• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

四川黑茶的特征香气成分分析

黄藩, 张厅, 刘晓, 王小萍, 唐晓波, 王云, 李春华, 夏陈

黄藩,张厅,刘晓,等. 四川黑茶的特征香气成分分析[J]. 食品工业科技,2023,44(12):328−336. doi: 10.13386/j.issn1002-0306.2022070344.
引用本文: 黄藩,张厅,刘晓,等. 四川黑茶的特征香气成分分析[J]. 食品工业科技,2023,44(12):328−336. doi: 10.13386/j.issn1002-0306.2022070344.
HUANG Fan, ZHANG Ting, LIU Xiao, et al. Analysis of Characteristic Aroma Components of Sichuan Dark Tea[J]. Science and Technology of Food Industry, 2023, 44(12): 328−336. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070344.
Citation: HUANG Fan, ZHANG Ting, LIU Xiao, et al. Analysis of Characteristic Aroma Components of Sichuan Dark Tea[J]. Science and Technology of Food Industry, 2023, 44(12): 328−336. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070344.

四川黑茶的特征香气成分分析

基金项目: 四川省科技厅重点研发项目(2021YFN0093);四川省财政自主创新专项(2022ZZCX054);四川省农业科学院1+9揭榜挂帅项目(1+9KJGG007);国家现代农业(茶)产业体系绿茶加工岗位(CARS-23)。
详细信息
    作者简介:

    黄藩(1989−),女,硕士研究生,助理研究员,研究方向:茶叶加工与栽培,E-mail:474844276@qq.com

    通讯作者:

    张厅(1986−),男,硕士研究生,副研究员,研究方向:茶叶加工与审评,E-mail:441077871@qq.com

    唐晓波(1978−),男,硕士研究生,研究员,研究方向:茶叶加工与科技管理,E-mail:26232611@qq.com

  • 中图分类号: S571.1

Analysis of Characteristic Aroma Components of Sichuan Dark Tea

  • 摘要: 以四川省15个有代表性的黑茶产品为研究对象,采用顶空固相微萃取法(headspace solid-phase micro-extraction,HS-SPME)结合气相色谱-质谱技术(gas chromatography-mass spectrometry,GC-MS)分析香气成分,并通过感官审评,研究了四川黑茶香气成分上的差异。结果表明:四川黑茶的香气以陈香为主,部分样品有糯米香、甜香、烟味、酸气等其它特征;分析鉴定出121种香气成分,烯类(5.41%~42.38%)、醛类(7.26%~19.97%)、酮类(6.68%~39.26%)和醇类(14.03%~27.06%)化合物的占比较高。通过主成分分析(principal component ana-lysis,PCA),从32个共性香气成分中提取了7个主成分,累积贡献率达到84.27%;β-紫罗酮、1-辛烯-3-醇、2,3-二氢-2,2,6-三甲基、5,6-环氧-β-紫罗兰酮、香叶基丙酮、3,5-辛二烯酮(E,E)、反-2-辛烯醛、2-正戊基呋喃等特征香气成分,是呈现浓纯陈香的主要物质。通过相对气味活度值(relative odor activity value,ROAV)评价四川黑茶的香气成分对风味特征的贡献率,发现(E,E)-2,4-庚二烯醛、芳樟醇、香叶基丙酮、α-紫罗兰酮和1-辛烯-3-醇的ROAV值大于1,对四川黑茶香气特征的形成贡献较大。该研究可为四川黑茶的特征香气形成研究及品质评价提供理论参考。
    Abstract: The volatile aroma compounds of 15 representative dark tea products in Sichuan Province were analyzed by sensory evaluation and headspace solid phase micro-extraction (HS-SPME) combined with gas chromato graphy-mass spectrometry (GC-MS) in this study. The results showed that ''stale flavor'' were the main aromatic aroma type of Sichuan dark tea, other tea samples had glutinous rice aroma, sweet , sour gas and smoky, which were typical of dark tea. A total of 121 aroma components were detected in the dark teas,and the major aroma compounds were alkenes (5.41%~42.38%), aldehydes (7.26%~19.97%), ketones (6.68%~39.26%) and alcohols (14.03%~27.06%). 7 principal components were extracted from the 32 common aroma components byprincipal component analysis(principal component analysis, PCA) and the total contribution attained 84.27%. Characteristic aroma components included β-ionone, 1-octen-3-ol, 2,3-dihydro-2,2,6-trimethyl,5,6-epoxy-β-ionone, geranylacetone, 3,5-octadienone (E,E), trans-2-octenal, 2-n-pentylfuran, which played important roles in the aromatic characteristics of strong and pure ''stale flavor'' of Sichuan dark tea. Relative odor activity value (ROAV) was used to evaluate the contribution of aroma components to flavor characteristics of Sichuan dark tea. It was found that the ROAV values of (E,E)-2, 4-heptadienal, linalool, geraniyl acetone, α-ionone and 1-octene-3-ol were greater than 1. The above components made great contributions to the formation of aroma characteristics of Sichuan dark tea. This study could provide a theoretical reference for research on characteristic aroma formation and quality evaluation of Sichuan dark tea.
  • 黑茶是我国六大传统茶类之一,加工的基本流程包括杀青、揉捻、渥堆、干燥及精制等。各茶区形成了雅安藏茶、邛崃黑茶、安化黑茶、六堡茶、泾渭茯茶、普洱熟茶等多种花色的黑茶产品。因产地、工艺差别以及销区人们喜好的差异,不同地域的黑茶具有各自的特征,比如香气特征包括陈香、菌花香、糯米香、槟榔香、烟焦味等多种风格[1]。香气特征一定程度上决定了茶叶品质的高低和消费市场的定价,是茶叶研究领域的热点[2-4]。分析化学、食品学、统计学、心理学、生理学等学科与传统感官评价多维度密切结合[5-6],电子鼻分析技术、气相色谱-嗅闻法(GC-O)、顶空固相微萃取-气相色谱-质谱联用仪(HS-SPME-GC-MS)技术[7]、气相色谱-离子迁移谱联用技术(GC-IMS)[8]等广泛应用于茶叶香气的研究。

    “四川黑茶”是四川省境内所产黑茶的统称,生产历史悠久,曾经专销康藏地区的康砖、金尖,以及专销川西北松潘、理县等地的方包,都是四川黑茶的主要产品。近年来,随着黑茶保健功能的揭示[9-11],四川黑茶的消费市场逐渐扩大,为满足消费者对健康和口感的多样化需求,各种工艺革新层出不穷[12-13],使得市场上的产品繁多、风格各异。因缺乏系统研究,四川黑茶的香气辨识度并不高,使得其风格特征及优势不够清晰,一定程度上影响了四川黑茶的品质定位及品牌建设。因此,对四川不同花色的黑茶香气进行系统研究,具有重要意义。

    本研究对15个有代表性的四川黑茶产品的香气成分进行了比较研究,本研究采用了15个有代表性的四川黑茶产品,利用顶空固相微萃取气相色谱-串联质谱法(HS-SPME-GC-MS/MS )结合主成分分析(PCA)和相对气味活度值(relative odoractivity value,ROAV)分析四川黑茶的香气成分及其风味贡献程度;研究四川黑茶之间的香气差异,并结合感官审评结果,寻找特征性呈香物质,对确定四川黑茶标准化的特征,推广四川黑茶都有非常重要的意义。

    15个有代表性的黑茶样品 于2021年收集自成都大西南茶城,均由四川省茶叶企业生产,具体茶样信息见表1所示。

    表  1  四川黑茶样品信息
    Table  1.  Sample information of dark teas produced from Sichuan Province
    样品编号产品类型企业品牌
    H-12018年康砖郎赛茶业
    H-22018年康砖蔡龙茶业
    H-32018年康砖周公山茶业
    H-42018年康砖雅安茶厂
    H-52018年康砖和龙茶业
    H-62018年康砖兄弟友谊
    H-72018年康砖山雅茶业
    H-82018年康砖西康茶业
    H-92018年康砖荥经塔山茶业
    H-102018年金尖吉祥茶业
    H-112018年金尖和龙茶业
    H-122018年邛崃黑茶花秋茶业
    H-132018年邛崃黑茶金川茶业
    H-142018年邛崃黑茶碧涛茶业
    H-152018年邛崃黑茶文君茶业
    下载: 导出CSV 
    | 显示表格

    手动SPME进样器和50/30 µm DVB/CAR/PDMS固相微萃取头 美国Supeclo公司;GC-MS气相色谱质谱联用仪 Agilent 7890A/5975C;DGH-9008型电热恒温鼓风干燥箱 上海精宏实验设备有限公司;Master S15型纯水仪 上海和泰仪器有限公司;Milli-RO PLUS 30纯水机 法国Millipore公司。

    具有高级评茶员资格的3名审评员,按GB/T 23776-2018《茶叶感官审评方法》对茶叶香气品质进行密码评分审评。

    HS-SPME前处理:称取10.0 g磨碎茶样,加入10 μL浓度100 μg/mL的癸酸乙酯和100 mL沸腾蒸馏水,在50 ℃烘箱中平衡5 min后,将萃取头插入锥形瓶,在茶汤液面上空吸附40 min,在GC-MS进样口于220 ℃下解吸5 min。

