Patent Medicine,2022,44(4):1364−1366. doi: 10.3969/j.issn.1001-1528.2022.04.065 XIAO Z Q, LIU J L, DU Z P , et al. Clinical effect of Peiyuan Tongnao Capsule combined with acupuncture on patients with depression after ischemic stroke[J]. Chinese Traditional Patent Medicine, 2022, 44(4): 1364-1366. doi: 10.3969/j.issn.1001-1528.2022.04.065
[14] LÜ W J, LIU C, YUL Z, et al. Melatonin alleviates neuroinflammation and metabolic disorder in DSS-induced depression rats[J]. Oxidative Medicine and Cellular Longevity,2020,2020:1241894.
[15] LIU W, XUE X, XIA J, et al. Swimming exercise reverses CUMS-induced changes in depression-like behaviors and hippocampal plasticity-related proteins[J]. Journal of Affective Disorders,2018,227:126−135. doi: 10.1016/j.jad.2017.10.019
[16] 陈明珠, 黄幼霞, 廖婉婷, 等. 隐丹参酮对慢性不可预见应激联合脂多糖所致抑郁小鼠氧化应激和炎症反应的影响[J]. 现代药物与临床,2022,37(7):1439−1444. [CHEN M Z, HUANG Y X, NIAO W T, et al. Effects of cryptotanshinone on oxidative stress and inflammatory response in depressed mice induced by chronic unpredictable stress combined with lipopolysaccharide[J]. Drugs & Clinic,2022,37(7):1439−1444. CHEN M Z, HUANG Y X, NIAO W T, et al. Effects of cryptotanshinone on oxidative stress and inflammatory response in depressed mice induced by chronic unpredictable stress combined with lipopolysaccharide[J]. Drugs & Clinic, 2022, 37(7): 1439-1444.
[17] WALKER A K, WING E E, BANKS W A, et al. Leucine competes with kynurenine for blood-to-brain transport and prevents lipopolysaccharide-induced depression-like behavior in mice[J]. Molecular Psychiatry,2019,24(10):1523−1532. doi: 10.1038/s41380-018-0076-7
[18] ZELDETZ V, NATANEL D, BOYKO M, et al. A new method for inducing a depression-like behavior in rats[J]. Journal of Visualized Experiments,2018(132):57137.
[19] RAEZ A, OLIVERAS I, RIO-ÁLAMOUS C, et al. A missing link between depression models: Forced swimming test, helplessness and passive coping in genetically heterogeneous NIH-HS rats[J]. Behavioural Processes,2020,177:104142. doi: 10.1016/j.beproc.2020.104142
[20] ZHANG B, WANG P P, HU K L, et al. Antidepressant-like effect and mechanism of action of honokiol on the mouse lipopolysaccharide (LPS) depression model[J]. Molecules,2019,24(11):2035. doi: 10.3390/molecules24112035
[21] LI W, ALI T, HE K, et al. Ibrutinib alleviates LPS-induced neuroinflammation and synaptic defects in a mouse model of depression[J]. Brain, Behavior, and Immunity,2021,92:10−24. doi: 10.1016/j.bbi.2020.11.008
[22] NG A, TAM W W, ZHANG M W, et al. IL-1β, IL-6, TNF-α and CRP in elderly patients with depression or Alzheimer's disease: Systematic review and meta-analysis[J]. Scientific Reports,2018,8(1):12050. doi: 10.1038/s41598-018-30487-6
[23] WEI L, GUO J, YU X, et al. Role and characteristics of hippocampal region microglial activation in poststroke depression[J]. Journal of Affective Disorders,2021,291:270−278. doi: 10.1016/j.jad.2021.05.022
