• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
尚静,冯树南,谭涛,等. 基于高光谱成像的贵长猕猴桃硬度快速预测[J]. 食品工业科技,2023,44(6):345−350. doi: 10.13386/j.issn1002-0306.2022060168.
引用本文: 尚静,冯树南,谭涛,等. 基于高光谱成像的贵长猕猴桃硬度快速预测[J]. 食品工业科技,2023,44(6):345−350. doi: 10.13386/j.issn1002-0306.2022060168.
SHANG Jing, FENG Shunan, TAN Tao, et al. Rapid Prediction for the Firmness of Guichang Kiwifruit by Hyperspectral Imaging[J]. Science and Technology of Food Industry, 2023, 44(6): 345−350. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060168.
Citation: SHANG Jing, FENG Shunan, TAN Tao, et al. Rapid Prediction for the Firmness of Guichang Kiwifruit by Hyperspectral Imaging[J]. Science and Technology of Food Industry, 2023, 44(6): 345−350. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060168.

基于高光谱成像的贵长猕猴桃硬度快速预测

Rapid Prediction for the Firmness of Guichang Kiwifruit by Hyperspectral Imaging

  • 摘要: 为了提高猕猴桃硬度预测的效率。应用可见/近红外(390~1030 nm)高光谱成像系统获取贵长猕猴桃的高光谱图像信息,并提取每个样品感兴趣区域的反射光谱,采用标准正态变换消除原始反射光谱中的噪声干扰;基于竞争性自适应重加权(competitive adaptive reweighted sampling,CARS)与连续投影算法筛选特征变量,建立误差反向传播神经网络和多元线性回归(multi linear regression,MLR)模型检测贵长猕猴桃硬度。结果表明:应用CARS从256个变量中筛选了35个特征变量,运算效率提升了近11倍(即运算时间从5.84 s降到了0.54 s);构建的CARS-MLR检测模型具有较大的rc=0.95和rp=0.92,较小的RMSEC=1.65 kg/cm2和RMSEP=1.99 kg/cm2,且RPD值(2.47)大于2,表明CARS-MLR模型具有非常好的检测性能,利用高光谱成像技术以及化学计量学可以实现贵长猕猴桃硬度的快速无损检测。

     

    Abstract: The work aimed to improve the prediction efficiency in rapid determination of the firmness of kiwifruit. A Vis/NIR (390~1030 nm) hyperspectral imaging system was applied to obtain the images of Guichang kiwifruit, and the reflective spectrum in the regions of interest on each sample was acquired. Noise from original reflective spectrum was reduced by the standard normal variation method. The competitive adaptive reweighted sampling (CARS) and the successive projection algorithm were applied to select feature variables. Finally an error back propagation neural network and a multi linear regression (MLR) model were constructed to predict the firmness of kiwifruit. A total of 35 feature variables were selected by CARS from 256 variables. The working efficiency of the final prediction model was improved by 11-fold, with the runtime dropped from 5.84 s to 0.54 s. Overall, the CARS-MLR model showed a relatively good detection capability (rc=0.95, rp=0.92, RMSEC=1.65 kg/cm2, RMSEP=1.99 kg/cm2, RPD above 2). This study demonstrated the application potential of the nondestructive hyperspectral imaging technology for fast determination of the firmness of kiwifruit.

     

/

返回文章
返回