    检测方法GC-MS条件:程序升温参数:初始温度50 ℃,保持2 min,以3 ℃/min升温至80 ℃保持2 min,以5 ℃/min升温至180 ℃保持1 min,以10 ℃/min升温至230 ℃保持5 min,最后以20 ℃/min升温至250 ℃保持3 min。进样口温度:220 ℃。脉冲不分流,进样1 μL,载气为高纯氦气(99.999%),柱流速:1.5 mL/min。色谱-质谱接口温度:250 ℃。离子源温度:230 ℃。离子化方式:EI。电子能量:70 eV。扫描质量范围50~500 m/z[14]

    定性与定量:各组分分别用NIST08标准谱库进行检索匹配,碎片比对,并结合相关文献报道、各成分的相对保留时间等进行定性。定量按峰面积归一化法计算各组分的相对含量。

    参数ROAVstan设定对样品风味贡献最大成分[15]: ROAVstan=100。

    其他的成分(A)对应ROAV值计算:

    ROAV=C%AC%stan ×TstanTA×100

    式中:C% A、TA 为各香气成分的相对百分含量和对应的感觉阈值;C%stan、Tstan分别为对样品风味贡献最大组分的相对百分含量和感觉阈值。

    每组试验数据重复测定3次。采用Excel软件分析数据并绘制表格,SPSS19.0 软件进行 PCA 分析。

    四川黑茶的制作原料嫩度普遍较老,多为一芽三四叶以上。且各厂家制作工艺存在差别,所以四川黑茶的品质风格各异。由表2可知,香气风格多样,除了浓纯度有区别,包括陈香、糯米香、焦甜、酸气、烟味等多种香型特征。由叶底可知,相比传统四川黑茶,15个样品的原料嫩度较高。

    表  2  四川黑茶感官审评结果
    Table  2.  Sensory evaluation results for dark teas produced from Sichuan province
    样品
    编号
    香气浓
    纯度
    特征香型叶底
    H-1浓尚纯带烟一芽二三叶,叶底嫩较匀稍有嫩茎,黄褐
    H-2平正一芽三四叶,叶底尚嫩软有嫩茎,乌褐稍花
    H-3浓较纯略有陈香一芽二三叶,叶底尚嫩匀有嫩茎,较乌褐
    H-4尚纯正微酸,略有陈香一芽三四叶,叶底尚匀,多碎叶片,
    黄褐稍花
    H-5浓较纯带焦甜香一芽二三叶,叶底尚嫩,有茎梗, 乌褐
    H-6较浓纯陈香显一芽二三叶,叶底叶张稍硬,
    多茎梗,乌褐稍花
    H-7尚纯略酸一芽二三叶,叶底较嫩匀,有茎梗,乌褐
    H-8浓尚纯稍甜一芽二三叶,叶底叶张尚软,有茎梗,
    黄褐、乌褐夹杂
    H-9欠纯一芽二三叶,叶底嫩尚匀,有嫩茎,
    较乌褐稍花。
    H-10尚浓纯一芽三四叶,叶底尚嫩,有嫩茎,黄褐
    H-11尚浓有糯米香一芽四五叶,叶底尚软,有茎梗,乌褐
    H-12尚浓纯有酸气一芽二三叶,叶底嫩尚匀,有嫩茎,黄褐
    H-13平正有陈香一芽二三叶,叶底嫩软,有嫩茎,乌褐
    H-14较浓纯带酸气一芽二三叶,叶底嫩较匀,乌褐
    H-15浓较纯略烟一芽二三叶,叶底尚嫩匀,黄褐
    下载: 导出CSV 
    | 显示表格

    样品11具有糯米香,样品H-1和H-15带烟气,样品H-4、H-7、H-12、H-14带酸气,样品H-3、H-4、H-6、H-13带陈香,样品H-5、H-8带甜味,样品H-9的浓纯度较差,欠纯。

    15个样品共检测出香气物质121种,包括烯类27种,醛类19种,醇类22种,酯类12种,酸类4种,醚类2种,酮类22种,酚类4种,含氧(呋喃)类化合物2种,含氮化合物3种,苯系类化合物3种。各样品的香气物质数量见表3,样品H-2的香气数量最多,为76种,样品H-13数量最少,为61种。各样品的香气数量较多的物质种类为烯类、醛类、酮类、酯类和醇类。

    表  3  四川黑茶样品的香气成分的数量(种)
    Table  3.  Aromatic components and their numbers in dark teas produced from Sichuan Province (kinds)
    化合物H-1H-2H-3H-4H-5H-6H-7H-8H-9H-10H-11H-12H-13H-14H-15
    烯类化合物1113208876141261288713
    醛类化合物131513161614141514141313111715
    醇类化合物161517151615161414161515151714
    酯类化合物573745425544556
    酸类化合物432424444424444
    酚类化合物230231431332122
    醚类化合物120010001220000
    酮类化合物121311181513171617161516131413
    苯系类化合物333333333333333
    含氧(呋喃)类化合物121111111111111
    含氮化合物401111000221013
    合计727671757064697272727267617174
    下载: 导出CSV 
    | 显示表格

    表4可知,不同类型的香气物质占总香气物质的比例也存在一定差异,15个样品中各类香气物质占比为:烯类占比5.41%~42.38%,醛类占比7.26%~19.97%,酮类占比6.68%~39.26%,醇类占比14.03%~27.06%,酸类占比1.01%~8.19%,酯类占比4.84%~13.71%,醚类占比0~9.07%,苯系类占比2.05%~6.53%,酚类占比0~3.44%,含氧(呋喃)化合物占比0.36%~3.37%,含氮化合物占比0~2.16%。样品H-1、H-2、H-3、H-8、H-11、H-15的香气中为烯类化合物占比最高;样品H-7、H-12、H-14的香气中为醇类化合物占比最高;样品H-4、H-5、H-6、H-9、H-10、H-13的香气中为酮类化合物占比最高。

    表  4  四川黑茶样品中香气类别及其相对含量(%)
    Table  4.  Aroma components category and their relative contents in dark teas produced from Sichuan Province (%)
    化合物H-1H-2H-3H-4H-5H-6H-7H-8H-9H-10H-11H-12H-13H-14H-15
    烯类化合物25.1423.2142.386.2312.1217.115.7426.4724.815.4130.5513.0719.9525.1833.57
    醛类化合物13.1717.529.8319.8419.9716.8716.7915.1716.2316.887.2616.0815.1714.2810.15
    醇类化合物21.0115.6315.7110.3125.4418.2524.1514.0317.8518.0427.0622.0918.0025.6615.95
    酯类化合物6.799.356.9913.719.179.4410.444.845.099.799.9311.9910.596.969.46
    酸类化合物6.942.462.926.222.025.768.195.793.137.501.016.777.314.455.00
    酚类化合物1.021.640.001.221.510.351.201.400.261.163.440.510.430.560.44
    醚类化合物0.401.690.000.000.320.000.000.000.451.889.070.000.000.000.00
    酮类化合物19.6421.0218.3039.2624.8526.7630.0526.8124.9834.216.6826.1723.2716.5616.77
    苯系类化合物3.255.953.302.052.874.562.214.464.673.153.172.093.935.266.53
    含氧(呋喃)类化合物0.643.370.840.791.390.801.231.142.370.790.790.891.350.360.67
    含氮化合物2.160.000.130.380.100.100.000.000.000.941.050.340.000.561.45
    下载: 导出CSV 
    | 显示表格

    烯类物质中含量最高成分是柠檬烯,且样品H-14和H-15的含量高达17.49%、20.68%。具有树脂香的(1S)-(-)-β-蒎烯[16]仅在样品H-1中检测,含量高达7.54%。除此以外,具有花果香气味[16]的的γ-松油烯、长叶烯、α-顺-香柠檬烯、α-摩勒烯、α-姜黄烯、β-倍半水芹烯、α-合金欢烯、去氢白菖烯等烯类物质含量较高。醛类物质中含量较高的有正己醛、(E)-2-庚烯醛、反-2-辛烯醛、2,4-庚二烯醛、苯甲醛、1-乙基-1H-吡咯-2-羧醛、β-环柠檬醛、2,3-二氢-2,2,6-三甲基苯甲醛等。已知烯醛类物质与黑茶的“菌花香”有关[17],其它醛类物质多体现为青草味、花果香等。醇类物质中含量较高的有2-苯基乙醇、芳樟醇及其氧化物、顺-2-戊烯-1-醇、橙花醇、苯甲醇、雪松醇等,以上物质多体现为花果香[18],具有木香、陈香的雪松醇在样品H-11中的含量高达5.62%。酯类物质中含量较高的有麝香气味的二氢猕猴桃内酯和冬青叶气味的水杨酸甲酯[19]。丙烯酸-6-甲基庚酯仅在样品H-12中检出,含量高达3.52%。酸类物质中含量较高的乙酸、己酸、和壬酸。醚类化合物含量较高的有间苯二甲醚,在样品J-11的含量高达8.96%。酮类化合物含量较高的有甲基庚烯酮、香叶基丙酮、α-紫罗兰酮、6,10-二甲基-5,9-十一双烯-2-酮、3,5-辛二烯酮、3,5-辛二烯酮(E,E)、β-紫罗酮、植酮,以上物质多体现为花果香[20]。苯系类化合物含量较高的有具有特殊香味的异丙基苯、陈香的1,2,3-三甲氧基苯。含氧(呋喃)类化合物含量较高的有具有果香、清香气味的2-正戊基呋喃。含氮类化合物含量较高的是具有烘焙气味的2-乙酰基吡咯。

