• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
李居阳,王杰儒,张莹莹,等. 添加玉米醇溶蛋白对荞麦面团特性的影响[J]. 食品工业科技,2023,44(6):1−7. doi: 10.13386/j.issn1002-0306.2022060273.
引用本文: 李居阳,王杰儒,张莹莹,等. 添加玉米醇溶蛋白对荞麦面团特性的影响[J]. 食品工业科技,2023,44(6):1−7. doi: 10.13386/j.issn1002-0306.2022060273.
LI Juyang, WANG Jieru, ZHANG Yingying, et al. Effect of Zein on Buckwheat Dough Properties[J]. Science and Technology of Food Industry, 2023, 44(6): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060273.
Citation: LI Juyang, WANG Jieru, ZHANG Yingying, et al. Effect of Zein on Buckwheat Dough Properties[J]. Science and Technology of Food Industry, 2023, 44(6): 1−7. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060273.

添加玉米醇溶蛋白对荞麦面团特性的影响

Effect of Zein on Buckwheat Dough Properties

  • 摘要: 为探究玉米醇溶蛋白(Zein)对荞麦无麸质面团流变学特性的影响,将气流膨化苦荞粉与甜荞粉以1:1混合制得基料粉(以下称混粉)。用90%乙醇溶液对Zein进行增塑处理,然后按照0%、5%、10%、15%、20%的添加量(以混粉计)与混粉及水揉混制得荞麦无麸质面团(以下称面团),并对面团静态流变学特性(质构特性、拉伸特性和应力松弛特性)、动态流变学特性、光学性质(色度和反光率)以及微观结构等进行测定。结果表明,随着Zein添加量从0%增加到20%,面团的硬度从482.38 g降低到346.60 g,弹性从0.21升高到0.29,拉伸距离从15.44 mm升高到38.16 mm,抗拉伸力从13.10 g升高到72.04 g。面团的残余应力、黏弹系数和松弛时间相对于对照组显著升高(P<0.05),但随着Zein添加量的增加均逐渐减小,面团G'和tanδ值、面团表面亮度及反光率均得到明显改善,微观结构相比对照组能够明显地观察到蛋白纤维丝。以上结果充分表明,Zein可有效地改善荞麦无麸质面团结合力和延伸性差的缺陷。本研究为无麸质食品结构及加工特性改善提供了一个新的途径。

     

    Abstract: To investigate the effect of zein addition on rheological properties of buckwheat-based gluten-free dough, atmosphere puffed tartary buckwheat flour was mixed with common buckwheat flour at a ratio of 1:1 to make a mxied base flour (MBF). Zein was plasticized with 90% ethanol solution, and then 0%, 5%, 10%, 15%, and 20% (MBF based) of the plasticized zein was mixed with MBF and water, respectively, to make a buckwheat-based gluten-free dough (BBGD) with gradient content of zein. The static rheological properties of dough (texture properties, tensile properties and stress relaxation properties), dynamic rheological properties, optical properties (chromaticity and reflectivity) and microstructure were measured. Results showed that, with the increasing of zein content from 0% to 20%, the hardness of BBGD decreased from 482.38 g to 346.60 g, while elasticity, tensile distance, and tensile strength increased from 0.21 to 0.29, 15.44 to 38.16 mm, and 13.10 to 72.04 g, respectively. The residual stress, viscoelastic coefficient and relaxation time increased significantly compared with the control (P<0.05), but decreased gradually with the increasing of zein addition. The G' and tanδ values, surface brightness, and reflectance rate of the dough were significantly improved, and the protein fiber was obviously observed in the microstructure compared with the control. The above results showed that zein could effectively improve the defects of poor adhesion and extensibility of buckwheat gluten-free dough. This study would provide a new way for improving the structure and processing properties of gluten-free foods.

     

/

返回文章
返回