[24] 何超平, 陈煜, 彭莎, 等. 乙酰水杨酸姜黄素酯通过TLR4/NF-κB通路拮抗LPS诱导的BV2小胶质细胞炎症损伤[J]. 湖南中医药大学学报,2022,42(7):1070−1075. [HE C P, CHEN Y, PENG S, et al. Curcumin acetylsalicylate antagonizes LPS-induced inflammatory injury of BV2 microglia through TLR4/NF-κB pathway[J]. Journal of Hunan University of Chinese Medicine,2022,42(7):1070−1075. doi: 10.3969/j.issn.1674-070X.2022.07.003 HE C P, CHEN Y, PENG S, et al. Curcumin acetylsalicylate antagonizes LPS-induced inflammatory injury of BV2 microglia through TLR4/NF-κB pathway[J]. Journal of Hunan University of Chinese Medicine, 2022, 42(7): 1070-1075. doi: 10.3969/j.issn.1674-070X.2022.07.003
[25] XU X, PIAO H N, AOSAI F, et al. Arctigenin protects against depression by inhibiting microglial activation and neuroinflammation via HMGB1/TLR4/NF-κB and TNF-α/TNFR1/NF-κB pathways[J]. British Journal of Pharmacology,2020,177(22):5224−5245. doi: 10.1111/bph.15261
[26] 白方方, 王豆, 冯卫星. 小胶质细胞在抑郁症发病中的作用机制及其相关抗抑郁药物应用研究进展[J]. 山东医药,2022,62(17):97−100. [BAI F F, WANG D, FENG W X. Research progress on the mechanism of microglia in the pathogenesis of depression and the application of related antidepressants[J]. Shandong Medical Journal,2022,62(17):97−100. doi: 10.3969/j.issn.1002-266X.2022.17.025 BAI F F, WANG D, FENG W X. Research progress on the mechanism of microglia in the pathogenesis of depression and the application of related antidepressants[J]. Shandong Medical Journal, 2022, 62(17): 97-100. doi: 10.3969/j.issn.1002-266X.2022.17.025
[27] 王康恒, 王毅, 林静. 长春西汀对抑郁大鼠情感障碍相关脑区小胶质细胞活性的影响[J]. 中国临床药理学杂志,2022,38(11):1190−1194. [WANG K H, WANG Y, LIN J. Effect of vinpocetine on microglia activity in brain regions related to affective disorders of depression rat[J]. Chinese Journal of Clinical Pharmacology,2022,38(11):1190−1194. doi: 10.13699/j.cnki.1001-6821.2022.11.008 WANG K H, WANG Y, LIN J. Effect of vinpocetine on microglia activity in brain regions related to affective disorders of depression rat[J]. Chinese Journal of Clinical Pharmacology, 2022, 38(11): 1190-1194. doi: 10.13699/j.cnki.1001-6821.2022.11.008
[28] ZHU H, JIAN Z, ZHONG Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroin flammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition[J]. Front Immunol,2021,12:714943. doi: 10.3389/fimmu.2021.714943
[29] LI S, FANG Y, ZHANG Y, et al. Microglial NLRP3 inflammasome activates neurotoxic astrocytes in depression-like mice[J]. Cell Rep,2022,41(4):111532. doi: 10.1016/j.celrep.2022.111532
[30] 刘富群, 高崎, 王丹丹, 等. 银杏酮酯对抑郁症大鼠抑郁样行为及NLRP3炎症小体的作用[J]. 上海中医药大学学报,2017,31(5):60−65. [LIU F Q, GAO Q, WANG D D, et al. Effects of Ginkgo biloba extract on depression-like behavior and NLRP3 inflammasome in depressive rats[J]. Journal of Shanghai University of Traditional Chinese Medicine,2017,31(5):60−65. LIU F Q, GAO Q, WANG D D, et al. Effects of ginkgo biloba Extract on depression-like behavior and NLRP3 inflammasome in depressive rats[J]. Journal of Shanghai University of Traditional Chinese Medicine, 2017, 31(5): 60-65.
-
期刊类型引用(0)
其他类型引用(1)