    15个样品检测出的香气中,共有成分为32种(表5),在不同样品占香气物质总含量的46.27%~73.70%。以15个样本32种共有香气成分的含量为变量进行主成分分析(PCA),相关矩阵的特征值和特征向量如表6表7所示。结果表明,经主成分提取后,第一主成分初始特征值为7.22,方差贡献率为22.57%;第二主成分初始征值为6.03,方差贡献率为18.86%;前7个主成分解释的方差累计贡献率达到了84.27%,即涵盖了大部分原始变量的信息。

    表  5  四川黑茶样品中共有香气组分及其相对含量(%)
    Table  5.  Common aroma components and their relative contents in dark teas produced from Sichuan Province (%)
    化合物H-1H-2H-3H-4H-5H-6H-7H-8H-9H-10H-11H-12H-13H-14H-15
    柠檬烯9.3810.333.332.596.1613.583.8812.4214.462.9612.608.147.2317.4920.68
    正己醛0.832.201.041.062.061.941.732.233.131.490.102.001.300.910.34
    (E)-2-庚烯醛0.310.310.290.391.110.530.621.081.051.051.261.471.390.880.76
    反-2-辛烯醛0.111.340.360.970.630.510.820.561.570.790.760.940.930.320.30
    (E,E)-2,4-庚二烯醛0.703.250.692.161.010.940.660.821.541.410.491.331.230.680.72
    苯甲醛2.422.713.303.323.523.563.572.031.442.390.643.212.922.091.15
    β-环柠檬醛0.711.370.620.612.161.801.140.990.811.310.861.231.751.280.90
    2,3-二氢-2,2,6-三甲基苯甲醛1.281.280.500.361.831.501.241.460.871.800.621.491.371.490.74
    2-苯基乙醇4.380.490.540.716.140.821.772.400.981.400.374.000.863.384.53
    顺-2-戊烯-1-醇1.161.631.481.221.712.411.751.221.783.030.101.881.561.120.95
    氧化芳樟醇I0.961.021.300.561.220.632.190.911.051.323.040.990.781.560.36
    芳樟醇2.562.003.142.854.832.411.980.506.271.394.080.963.431.341.15
    α-松油醇1.710.860.920.110.871.730.591.300.540.611.010.550.880.980.43
    1-辛烯-3-醇0.940.910.580.110.921.051.290.800.641.330.621.420.850.660.37
    苯甲醇1.720.100.541.221.410.600.570.870.310.630.100.980.671.992.60
    水杨酸甲酯0.700.380.750.832.070.210.600.700.360.442.110.320.420.920.22
    二氢猕猴桃内酯5.405.255.948.534.166.677.074.142.178.757.467.707.845.406.04
    乙酸2.831.022.471.651.922.421.442.220.912.920.101.092.792.852.89
    壬酸0.910.470.451.300.100.360.600.530.360.690.900.651.060.460.49
    甲基庚烯酮0.640.981.781.541.961.331.901.153.352.210.551.202.350.810.77
    5,6-环氧-β-紫罗兰酮2.311.661.211.851.611.521.992.111.253.300.371.732.051.312.09
    香叶基丙酮1.651.971.230.112.661.753.272.553.785.260.571.991.931.062.18
    α-紫罗兰酮1.682.472.414.652.661.541.792.433.243.560.401.701.702.191.14
    3,5-辛二烯酮2.222.965.083.584.058.626.023.912.073.340.577.143.613.432.41
    3,5-辛二烯酮(E,E)2.461.372.141.451.873.753.192.610.732.300.102.902.091.911.31
    β-紫罗酮5.295.312.995.126.604.452.836.393.567.521.324.095.163.444.48
    植酮1.742.421.037.130.991.373.432.412.312.031.141.311.940.861.15
    异丙基苯1.021.640.990.400.882.880.592.473.360.401.010.721.033.644.74
    3,5-二羟基戊苯0.931.020.801.001.361.460.690.820.391.591.121.081.631.471.26
    1,2,3-三甲氧基苯1.303.291.510.640.630.220.931.170.921.161.050.301.270.140.53
    2-正戊基呋喃0.641.710.840.791.390.801.231.142.370.790.790.891.350.360.67
    下载: 导出CSV 
    | 显示表格
    表  6  香气主成分分析的特征值
    Table  6.  Eigenvalues of aroma by principal component analysis
    主成分初始特征值
    初始特征值方差百分比(%)累积方差百分比(%)
    F17.2222.5722.57
    F26.0318.8641.43
    F34.2313.2154.64
    F43.3610.5165.16
    F52.397.4772.63
    F61.885.8978.51
    F71.845.7684.27
    下载: 导出CSV 
    | 显示表格

    表7可知,第1主成分的主要贡献香气成分有正己醛、苯甲醛、β-环柠檬醛、2,3-二氢-2,2,6-三甲基苯甲醛、1-辛烯-3-醇、5,6-环氧-β-紫罗兰酮、香叶基丙酮、3,5-辛二烯酮(E,E)、β-紫罗酮等香气成分,主要反映了草药香、清香、花香和甜果香。第2主成分的主要贡献香气成分有反-2-辛烯醛、(E,E)-2,4-庚二烯醛、芳樟醇、甲基庚烯酮、2-正戊基呋喃等香气成分,主要反映了油脂味、豆香、青味,柑橘味和花香。第3主成分的主要贡献香气成分有异丙基苯,带有特殊的芳香气味。第4主成分的主要贡献香气成分有氧化芳樟醇I和水杨酸甲酯,主要反映了铃兰、百合花香和冬青叶味。第5、6、7主成分的主要贡献香气成分有(E)-2-庚烯醛、β-紫罗酮、水杨酸甲酯,主要反映了青草味、花果香。

    表  7  香气主成分的特征向量
    Table  7.  The eigenvectors of aroma by principal component analysis
    序号化合物主成分
    123456789
    1柠檬烯−0.47−0.330.540.38−0.050.12−0.310.270.08
    2正己醛0.630.480.480.15−0.21−0.100.020.030.15
    3(E)-2-庚烯醛0.08−0.030.40−0.330.62−0.15−0.270.250.02
    4反-2-辛烯醛0.230.880.150.000.120.06−0.180.290.12
    5(E,E)-2,4-庚二烯醛0.300.60−0.210.30−0.020.400.150.350.29
    6苯甲醛0.66−0.03−0.31−0.19−0.38−0.280.390.100.09
    7β-环柠檬醛0.53−0.240.40−0.260.170.050.360.460.01
    82,3-二氢-2,2,6-三甲基苯甲醛0.70−0.390.40−0.180.210.200.120.010.14
    92-苯基乙醇0.07−0.580.290.170.29−0.260.22−0.210.47
    10顺-2-戊烯-1-醇0.920.030.050.04−0.04−0.01−0.060.03−0.24
    11氧化芳樟醇I−0.370.160.13−0.770.130.05−0.12−0.280.02
    12芳樟醇−0.220.580.36−0.090.13−0.310.38−0.01−0.33
    13α-松油醇−0.02−0.460.29−0.19−0.440.350.27−0.14−0.20
    141-辛烯-3-醇0.69−0.170.25−0.52−0.040.19−0.23−0.160.14
    15苯甲醇−0.17−0.69−0.090.510.23−0.270.05−0.050.23
    16水杨酸甲酯−0.450.030.14−0.480.36−0.140.55−0.140.14
    17二氢猕猴桃内酯0.14−0.18−0.75−0.420.210.06−0.220.26−0.12
    18乙酸0.29−0.68−0.170.420.060.020.12−0.11−0.41
    19壬酸−0.200.14−0.79−0.110.240.09−0.150.06−0.08
    20甲基庚烯酮0.480.570.230.110.17−0.37−0.02−0.05−0.43
    212,6,6-三甲基-2-环己烯-1,4-二酮0.770.04−0.14−0.230.13−0.14−0.37−0.100.24
    225,6-环氧-β-紫罗兰酮0.70−0.25−0.310.320.310.20−0.15−0.29−0.04
    23香叶基丙酮0.660.120.380.090.310.08−0.30−0.36−0.17
    24α-紫罗兰酮0.410.46−0.350.440.16−0.230.25−0.08−0.01
    253,5-辛二烯酮0.59−0.26−0.05−0.24−0.56−0.33−0.060.270.05
    263,5-辛二烯酮(E,E)0.69−0.48−0.11−0.16−0.46−0.13−0.06−0.060.02
    27β-紫罗酮0.66−0.15−0.080.400.350.250.34−0.070.05
    28植酮0.110.49−0.690.220.02−0.210.010.030.20
    29异丙基苯−0.31−0.290.500.61−0.14−0.03−0.290.24−0.06
    303,5-二羟基戊苯0.21−0.58−0.11−0.150.420.210.180.51−0.23
    311,2,3-三甲氧基苯0.040.47−0.060.06−0.150.770.20−0.160.05
    322-正戊基呋喃0.230.770.500.15−0.010.020.040.010.02
    下载: 导出CSV 
    | 显示表格

    香气成分对风味的影响由物质含量与呈味阈值共同决定,相对气味活度值(ROAV)能相对反映出香气成分在产品中的风味贡献程度,一般认为ROAV>1的香气成分为关键风味物质,而ROAV>0.1的香气成分为辅助修饰风味物质[21]β-紫罗酮在各样品中的含量较高,且呈香阈值较低,对多种茶类的香气呈现具有重要作用[22-23],所以定义β-紫罗酮的ROAV值为100。通过查阅文献[24-25],对能查的阈值的共有香气的ROAV值进行计算,筛选特征香气。

    表8可知,ROAV值大于0.1的香气成分有18种,其中ROAV值大于1的香气成分有:(E)-2-庚烯醛、(E,E)-2,4-庚二烯醛、2-苯基乙醇、氧化芳樟醇I、芳樟醇、香叶基丙酮、α-紫罗兰酮、2-正戊基呋喃、1-辛烯-3-醇、水杨酸甲酯、(1S)-(-)-β-蒎烯、异丙基苯,共12种。检测的15个样品中的芳樟醇、α-紫罗兰酮、1-辛烯-3-醇的ROAV值,明显高于其它香气成分,是关键风味物质。

    表  8  四川黑茶主要香气成分的相对风味活度值
    Table  8.  The relative odor activity value of volatile flavor components in dark teas produced from Sichuan province
    化合物香气描述[26-27]阈值
    (μg/kg)
    H-1H-2H-3H-4H-5H-6H-7H-8H-9H-10H-11H-12H-13H-14H-15
    柠檬烯柠檬香2.720.0300.0330.0190.0090.0160.0520.0230.0330.0690.0070.1620.0340.0240.0860.078
    正己醛青草味0.200.0360.0950.0800.0480.0720.1010.1410.0800.2030.0460.0180.1130.0580.0610.017
    (E)-2-庚烯醛青草味0.0100.2740.2730.4410.3520.7750.5451.0110.7791.3600.6444.3931.6521.2461.1780.784
    (E,E)-2,4-庚二烯醛菌花香0.0041.7478.0533.0545.5682.0162.7843.0791.6905.6982.4704.8754.2923.1442.6092.107
    苯甲醛花香、杏仁味1.000.0210.0240.0510.0300.0250.0370.0580.0150.0190.0150.0230.0360.0260.0280.012
    2-苯基乙醇略有玫瑰味0.0450.8480.0950.1860.1420.9530.1890.6410.3850.2820.1910.2901.0010.1701.0051.037
    氧化芳樟醇I木香0.0100.8400.8822.0050.5040.8520.6503.5650.6571.3600.80910.6371.1210.7002.0910.369
    芳樟醇铃兰、百合花香0.00405.8614.57012.7356.7548.8786.5628.4650.94921.3672.24237.5452.8588.0644.7293.124
    苯甲醇苹果香5.500.0030.0000.0020.0020.0020.0010.0020.0010.0010.0010.0010.0020.0010.0050.005
    乙酸酸味120.00≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001
    壬酸腐臭味1.500.0050.0030.0050.0080.0000.0030.0070.0030.0030.0030.0210.0050.0060.0040.003
    香叶基丙酮清甜香、花香0.0101.4331.7091.8890.0951.8581.8135.3221.8404.8953.2251.9972.2421.7281.4142.247
    α-紫罗兰酮紫罗兰香0.00602.5763.7846.5577.3933.2772.8095.1473.0927.4003.8492.4973.3832.6785.1692.073
    2-正戊基呋喃豆香,甘草味0.00501.1603.0882.7111.4852.0231.7244.1801.7136.3941.0095.7482.0942.5201.0131.440
    β-环柠檬醛果香5.000.0190.0360.0290.0170.0460.0570.0560.0220.0320.0240.0910.0420.0470.0520.028
    α-松油醇花香0.330.0450.0230.0430.0030.0180.0540.0290.0280.0210.0110.1070.0190.0240.0400.013
    1-辛烯-3-醇刺激的青味,蘑菇味、
    薰衣草、玫瑰甜香、
    米糠味
    0.00108.2157.9108.8620.9516.42610.89721.0585.7728.2888.15321.78216.0617.5478.8373.803
    水杨酸甲酯冬青叶味0.0600.1020.0550.1940.1250.2410.0370.1630.0840.0780.0451.2280.0600.0620.2060.038
    甲基庚烯酮青味,柑橘味0.0500.1110.1710.5480.2780.2740.2750.6200.1660.8680.2710.3850.2700.4200.2180.159
    3,5-辛二烯酮(E,E)蘑菇味,甘草味0.150.1430.0790.2200.0870.0870.2590.3460.1260.0630.0940.0240.2180.1240.1710.090
    异丙基苯特殊芳香气味0.0110.7771.2521.3450.3170.5392.6190.8441.5633.8170.2153.0890.7090.8064.2764.286
    β-紫罗酮紫罗兰香0.00046100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.000100.000
    下载: 导出CSV 
    | 显示表格

    香型的表征受茶叶中香气成分的不同含量、不同阈值及不同比例的组合等多种因素的影响。感官审评结果中具有传统藏茶“糯米香”的茶样,香气成分组成上为烯类、醇类、酯类含量较高。样品H-11的α-摩勒烯、杜松烯、去氢白菖烯、氧化芳樟醇I、氧化芳樟醇Ⅱ、雪松醇、丙烯酸-6-甲基庚酯、2,6-二叔丁基对甲酚、间苯二甲醚的含量高于其它14个黑茶样品,其中具有水果香的间苯二甲醚含量高达8.96%。样品H-11的原料为一芽四五叶,嫩度低于其它样品,说明粗老的鲜叶原料是产生糯米香的物质基础。相比传统四川黑茶以修剪枝叶的毛庄茶、做庄茶为主要原料,本研究样品的原料嫩度多为一芽二叶至四叶,香气特征多为浓醇,说明四川黑茶的原料质量逐步提高,传统四川黑茶的“老茶香、油香、烟焦味”特点已经发生改变。具有“陈香”的茶样,酮类和醇类化合物的含量在其香气类别比例上,占比较高。样品H-4的6,10,14-三甲基-2-十五烷酮为7.13%,远高于其它样品;样品H-6的顺-2-戊烯-1-醇、2,6-二甲基环己醇、3,5-辛二烯酮(E,E)、3,5-辛二烯酮的含量较高;样品H-13有愉悦花果香特征的芳樟醇及其氧化物的含量较高。已有文献报道,6,10,14-三甲基-2-十五烷酮、芳樟醇及氧化芳樟醇是陈香型康砖茶的关键成分[28],以上香气成分在陈香型样品中均有较高的含量。“甜香”的茶样具有较高的酚类含量,H-5中具有特殊香甜味的苯酚含量味0.66%,样品H-8中具有香甜气味的2,6-二叔丁基对甲酚的含量为0.78%,高于其它样品。袁思思等[29]在湖南黑砖茶中检出2,6-二叔丁基对甲酚的含量高达10.10%,说明原料的品种、产地、嫩度以及加工工艺对黑茶的香气组成有明显的影响。带有“烟味”的茶样含有较高的含氮化合物,含氮化合物具有烘烤香气特征,样品H-1中含氮化合物含量为2.01%,远高于其它样品。具有树脂香的β-蒎烯仅在样品H-1中检测出,且含量高达7.54%,猜测是松树等木材作为燃料对毛茶进行干燥,使得样品H-1有了明显的烟味。有研究指出,相比湖南黑茶的香气成分,四川黑茶的酸类、醛类的含量较高,且β-紫罗兰酮、植酮(6,10,14-三甲基-2-十五烷酮)的含量所占比例较高[1]。而β-紫罗兰酮和植酮在本研究的15个样品中均有检出,相对含量分别1.32%~7.52%、0.99%~7.13%,可以作为地域区分的特征香气进一步挖掘研究。

    通过对15个样品的32个共有香气成分进行主成分分析,提取了7个主成分,累积贡献率达84.27%。正己醛、苯甲醛、β-环柠檬醛、2,3-二氢-2,2,6-三甲基、1-辛烯-3-醇、5,6-环氧-β-紫罗兰酮、香叶基丙酮、3,5-辛二烯酮(E,E)、β-紫罗酮、反-2-辛烯醛、(E,E)-2,4-庚二烯醛、芳樟醇及其氧化物、甲基庚烯酮、2-正戊基呋喃、异丙基苯、水杨酸甲酯、(E)-2-庚烯醛等特征香气成分,共同形成了四川黑茶浓纯陈香的香气特点。本研究结合相对风味活度值ROAV评价四川黑茶的香气成分对风味特征的贡献率,除了β-紫罗酮外,(E,E)-2,4-庚二烯醛、芳樟醇、香叶基丙酮、α-紫罗兰酮和1-辛烯-3-醇的ROAV值较大,以上成分普遍呈现花香特征,对四川黑茶香型形成具有积极意义。有关不同花色黑茶的香气特征基础研究较多,橙花醇、苯甲醛、乙酸苄酯、壬醛、(E,E)-2,4-庚二烯醛和1-辛烯-3-醇被认为与四川黑砖茶的“陈香”有关[17]β-芳樟醇、癸醛、壬醛、水杨酸甲酯、3,4-二甲氧基苯、4-乙基-1,2-二甲氧基苯,以及2,6-二叔丁基对甲苯酚很可能与普洱茶的“陈香”有关[30]α-雪松醇、β-芳樟醇、二氢猕猴桃内酯、α-萜品醇和β-紫罗兰酮被认为是六堡茶“陈香”的主要特征香气物质[31],1,2,3-三甲氧基苯、3,4-二甲氧基苯、4-乙基-1,2-二甲氧基苯等苯甲醚衍生物是与黑茶“陈香”特征密切相关的组分[32]。本研究结果与以上文献报道有相同之处,需继续扩大样本收集量,采用统计学方法手段继续挖掘,进一步明确四川黑茶的特征香气成分。

    本研究对15个具有典型特点的四川黑茶进行感官品质和香气成分的系统分析,初步明确了四川黑茶香气成分的基本组成和关键呈香物质,探讨了香气品质形成原因,为下一步深入探究四川黑茶的呈香规律奠定了基础。但本研究选用样品为同一年份生产,黑茶的香气品质与贮藏年份、贮藏环境等因素紧密相关[33-34],后续将开展不同年份的四川黑茶品质特征的研究,以期更为全面地丰富四川黑茶加工理论。

  • 表  1   四川黑茶样品信息

    Table  1   Sample information of dark teas produced from Sichuan Province

    样品编号产品类型企业品牌
    H-12018年康砖郎赛茶业
    H-22018年康砖蔡龙茶业
    H-32018年康砖周公山茶业
    H-42018年康砖雅安茶厂
    H-52018年康砖和龙茶业
    H-62018年康砖兄弟友谊
    H-72018年康砖山雅茶业
    H-82018年康砖西康茶业
    H-92018年康砖荥经塔山茶业
    H-102018年金尖吉祥茶业
    H-112018年金尖和龙茶业
    H-122018年邛崃黑茶花秋茶业
    H-132018年邛崃黑茶金川茶业
    H-142018年邛崃黑茶碧涛茶业
    H-152018年邛崃黑茶文君茶业
    下载: 导出CSV

    表  2   四川黑茶感官审评结果

    Table  2   Sensory evaluation results for dark teas produced from Sichuan province

    样品
    编号
    香气浓
    纯度
    特征香型叶底
    H-1浓尚纯带烟一芽二三叶,叶底嫩较匀稍有嫩茎,黄褐
    H-2平正一芽三四叶,叶底尚嫩软有嫩茎,乌褐稍花
    H-3浓较纯略有陈香一芽二三叶,叶底尚嫩匀有嫩茎,较乌褐
    H-4尚纯正微酸,略有陈香一芽三四叶,叶底尚匀,多碎叶片,
    黄褐稍花
    H-5浓较纯带焦甜香一芽二三叶,叶底尚嫩,有茎梗, 乌褐
    H-6较浓纯陈香显一芽二三叶,叶底叶张稍硬,
    多茎梗,乌褐稍花
    H-7尚纯略酸一芽二三叶,叶底较嫩匀,有茎梗,乌褐
    H-8浓尚纯稍甜一芽二三叶,叶底叶张尚软,有茎梗,
    黄褐、乌褐夹杂
    H-9欠纯一芽二三叶,叶底嫩尚匀,有嫩茎,
    较乌褐稍花。
    H-10尚浓纯一芽三四叶,叶底尚嫩,有嫩茎,黄褐
    H-11尚浓有糯米香一芽四五叶,叶底尚软,有茎梗,乌褐
    H-12尚浓纯有酸气一芽二三叶,叶底嫩尚匀,有嫩茎,黄褐
    H-13平正有陈香一芽二三叶,叶底嫩软,有嫩茎,乌褐
    H-14较浓纯带酸气一芽二三叶,叶底嫩较匀,乌褐
    H-15浓较纯略烟一芽二三叶,叶底尚嫩匀,黄褐
    下载: 导出CSV

    表  3   四川黑茶样品的香气成分的数量(种)

    Table  3   Aromatic components and their numbers in dark teas produced from Sichuan Province (kinds)

    化合物H-1H-2H-3H-4H-5H-6H-7H-8H-9H-10H-11H-12H-13H-14H-15
    烯类化合物1113208876141261288713
    醛类化合物131513161614141514141313111715
    醇类化合物161517151615161414161515151714
    酯类化合物573745425544556
    酸类化合物432424444424444
    酚类化合物230231431332122
    醚类化合物120010001220000
    酮类化合物121311181513171617161516131413
    苯系类化合物333333333333333
    含氧(呋喃)类化合物121111111111111
    含氮化合物401111000221013
    合计727671757064697272727267617174
    下载: 导出CSV

    表  4   四川黑茶样品中香气类别及其相对含量(%)

    Table  4   Aroma components category and their relative contents in dark teas produced from Sichuan Province (%)

    化合物H-1H-2H-3H-4H-5H-6H-7H-8H-9H-10H-11H-12H-13H-14H-15
    烯类化合物25.1423.2142.386.2312.1217.115.7426.4724.815.4130.5513.0719.9525.1833.57
    醛类化合物13.1717.529.8319.8419.9716.8716.7915.1716.2316.887.2616.0815.1714.2810.15
    醇类化合物21.0115.6315.7110.3125.4418.2524.1514.0317.8518.0427.0622.0918.0025.6615.95
    酯类化合物6.799.356.9913.719.179.4410.444.845.099.799.9311.9910.596.969.46
    酸类化合物6.942.462.926.222.025.768.195.793.137.501.016.777.314.455.00
    酚类化合物1.021.640.001.221.510.351.201.400.261.163.440.510.430.560.44
    醚类化合物0.401.690.000.000.320.000.000.000.451.889.070.000.000.000.00
    酮类化合物19.6421.0218.3039.2624.8526.7630.0526.8124.9834.216.6826.1723.2716.5616.77
    苯系类化合物3.255.953.302.052.874.562.214.464.673.153.172.093.935.266.53
    含氧(呋喃)类化合物0.643.370.840.791.390.801.231.142.370.790.790.891.350.360.67
    含氮化合物2.160.000.130.380.100.100.000.000.000.941.050.340.000.561.45
    下载: 导出CSV

    表  5   四川黑茶样品中共有香气组分及其相对含量(%)

    Table  5   Common aroma components and their relative contents in dark teas produced from Sichuan Province (%)

    化合物H-1H-2H-3H-4H-5H-6H-7H-8H-9H-10H-11H-12H-13H-14H-15
    柠檬烯9.3810.333.332.596.1613.583.8812.4214.462.9612.608.147.2317.4920.68
    正己醛0.832.201.041.062.061.941.732.233.131.490.102.001.300.910.34
    (E)-2-庚烯醛0.310.310.290.391.110.530.621.081.051.051.261.471.390.880.76
    反-2-辛烯醛0.111.340.360.970.630.510.820.561.570.790.760.940.930.320.30
    (E,E)-2,4-庚二烯醛0.703.250.692.161.010.940.660.821.541.410.491.331.230.680.72
    苯甲醛2.422.713.303.323.523.563.572.031.442.390.643.212.922.091.15
    β-环柠檬醛0.711.370.620.612.161.801.140.990.811.310.861.231.751.280.90
    2,3-二氢-2,2,6-三甲基苯甲醛1.281.280.500.361.831.501.241.460.871.800.621.491.371.490.74
    2-苯基乙醇4.380.490.540.716.140.821.772.400.981.400.374.000.863.384.53
    顺-2-戊烯-1-醇1.161.631.481.221.712.411.751.221.783.030.101.881.561.120.95
    氧化芳樟醇I0.961.021.300.561.220.632.190.911.051.323.040.990.781.560.36
    芳樟醇2.562.003.142.854.832.411.980.506.271.394.080.963.431.341.15
    α-松油醇1.710.860.920.110.871.730.591.300.540.611.010.550.880.980.43
    1-辛烯-3-醇0.940.910.580.110.921.051.290.800.641.330.621.420.850.660.37
    苯甲醇1.720.100.541.221.410.600.570.870.310.630.100.980.671.992.60
    水杨酸甲酯0.700.380.750.832.070.210.600.700.360.442.110.320.420.920.22
    二氢猕猴桃内酯5.405.255.948.534.166.677.074.142.178.757.467.707.845.406.04
    乙酸2.831.022.471.651.922.421.442.220.912.920.101.092.792.852.89
    壬酸0.910.470.451.300.100.360.600.530.360.690.900.651.060.460.49
    甲基庚烯酮0.640.981.781.541.961.331.901.153.352.210.551.202.350.810.77
    5,6-环氧-β-紫罗兰酮2.311.661.211.851.611.521.992.111.253.300.371.732.051.312.09
    香叶基丙酮1.651.971.230.112.661.753.272.553.785.260.571.991.931.062.18
    α-紫罗兰酮1.682.472.414.652.661.541.792.433.243.560.401.701.702.191.14
    3,5-辛二烯酮2.222.965.083.584.058.626.023.912.073.340.577.143.613.432.41
    3,5-辛二烯酮(E,E)2.461.372.141.451.873.753.192.610.732.300.102.902.091.911.31
    β-紫罗酮5.295.312.995.126.604.452.836.393.567.521.324.095.163.444.48
    植酮1.742.421.037.130.991.373.432.412.312.031.141.311.940.861.15
    异丙基苯1.021.640.990.400.882.880.592.473.360.401.010.721.033.644.74
    3,5-二羟基戊苯0.931.020.801.001.361.460.690.820.391.591.121.081.631.471.26
    1,2,3-三甲氧基苯1.303.291.510.640.630.220.931.170.921.161.050.301.270.140.53
    2-正戊基呋喃0.641.710.840.791.390.801.231.142.370.790.790.891.350.360.67
    下载: 导出CSV

    表  6   香气主成分分析的特征值

    Table  6   Eigenvalues of aroma by principal component analysis

    主成分初始特征值
    初始特征值方差百分比(%)累积方差百分比(%)
    F17.2222.5722.57
    F26.0318.8641.43
    F34.2313.2154.64
    F43.3610.5165.16
    F52.397.4772.63
    F61.885.8978.51
    F71.845.7684.27
    下载: 导出CSV

    表  7   香气主成分的特征向量

    Table  7   The eigenvectors of aroma by principal component analysis

    序号化合物主成分
    123456789
    1柠檬烯−0.47−0.330.540.38−0.050.12−0.310.270.08
    2正己醛0.630.480.480.15−0.21−0.100.020.030.15
    3(E)-2-庚烯醛0.08−0.030.40−0.330.62−0.15−0.270.250.02
    4反-2-辛烯醛0.230.880.150.000.120.06−0.180.290.12
    5(E,E)-2,4-庚二烯醛0.300.60−0.210.30−0.020.400.150.350.29
    6苯甲醛0.66−0.03−0.31−0.19−0.38−0.280.390.100.09
    7β-环柠檬醛0.53−0.240.40−0.260.170.050.360.460.01
    82,3-二氢-2,2,6-三甲基苯甲醛0.70−0.390.40−0.180.210.200.120.010.14
    92-苯基乙醇0.07−0.580.290.170.29−0.260.22−0.210.47
    10顺-2-戊烯-1-醇0.920.030.050.04−0.04−0.01−0.060.03−0.24
    11氧化芳樟醇I−0.370.160.13−0.770.130.05−0.12−0.280.02
    12芳樟醇−0.220.580.36−0.090.13−0.310.38−0.01−0.33
    13α-松油醇−0.02−0.460.29−0.19−0.440.350.27−0.14−0.20
    141-辛烯-3-醇0.69−0.170.25−0.52−0.040.19−0.23−0.160.14
    15苯甲醇−0.17−0.69−0.090.510.23−0.270.05−0.050.23
    16水杨酸甲酯−0.450.030.14−0.480.36−0.140.55−0.140.14
    17二氢猕猴桃内酯0.14−0.18−0.75−0.420.210.06−0.220.26−0.12
    18乙酸0.29−0.68−0.170.420.060.020.12−0.11−0.41
    19壬酸−0.200.14−0.79−0.110.240.09−0.150.06−0.08
    20甲基庚烯酮0.480.570.230.110.17−0.37−0.02−0.05−0.43
    212,6,6-三甲基-2-环己烯-1,4-二酮0.770.04−0.14−0.230.13−0.14−0.37−0.100.24
    225,6-环氧-β-紫罗兰酮0.70−0.25−0.310.320.310.20−0.15−0.29−0.04
    23香叶基丙酮0.660.120.380.090.310.08−0.30−0.36−0.17
    24α-紫罗兰酮0.410.46−0.350.440.16−0.230.25−0.08−0.01
    253,5-辛二烯酮0.59−0.26−0.05−0.24−0.56−0.33−0.060.270.05
    263,5-辛二烯酮(E,E)0.69−0.48−0.11−0.16−0.46−0.13−0.06−0.060.02
    27β-紫罗酮0.66−0.15−0.080.400.350.250.34−0.070.05
    28植酮0.110.49−0.690.220.02−0.210.010.030.20
    29异丙基苯−0.31−0.290.500.61−0.14−0.03−0.290.24−0.06
    303,5-二羟基戊苯0.21−0.58−0.11−0.150.420.210.180.51−0.23
    311,2,3-三甲氧基苯0.040.47−0.060.06−0.150.770.20−0.160.05
    322-正戊基呋喃0.230.770.500.15−0.010.020.040.010.02
    下载: 导出CSV

    表  8   四川黑茶主要香气成分的相对风味活度值

    Table  8   The relative odor activity value of volatile flavor components in dark teas produced from Sichuan province

    化合物香气描述[26-27]阈值
    (μg/kg)
    H-1H-2H-3H-4H-5H-6H-7H-8H-9H-10H-11H-12H-13H-14H-15
    柠檬烯柠檬香2.720.0300.0330.0190.0090.0160.0520.0230.0330.0690.0070.1620.0340.0240.0860.078
    正己醛青草味0.200.0360.0950.0800.0480.0720.1010.1410.0800.2030.0460.0180.1130.0580.0610.017
    (E)-2-庚烯醛青草味0.0100.2740.2730.4410.3520.7750.5451.0110.7791.3600.6444.3931.6521.2461.1780.784
    (E,E)-2,4-庚二烯醛菌花香0.0041.7478.0533.0545.5682.0162.7843.0791.6905.6982.4704.8754.2923.1442.6092.107
    苯甲醛花香、杏仁味1.000.0210.0240.0510.0300.0250.0370.0580.0150.0190.0150.0230.0360.0260.0280.012
    2-苯基乙醇略有玫瑰味0.0450.8480.0950.1860.1420.9530.1890.6410.3850.2820.1910.2901.0010.1701.0051.037
    氧化芳樟醇I木香0.0100.8400.8822.0050.5040.8520.6503.5650.6571.3600.80910.6371.1210.7002.0910.369
    芳樟醇铃兰、百合花香0.00405.8614.57012.7356.7548.8786.5628.4650.94921.3672.24237.5452.8588.0644.7293.124
    苯甲醇苹果香5.500.0030.0000.0020.0020.0020.0010.0020.0010.0010.0010.0010.0020.0010.0050.005
    乙酸酸味120.00≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001≤0.001
    壬酸腐臭味1.500.0050.0030.0050.0080.0000.0030.0070.0030.0030.0030.0210.0050.0060.0040.003
    香叶基丙酮清甜香、花香0.0101.4331.7091.8890.0951.8581.8135.3221.8404.8953.2251.9972.2421.7281.4142.247
    α-紫罗兰酮紫罗兰香0.00602.5763.7846.5577.3933.2772.8095.1473.0927.4003.8492.4973.3832.6785.1692.073
    2-正戊基呋喃豆香,甘草味0.00501.1603.0882.7111.4852.0231.7244.1801.7136.3941.0095.7482.0942.5201.0131.440
    β-环柠檬醛果香5.000.0190.0360.0290.0170.0460.0570.0560.0220.0320.0240.0910.0420.0470.0520.028
    α-松油醇花香0.330.0450.0230.0430.0030.0180.0540.0290.0280.0210.0110.1070.0190.0240.0400.013
    1-辛烯-3-醇刺激的青味,蘑菇味、
    薰衣草、玫瑰甜香、
    米糠味
    0.00108.2157.9108.8620.9516.42610.89721.0585.7728.2888.15321.78216.0617.5478.8373.803
    水杨酸甲酯冬青叶味0.0600.1020.0550.1940.1250.2410.0370.1630.0840.0780.0451.2280.0600.0620.2060.038
    甲基庚烯酮青味,柑橘味0.0500.1110.1710.5480.2780.2740.2750.6200.1660.8680.2710.3850.2700.4200.2180.159
    3,5-辛二烯酮(E,E)蘑菇味,甘草味0.150.1430.0790.2200.0870.0870.2590.3460.1260.0630.0940.0240.2180.1240.1710.090
    异丙基苯特殊芳香气味0.0110.7771.2521.3450.3170.5392.6190.8441.5633.8170.2153.0890.7090.8064.2764.286
    β-紫罗酮紫罗兰香0.00046100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.00100.000100.000
    下载: 导出CSV
  • [1] 何华锋, 朱宏凯, 董春旺, 等. 黑茶香气化学研究进展[J]. 茶叶科学,2015,35(2):121−129. [HE H F, ZHU H K, DONG C W, et al. Research progress in flavor chemistry of Chinese dark tea[J]. Journal of Tea Science,2015,35(2):121−129. doi: 10.3969/j.issn.1000-369X.2015.02.005

    HE H F, ZHU H K, DONG C W, et al. Research progress in flavor chemistry of Chinese dark tea[J]. Journal of Tea Science, 2015, 35(2): 121-129. doi: 10.3969/j.issn.1000-369X.2015.02.005

    [2]

    WANG C, LI J, WU X J, et al. Pu-erh tea unique aroma: Volatile components, evaluation methods and metabolic mechanism of key odor-active compounds[J]. Trends in Food Science & Technology,2022,124:25−37.

    [3]

    YANG P, YU M G, SONG H L, et al. Characterization of key aroma-active compounds in rough and moderate fire Rougui Wuyi Rock tea (Camellia sinensis) by sensory-directed flavor analysis and elucidation of the Influences of roasting on aroma[J]. Journa lof Agricultural and Food Chemistry,2022,70,1:267−278.

    [4]

    ZENG L T, ZHOU X C, SU X G, et al. Chinese oolong tea: an aromatic beverage produced under multiple stresses[J]. Trends in Food science& Technology,2020,106:242−253.

    [5] 陈林, 陈键, 陈泉宾, 等. 不同工艺制法对茶叶风味品质化学轮廓的影响[J]. 核农学报,2016,30(11):2196−2203. [CHEN L, CHEN J, CHEN Q B, et al. Effects of different processing methods on chemical profiles of tea in relation to flavor quality[J]. Journal of Nuclear Agricultural,2016,30(11):2196−2203. doi: 10.11869/j.issn.100-8551.2016.11.2196

    CHEN L, CHEN J, CHEN Q B, et al. Effects of different processing methods on chemical profiles of tea in relation to flavor quality[J]. Journal of Nuclear Agricultural, 2016, 30(11): 2196-2203. doi: 10.11869/j.issn.100-8551.2016.11.2196

    [6] 滑金杰, 王华杰, 王近近, 等. 采用PLS-DA分析毛火方式对工夫红茶品质的影响[J]. 农业工程学报,2020,36(8):260−270. [HUA J J, WANG H J, WANG J J, et al. Influences of first-drying methods on the quality of Congou black teausing partial least squares-discrimination analysis[J]. Transactions of the Chinese Society of Agricultural Engineering,2020,36(8):260−270. doi: 10.11975/j.issn.1002-6819.2020.08.032

    HUA J J, WANG H J, WANG J J, et al. Influences of first-drying methods on the quality of Congou black teausing partial least squares-discrimination analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(8): 260-270. doi: 10.11975/j.issn.1002-6819.2020.08.032

    [7]

    SHI Y L, WANG M Q, DONG Z B, et al. Volatile components and key odorants of Chinese yellow tea(Camellia sinensis)[J]. LWT-Food Science and Technology,2021,146:111512. doi: 10.1016/j.lwt.2021.111512

    [8]

    GUO X Y, WILFRIED S, HOU C T, et al. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC-MS and GC-IMS[J]. Food Chemistry,2021,376:131933.

    [9]

    DU H, WANG Q, YANG X. Fu brick tea alleviates chronic kidney disease of rats with high fat diet consumption through attenuatinginsulin resistance in skeletal muscle[J]. Journal of Agricultural and Food Chemistry,2019,67(10):2839−2847. doi: 10.1021/acs.jafc.8b06927

    [10]

    LIU Y, LUO Y K, WANG X H, et al. Gut microbiome and metabolome response of Pu-erh tea on metabolism disorder induced by chronic alcohol consumption[J]. Agricultural and Food Chemistry,2020,68:24,6615−6627.

    [11]

    LIU D, HUANG J, LUO Y, et al. Fuzhuan brick tea attenuates high-fat diet-induced obesity and associated metabolic disorders by shaping gut microbiota[J]. Journal of Agricultural and Food Chemistry,2019,67(49):13589−13604. doi: 10.1021/acs.jafc.9b05833

    [12] 谈峰, 胥伟, 唐瑛蔓, 等. 藏茶设备渥堆工艺优化与品质分析[J]. 中国食品学报,2021,21(8):235−244. [TAN F, XU W, TANG Y M, et al. Optimization of pile process and quality analysis of Tibetan tea equipent[J]. Journal of Chinese Institute of Food Science and Teetmology,2021,21(8):235−244. doi: 10.16429/j.1009-7848.2021.08.024

    TAN F, XU W, TANG Y M, et al. Optimization of pile process and quality analysis of Tibetan tea equipent[J]. Journal of Chinese Institute of Food Science and Teetmology, 2021, 21(8): 235-244. doi: 10.16429/j.1009-7848.2021.08.024

    [13] 刘倩倩, 黄泓, 毛德芝, 等. 蜜桃藏茶调味茶的研制[J]. 食品研究与开发,2021,42(24):92−98. [LIU Q Q, HUANG H, MAO D Z, et al. Development of peach flavored Tibetan tea[J]. Food Research and Development,2021,42(24):92−98. doi: 10.12161/j.issn.1005-6521.2021.24.014

    LIU Q Q, HUANG H, MAO D Z, et al. Development of peach flavored Tibetan tea[J]. Food Research and Development, 2021, 42(24): 92-98. doi: 10.12161/j.issn.1005-6521.2021.24.014

    [14] 叶国注, 江用文, 尹军峰, 等. 板栗香型绿茶香气成分特征研究[J]. 茶叶科学,2009,29(5):385−394. [YE G Z, JIANG Y W, YIN J F, et al. Study on the characteristic of aroma components in green tea with chestnut-like aroma[J]. Journal of Tea Science,2009,29(5):385−394. doi: 10.3969/j.issn.1000-369X.2009.05.009

    YE G Z, JIANG Y W, YIN J F, et al. Study on the characteristic of aroma components in green tea with chestnut-like aroma[J]. Journal of Tea Science, 2009, 29(5): 385-394. doi: 10.3969/j.issn.1000-369X.2009.05.009

    [15] 刘登勇, 周光宏, 徐幸莲, 等. 确定食品关键风味化合物的一种新方法: “ROAV”法[J]. 食品科学,2008(7):370−374. [LIU D Y, ZHOU H G, XU X L, et al. “ROAV”method: A new method for determining key odor compounds of Rugao Ham[J]. Food Science,2008(7):370−374. doi: 10.3321/j.issn:1002-6630.2008.07.082

    LIU D Y, ZHOU H G, XU X L, et al. “ROAV”method: A new method for determining key odor compounds of Rugao Ham[J]. Food Science, 2008(7): 370-374. doi: 10.3321/j.issn:1002-6630.2008.07.082

    [16] 高歌, 庞雪莉, 刘海华, 等. 基于 GC-MS-O 香气成分分析和多元统计分析的柚子品种鉴别[J]. 中国食品学报,2020,20(5):283−292. [GAO G, PANG X L, LIU H H, et al. Volatiles identification of pomelo based on GC-MS-O and multivariate statistical analysis[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(5):283−292.

    GAO G, PANG X L, LIU H H, et al. Volatiles identification of pomelo based on GC-MS-O and multivariate statistical analysis[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(5): 283-292.

    [17]

    NIE C N, ZHONG X X, HE L, et al. Comparison of diferent aroma-active compounds of Sichuan Dark brick tea (Camellia sinensis) and Sichuan Fuzhuan brick tea using gas chromatography-mass spectrometry (GC-MS) and aroma descriptive profle tests[J]. European Food Research and Technology,2019,245:1963−1979. doi: 10.1007/s00217-019-03304-1

    [18]

    YIN C, FAN X, FAN Z, et al. Comparison of non-volatile and volatile flavor compounds in six Pleurotus mushrooms[J]. Sci Food Agric,2019,99(4):1691−1699. doi: 10.1002/jsfa.9358

    [19] 陈志达, 温欣黎, 陈兴华, 等. 不同等级福鼎白茶香气成分研究[J]. 浙江大学学报(农业与生命科学版),2019,45(6):715−722. [CHEN Zhida, WEN Xinli, CHEN Xinghua, et al. Research on aroma components in different grades of Fuding white tea[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2019,45(6):715−722. doi: 10.3785/j.issn.1008-9209.2019.02.261

    CHEN Zhida, WEN Xinli, CHEN Xinghua, et al. Research on aroma components in different grades of Fuding white tea [J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2019, 45(6): 715-722. doi: 10.3785/j.issn.1008-9209.2019.02.261

    [20] 黄藩, 唐晓波, 罗凡, 等. LED光照萎凋对三花1951白茶香气的影响[J]. 江苏农业科学,2022,50(4):148−155. [HUANG F, TANG X B, LUO F, et al. Effects of different LED lights during withering process on the aroma quality of Sanhua 1951 white tea[J]. 江苏农业科学,2022,50(4):148−155.

    HUANG F, TANG X B, LUO F, et al. Effects of different LED lights during withering process on the aroma quality of Sanhua 1951 white tea[J]. 江苏农业科学, 2022, 50(4): 148-155.

    [21] 刘登勇, 吴金城, 王继业, 等. 沟帮子熏鸡主体风味成分分析[J]. 食品工业科技,2018,39(7):237−242. [LIU D Y, WU J C, WANG J Y, et al. Analysis of key odor compounds of Goubangzi smoked chicken[J]. Science and Technology of Food Industry,2018,39(7):237−242. doi: 10.13386/j.issn1002-0306.2018.07.042

    LIU D Y, WU J C, WANG J Y, et al. Analysis of key odor compounds of Goubangzi smoked chicken[J]. Science and Technology of Food Industry, 2018, 39(7): 237-242. doi: 10.13386/j.issn1002-0306.2018.07.042

    [22] 马士成, 王梦琪, 刘春梅, 等. 六堡茶挥发性成分中关键香气成分分析[J]. 食品科学,2020,41(20):191−197. [MA S C, WANG M Q, LIU C M, et al. 2020. Analysis of the key aroma compounds in volatile compounds of Liupao teas[J]. Food Science,2020,41(20):191−197. doi: 10.7506/spkx1002-6630-20190920-252

    MA S C, WANG M Q, LIU C M, et al. 2020. Analysis of the key aroma compounds in volatile compounds of Liupao teas[J]. Food Science, 2020, 41(20): 191-197. doi: 10.7506/spkx1002-6630-20190920-252

    [23] 王梦琪, 朱荫, 张悦, 等. “清香”绿茶的挥发性成分及其关键香气成分分析[J]. 食品科学,2019,40(22):219−228. [WANG M Q, ZHU Y, ZHANG Y, et al. Analysis of volatile composition and key aroma compounds of green teas with fresh scent flavor[J]. Food Science,2019,40(22):219−228. doi: 10.7506/spkx1002-6630-20181229-349

    WANG M Q, ZHU Y, ZHANG Y, et al. Analysis of volatile composition and key aroma compounds of green teas with fresh scent flavor[J]. Food Science, 2019, 40(22): 219-228. doi: 10.7506/spkx1002-6630-20181229-349

    [24]

    CAMPO E, FERREIRA V, ESCUDERO A, et al. Quantitative gas chromatography-olfactometry andchemical quantitative study of the aroma of four Madeira wines[J]. Analytica Chimica Acta,2006,563(1-2):180−187. doi: 10.1016/j.aca.2005.10.035

    [25]

    SCHUH C, SCHIEBERRLE P. Characterization of the key aroma compounds in the beverage prepared from Darjeeling black tea: Quantitative differences between tea leaves and infusion[J]. Journal of Agricultural and Food Chemistry,2006,54(3):916−924. doi: 10.1021/jf052495n

    [26] 马林龙, 刘艳丽, 曹丹, 等. 湖北优良茶树品系绿茶香气成分分析[J]. 食品科学,2019,40(10):251−256. [MA L L, LIU Y L, CAO D, et al. Analysis of aroma components of green teas made from leaves of high-quality tea strains in Hubei Province[J]. Food Science,2019,40(10):251−256. doi: 10.7506/spkx1002-6630-20180206-088

    MA L L, LIU Y L, CAO D, et al. Analysis of aroma components of green teas made from leaves of high-quality tea strains in Hubei Province[J]. Food Science, 2019, 40(10): 251-256. doi: 10.7506/spkx1002-6630-20180206-088

    [27] 王珊珊, 赵晨辉, 李红莲, 等. 东北地区10份李种质资源果实香气成分分析[J]. 中国农业科学,2021,54(11):2476−2486. [WANG S S, ZHAO C H, LI Honglian, et al. Analysis of fruit aromatic components of ten plum germplasm resources in Northeast China[J]. Scientia Agricultura Sinica,2021,54(11):2476−2486. doi: 10.3864/j.issn.0578-1752.2021.11.018

    WANG S S, ZHAO C H, LI Honglian, et al. Analysis of fruit aromatic components of ten plum germplasm resources in Northeast China[J]. Scientia Agricultura Sinica, 2021, 54(11): 2476-2486. doi: 10.3864/j.issn.0578-1752.2021.11.018

    [28] 念波, 焦文文, 和明珠, 等. 花果香与陈香型普洱茶生化成分与香气物质的比较[J]. 现代食品科技,2020,36(2):241−248. [NIAN B, JIAO W W, HE M Z, et al. Determination and comparison of biochemical components and aroma substances in the Pu-erh teas with mellow flavor and floral-fruity aroma[J]. Modern Food Science and Technology,2020,36(2):241−248. doi: 10.13982/j.mfst.1673-9078.2020.2.034

    NIAN B, JIAO W W, HE M Z, et al. Determination and comparison of biochemical components and aroma substances in the Pu-erh teas with mellow flavor and floral-fruity aroma[J]. Modern Food Science and Technology, 2020, 36(2): 241-248. doi: 10.13982/j.mfst.1673-9078.2020.2.034

    [29] 袁思思, 柏珍, 黄亚辉, 等. 3种黑茶的香气分析[J]. 食品科学,2014,35(2):252−256. [YUAN S S, BAI Z, HUANG Y H, et al. Analysis of aroma components in three kinds of dark tea[J]. Food Sicence,2014,35(2):252−256.

    YUAN S S, BAI Z, HUANG Y H, et al. Analysis of aroma components in three kinds of dark tea[J]. Food Sicence, 2014, 35(02): 252-256.

    [30] 吕海鹏, 钟秋生, 林智. 陈香普洱茶的香气成分研究[J]. 茶叶科学,2009,29(3):219−224. [LÜ H P, ZHONG Q S, LIN Z. Study on the aroma components in Pu-erh tea with stale flavor[J]. Journal of Tea Science,2009,29(3):219−224. doi: 10.3969/j.issn.1000-369X.2009.03.007

    LV H P, ZHONG Q S, LIN Z. Study on the aroma components in Pu-erh tea with stale flavor[J]. Journal of Tea Science, 2009, 29(3): 219-224. doi: 10.3969/j.issn.1000-369X.2009.03.007

    [31] 温立香, 张芬, 何梅珍, 等. 陈香六堡茶品质特征及香气质量评价方法建立[J]. 食品工业科技,2021,42(2):230−236. [WEN L X, ZHANG F, HE M Z, et al. Quality characteristics of stale flavor Liupao teas and establishment for evaluation method of aroma quality[J]. Science and Technology of Food Industry,2021,42(2):230−236. doi: 10.13386/j.issn1002-0306.2020030104

    WEN L X, ZHANG F, HE M Z, et al. Quality characteristics of stale flavor Liupao teas and establishment for evaluation method of aroma quality[J]. Science and Technology of Food Industry, 2021, 42(2): 230-236. doi: 10.13386/j.issn1002-0306.2020030104

    [32]

    WANG K B, LIU F, LIU Z H, et al. Comparison of catechins and volatile compounds among different types of tea using high performance liquid chromatograph and gas chromatograph mass spectrometer[J]. International Journal of Food Science & Technology,2011,46(7):1406−1412.

    [33] 乔小燕. 康砖茶贮藏过程中品质成分变化规律及贮藏年份综合评鉴研究[D]. 长沙: 湖南农业大学, 2020.

    QIAO X Y. Stu-dy on the change law of quality components and comprehensive evaluation of storage years of Kangzhuan tea during storage[D]. Changsha: Hunan Agricultural University, 2020.

    [34] 张纪伟, 沈雪梅, 张钎, 等. 不同产地和贮存年份普洱生茶香气和呈味物质变化的比较研究[J]. 食品研究与开发,2021,42(9):11−18. [ZHANG J W, SHEN X M, ZHANG Q, et al. Comparative study on changes of aroma and flavor components of raw Pu-erh tea produced in different producing areas and storage years[J]. Food Research and Development,2021,42(9):11−18. doi: 10.12161/j.issn.1005-6521.2021.09.002

    ZHANG J W, SHEN X M, ZHANG Q, et al. Comparative study on changes of aroma and flavor components of raw Pu-erh tea produced in different producing areas and storage years[J]. Food Research and Development, 2021, 42(9): 11-18. doi: 10.12161/j.issn.1005-6521.2021.09.002

  • 期刊类型引用(3)

    1. 庄燕苹,杨帆,肖曼,田小雨,陈怡,龙紫宇,陈柏岑,倪雅丽,宫爱民,谢毅强. 忧遁草乙醇提取物对秀丽隐杆线虫的抗衰老作用及机制. 食品工业科技. 2023(11): 411-417 . 本站查看
    2. 张慧康,马佳波,司奇,王珍珍,沙如意,戴静,毛建卫. 基于线虫模型的木姜叶柯抗氧化应激及抗衰老作用. 食品工业科技. 2023(12): 363-370 . 本站查看
    3. 黄少杰,陈宏著,钟淳菲,朱思阳,黎攀,杜冰. 铁皮石斛叶多糖对秀丽隐杆线虫体内抗衰老作用. 食品科学. 2022(21): 203-208 . 百度学术

    其他类型引用(2)

表(8)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  75
  • PDF下载量:  29
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-08-01
  • 网络出版日期:  2023-04-21
  • 刊出日期:  2023-06-14

目录

/

返回文章
返回
x 关闭 永久关闭